In this paper, we study the existence of a positive solution for $q$-fractional boundary value problem by employing the fixed-point theorem. Our analysis relies on the Banach space and the fixed point theorem. Finally, we provide an example to verify our hypothesis and showcase our results.
Neamaty, A. and Shahabi, F. (2025). On $q$-fractional differential problem with parameter and $q$-derivative boundary conditions. Journal of Mathematical Modeling, 13(3), 663-674. doi: 10.22124/jmm.2025.26666.2359
MLA
Neamaty, A. , and Shahabi, F. . "On $q$-fractional differential problem with parameter and $q$-derivative boundary conditions", Journal of Mathematical Modeling, 13, 3, 2025, 663-674. doi: 10.22124/jmm.2025.26666.2359
HARVARD
Neamaty, A., Shahabi, F. (2025). 'On $q$-fractional differential problem with parameter and $q$-derivative boundary conditions', Journal of Mathematical Modeling, 13(3), pp. 663-674. doi: 10.22124/jmm.2025.26666.2359
CHICAGO
A. Neamaty and F. Shahabi, "On $q$-fractional differential problem with parameter and $q$-derivative boundary conditions," Journal of Mathematical Modeling, 13 3 (2025): 663-674, doi: 10.22124/jmm.2025.26666.2359
VANCOUVER
Neamaty, A., Shahabi, F. On $q$-fractional differential problem with parameter and $q$-derivative boundary conditions. Journal of Mathematical Modeling, 2025; 13(3): 663-674. doi: 10.22124/jmm.2025.26666.2359