In this paper, we propose some new preconditioners for solving multilinear system $\mathcal{A}\mathbf{x}^{m-1}=\mathbf{b}$. These preconditioners are based on tensor splitting. We also present some theorems for analyzing and convergence of the preconditioned Jacobi-, Gauss-Seidel-, and SOR-type iterative methods. Numerical examples are presented to verify the efficiency of the proposed preconditioned methods.
Karimi, S. and Khosravi Dehdezi, E. (2024). Tensor splitting preconditioners for multilinear systems. Journal of Mathematical Modeling, 12(3), 481-499. doi: 10.22124/jmm.2024.23603.2104
MLA
Karimi, S. , and Khosravi Dehdezi, E. . "Tensor splitting preconditioners for multilinear systems", Journal of Mathematical Modeling, 12, 3, 2024, 481-499. doi: 10.22124/jmm.2024.23603.2104
HARVARD
Karimi, S., Khosravi Dehdezi, E. (2024). 'Tensor splitting preconditioners for multilinear systems', Journal of Mathematical Modeling, 12(3), pp. 481-499. doi: 10.22124/jmm.2024.23603.2104
CHICAGO
S. Karimi and E. Khosravi Dehdezi, "Tensor splitting preconditioners for multilinear systems," Journal of Mathematical Modeling, 12 3 (2024): 481-499, doi: 10.22124/jmm.2024.23603.2104
VANCOUVER
Karimi, S., Khosravi Dehdezi, E. Tensor splitting preconditioners for multilinear systems. Journal of Mathematical Modeling, 2024; 12(3): 481-499. doi: 10.22124/jmm.2024.23603.2104