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Abstract. In this paper, we propose some new preconditioners for solving multilinear system A xm−1 =
b. These preconditioners are based on tensor splitting. We also present some theorems for analyzing and
convergence of the preconditioned Jacobi-, Gauss-Seidel-, and SOR-type iterative methods. Numerical
examples are presented to verify the efficiency of the proposed preconditioned methods.
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1 Introduction

Recently, solving multilinear system
A xm−1 = b, (1)

where A = (ai1i2...im), ai1i2...im ∈C, 1≤ i j ≤ n j, j = 1, . . . ,m is an m order n-dimensional tensor, x and b
are vectors in Cn has become a hot topic due to its applications in fields such as data analysis, engineering
and scientific computing [6, 8, 15]. The n-dimensional vector A xm−1 is defined by [29]

(A xm−1)i =
n

∑
i2=1

. . .
n

∑
im=1

aii2...imxi2 . . .xim , i = 1,2, . . . ,n, (2)

where xi denotes the ith component of x. Many theoretical analysis and algorithms for solving multilin-
ear systems (1) have also studied in [1, 5, 9–21, 23, 25, 30, 31].

We know that preconditioning techniques play a fundamental role in solving multilinear systems, in
particular, when the coefficient tensor is an M -tensor. Liu et al. in [24], presented the preconditioned
SOR method for solving multilinear systems whose coefficient tensor is an M -tensor. Also, the cor-
responding comparison for spectral radii of the tensor iterative methods was given. Cui et al. in [7],
proposed a preconditioned iterative method based on tensor splitting for solving the multilinear system
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(1). For this purpose, they suggested the preconditioner I+Smax.
In this paper, we propose new preconditioners for solving multilinear system (1) that are more effi-

cient than the existing methods. Also, we give some theorems for analyzing and convergence of the new
preconditioned methods.

The rest of this paper is organized as follows. Section 2 is preliminary, in which we introduce some
related definitions and lemmas. In the 3rd section, some new preconditioners are proposed, and the corre-
sponding theoretical analysis is given. In Section 4, numerical examples are given to show the efficiency
of the proposed preconditioned iterative methods. Section 5 is the concluding remarks.

2 Preliminaries

In this section, we introduce some definitions, notations and lemmas. Let 0, O and O denote null vector,
null matrix and null tensor, respectively. Suppose that A and B are tensors with the same size. The
order A ≥B(> B) means that each element of A is no less than (larger than) the corresponding one
of B. A tensor A ∈Cn1×...×nm consists of ∏

m
i=1 ni elements in the complex field C. If n1 = . . .= nm = n,

A is called an m order n-dimensional tensor. By Cn1×...×nm , we denote all m order tensors consisting
of ∏

m
i=1 ni entries and by C[m,n] we denote the set of all m order n-dimensional tensors. When m = 1,

C[1,n] is simplified as Cn , which is the set of all n-dimensional complex vectors. Similarly, the above
notions can be used for the real number field R. Let A ∈ R[m,n], if each entry of A is nonnegative, then
A is called a nonnegative tensor. The set of all m order n-dimensional nonnegative tensors is denoted by
R[m,n]
+ . The m order n-dimensional identity tensor is denoted by Im = (δi1i2...im) ∈ R[m,n] where

δi1i2...im =

{
1, i f i1 = i2 = . . .= im
0, otherwise.

The identity matrix of size n×n, is denoted by I.

Definition 1. [32] A ∈ R[m,n] is called a Z -tensor if its off-diagonal entries are non-positive. A

is an M -tensor if there exists a tensor B ∈ R[m,n]
+ and a positive real number η ≥ ρ(B) such that

A = ηI −B. If η > ρ(B), then A is called a strong M -tensor.

Definition 2. [23] Let A ∈ R[2,n] and B ∈ R[m,n]. C = AB ∈ C[m,n] is defined by

c ji2...im =
n

∑
j2=1

a j j2b j2i2...im , (3)

which can be written as C(1) = (AB)(1) = AB(1), where C(1) and B(1) are the matrices obtained from
C and B flattened along the first index, respectively.

Definition 3. [28] Let A ∈ R[m,n]. The majorization matrix of A , denoted by M(A ), is defined as a
square matrix of size n×n where its entries are

(M(A ))i j = ai j... j, i, j = 1,2, . . . ,n.

Definition 4. [21] If M(A ) is a nonsingular matrix and A = M(A )Im, then (M(A ))−1 is the order 2
left-inverse of A , i.e. (M(A ))−1A =Im, and then we call A a left-invertible tensor or left-nonsingular
tensor.
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Definition 5. [29] Let A ∈R[m,n]. A pair (λ ,x) ∈C× (Cn\{0}) is called an eigenvalue-eigenvector(or
simply eigenpair) of A if they satisfy the equation

A xm−1 = λx[m−1], (4)

where x[m−1] = (xm−1
1 , . . . ,xm−1

n )T. ρ(A ) = max{|λ ||λ ∈ σ(A )} is called the spectral radius of A ,
where σ(A ) is the set of all eigenvalues of A .

Lemma 1. [23] If A is a strong M -tensor, then M(A ) is a nonsingular M-matrix.

Definition 6. [23] Suppose that A ,E ,F ∈ R[m,n]. A = E −F is said to be a splitting of A if E is
a left-nonsingular; a regular splitting of A if E is left-nonsingular with (M(E ))−1 ≥ O and F ≥ O;
a weak regular splitting of A if E is left-nonsingular with (M(E ))−1 ≥ O and (M(E ))−1F ≥ O; a
convergent splitting if ρ((M(E ))−1F )< 1.

Lemma 2. [33] If A is a Z -tensor, then the following conditions are equivalent

1. A is a strong M -tensor;

2. A has a convergent (weak) regular splitting;

3. All (weak) regular splittings of A are convergent;

4. There exists a vector x > 0 such that A xm−1 > 0.

Lemma 3. [15] If A is a strong M -tensor, then for every positive vector b, the multilinear system (1)
has a unique positive solution.

Lemma 4. [22] Suppose that A ∈ R[m,n]. Let A = E1−F1 and A = E2−F2 be a weak regular
splitting and a regular splitting, respectively, and F2 ≤F1,F2 6= O . One of the following statements
holds.

1. ρ((M(E2))
−1F2)≤ ρ((M(E1))

−1F1)< 1;

2. ρ((M(E2))
−1F2)≥ ρ((M(E1))

−1F1)≥ 1.

If F2 < F1,F2 6= O and ρ((M(E1))
−1F1)> 1, then the first inequality in part 2 is strict.

Lemma 5. [33] Let A be a strong M -tensor, and A = E1−F1 = E2−F2 be two weak regular
splittings with (M(E1))

−1 ≤ (M(E2))
−1. If the Perron vector x of (M(E2))

−1F2 satisfies A xm−1 ≥ 0
then ρ((M(E2))

−1F2)≤ ρ((M(E1))
−1F1).

A general tensor splitting iterative method for solving (1) is

x j+1 = [(M(E ))−1Fxm−1
j +(M(E ))−1b][

1
m−1 ], j = 0,1, . . . . (5)

(M(E ))−1F is called the iterative tensor of the splitting method (5). Taking A = D −L −F , Liu et
al. in [23], considered E = D , E = D −L and E = 1

τ (D − τL ),for the Jacobian, the Gauss-Seidel
and the SOR iterative methods, respectively, where D = DIm and L = LIm, where D and L are the
positive diagonal matrix and the strictly lower triangle nonnegative matrix, respectively. Without loss of
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generality, we always assume that aii...i = 1, i = 1,2, . . . ,n. Consider the splitting of A = I −L −F ,
where L = LIm and L is the strictly lower triangle part of M(A ).

Using iterative methods for solving (1) may have a poor convergence or even fail to converge. To
overcome this problem, it is efficient to apply these methods which combine preconditioning techniques.
These iterative methods usually involve some matrices that transform the iterative tensor (M(E ))−1F
into a favorable tensor. The transformation matrices are called preconditioners. Li et al., in [21], consid-
ered the preconditioner Pα = I+Sα for solving preconditioned multilinear system

PαA xm−1 = Pαb,

with

Sα =


0 −α1a12...2 0 . . . 0
0 0 −α2a23...3 . . . 0
...

...
...

. . .
...

0 0 0 . . . −αn−1an−1,n...n
0 0 0 0 0

 .
In [24], Liu et al. considered the preconditioned SOR method for solving multilinear systems with
preconditioner Pβ = I+Cβ where

Cβ =


0 0 0 . . . 0

−β1a21...1 0 0 . . . 0
...

...
...

. . .
...

−βn−2a(n−1)1...1 0 0 . . . 0
−βn−1an1...1 0 0 0 0

 .

Herein, we consider new preconditioners Pαβ(s,k) = D+Ss
α+Kk

β, where 1≤ s,k ≤ n−1, D is the
diagonal part of majorization of A and Ss

α, Kk
β are square matrices with elements equal to zero except

the sth upper and kth lower diagonals, respectively, i.e.

Ss
α =



0 . . . 0 −α1a1(1+s)...(1+s) 0 . . . 0
0 . . . 0 0 −α2a2(2+s)...(2+s) . . . 0
...

...
...

...
...

. . . 0
0 . . . 0 0 0 . . . −αn−san−s,n...n

0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 0 0 . . . 0


,

Kk
β =



0 0 . . . 0 . . . 0
...

...
...

...
...

...
0 0 . . . 0 . . . 0

−βk+1a(k+1)1...1 0 . . . 0 . . . 0
0 −βk+2a(k+2)2...2 . . . 0 . . . 0
...

...
. . .

...
...

...
0 0 −βnan(n−k)...(n−k) 0 . . . 0


.
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Applying Pαβ(s,k) on the left side of Equation (1), we get the new preconditioned multilinear system

Aαβ(s,k)xm−1 = bαβ(s,k), (6)

where Aαβ(s,k) = Pαβ(s,k)A and bαβ(s,k) = Pαβ(s,k)b.

Recently, F.P. Ali beik et al. [1] proposed a class of preconditioners in the form P̃ = I + S̃ where

S̃ = (S̃i j) =

{
−αi jai j... j i 6= j,
0 i = j,

and the parameter αi j ∈ [0,1] is given for i, j = 1,2, ...,n. Note that, for suitable choices of parameters,
the matrix S̃ reduces to Ss

α+Kk
β. Therefore, Pαβ(s,k) is a special case of P̃.

However, by using the new preconditioner Pαβ(s,k), we propose and establish the comparison results
between the spectra radii of several Jacobi-, Gauss-Seidel- and SOR-type splittings of the preconditioned
multilinear system

Aαβ(s,k)xm−1 = bαβ(s,k),

where Aαβ(s,k) = Pαβ(s,k)A and bαβ(s,k) = Pαβ(s,k)b. Hence, the differences between this paper
and [2] lie in the assumptions used to establish the comparison results between the spectra radii of
splittings given in Section 3.

Remark 1. We denote Aα(s) = Pα(s)A and Aβ(k) = Pβ(k)A , where Pα(s) = D+Ss
α and Pβ(k) =

D+Kk
β, respectively.

Proposition 1. Let A ∈R[m,n] be a Z -tensor. If A is a strong M -tensor, then for any αi,β j ∈ [0,1], i =
1, . . . ,n− s, j = k+1, . . . ,n, Aαβ(s,k) is a strong M -tensor.

Proof. Without loss of generality, we assume that s = k = 1. Let Aαβ(s,k) = Pαβ(s,k)A = (âi1i2...im).
Then for 1≤ i2, ..., im ≤ n, we have

â ji2...im =


a1i2...im−α1a12...2a2i2...im , j = 1
a ji2...im−β ja j( j−1)...( j−1)a( j−1)i2...im−α ja j( j+1)...( j+1)a( j+1)i2...im , 2≤ j ≤ n−1
ani2...im−βnan(n−1)...(n−1)a(n−1)i2...im , j = n.

For ( j, i2, ..., im) 6= ( j, j, . . . , j) and αi,β j ∈ [0,1], i = 1, . . . ,n− s, j = k+1, . . . ,n, we have â ji2...im ≤ 0,
i.e. Aαβ(s,k) is a Z -tensor. According to Lemma 2, there exists a vector x > 0 such that A xm−1 > 0.
We also have Aαβ(s,k)xm−1 = (D+Ss

α+Kk
β)A xm−1 = DA xm−1+Ss

αA xm−1+Kk
βA xm−1 > 0. Thus

by Lemma 2, Aαβ(s,k) is a strong M -tensor.

Since bαβ(s,k) ≥ b > 0 for any αi,β j ∈ [0,1], i = 1, . . . ,n− s, j = k+ 1, . . . ,n, by Lemma 3 and
Proposition 1, the following proposition is easily proved.

Proposition 2. The preconditioned multilinear system (6) has the same unique positive solution with
multilinear system (1).

Remark 2. Let in the multilinear system (1), A be an M -tensor. We can write A = Im−L −F .
Also, from now on, if no other special illustration, we suppose that A is an M -tensor.
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3 The preconditioned Jacobi-, Gauss-Seidel- and SOR-type iteration
schemes

3.1 The preconditioned Jacobi-type iterative schemes

We consider the following five Jacobi-type splittings

Aαβ(s,k) = Pαβ(s,k)Im−Pαβ(s,k)(L +F ) = E1−F1,

Aαβ(s,k) = Im− (Pαβ(s,k)(L +F )− (Ss
α+Kk

β)Im) = E2−F2,

Aα(s) = Im− (Pα(s)(L +F )−Ss
αIm) = E3−F3,

Aβ(k) = Im− (Pβ(L +F )−Kk
βIm) = E4−F4.

Remark 3. The splitting Aα(s) = E3−F3, where s = 1, is the same as the splitting in [21].

Remark 4. When s = k = 1, we denote K1
β by Kβ and S1

α by Sα. Also denote Kβ by K and Sα by S for
all αi = β j = 1, i = 1,2, . . . ,n−1, j = 2,3, . . . ,n. Let L = KIm +L ′ and F = SIm +F ′. Thus we
have the following Jacobi-type splitting

Aαβ(1,1) = (I−SαK−KβS)Im− [L +F − (Sα+Kβ)Im +Sα(L
′+F )+Kβ(L +F ′)]

= E5−F5.

Theorem 1. Let A ∈ R[m,n] be a strong M -tensor. Then for every β j ∈ [0,1], j = k + 1, . . . ,n and
αi ∈ [0,1], i = 1, . . . ,n− s, Aαβ(s,k) = E1−F1 = E2−F2, Aα(s) = E3−F3 and Aβ(k) = E4−F4
are convergent. Moreover if

0 < α1a12...2a21...1 < 1,
0 < αiai(i+1)...(i+1)a(i+1)i...i +βiai(i−1)...(i−1)a(i−1)i...i < 1, i = 2, . . . ,n−1,
0 < βnan(n−1)...(n−1)a(n−1)n...n < 1,

(7)

then the tensor splitting Aαβ(s,k) = E5−F5 is convergent.

Proof. Suppose Aαβ(s,k)= E1−F1. Since A =Im−L −F is a strong M -tensor, then ρ(L +F )<
1. Thus ρ((M(E1))

−1F1) = ρ(L +F ) < 1. Hence Aαβ(s,k) = E1−F1 is a convergent splitting.
Let Aαβ(s,k) = E2−F2. We have (M(E1))

−1 = I ≥ O and since αi,β j ∈ [0,1], it is easy to see that
F2 ≥ O . Thus Aαβ(s,k) = E2−F2 is a regular splitting. By Proposition 1, Aαβ(s,k) is a strong M -
tensor and using Lemma 2, Aαβ(s,k) = E2−F2 is a convergent regular splitting. For Aα(s) = E3−F3
and Aβ(k) = E4−F4, the proof is similar to the proof of the case Aαβ(s,k) = E2−F2. Suppose that
Aαβ(s,k) = E5−F5 and equation (7) holds. Thus (M(E5))

−1 exists and

(M(E5))
−1
ii =


(1−α1a12...2a21...1)

−1, i = 1,
(1−αiai(i+1)...(i+1)a(i+1)i...i−βiai(i−1)...(i−1)a(i−1)i...i)

−1, i = 2, . . . ,n−1,
(1−βnan(n−1)...(n−1)a(n−1)n...n)

−1, i = n,

(8)

which implies that (M(E5))
−1 ≥ O. It is not difficult to see that F5 = E5−Aαβ(s,k) ≥ O . Using

Proposition 1, Aαβ(s,k) is a strong M -tensor and from Lemma 2, Aαβ(s,k) = E5−F5 is a convergent
regular splitting.
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Theorem 2. Let A be a strong M -tensor and equation (7) holds. Then the following relations hold.

1. ∃ x1 ∈ Rn
+, ((M(E2))

−1F2)αβxm−1
1 ≤ ((M(E1))

−1F1)αβxm−1
1 .

2. ∃ x2 ∈ Rn
+, Aαβ(s,k)xm−1

2 ≥ 0.

3. ρ(((M(E5))
−1F5)αβ)≤ ρ(((M(E2))

−1F2)αβ)≤ ρ(((M(E1))
−1F1)αβ).

Proof. Case 1. Since A = Im−L −F is a strong M -tensor, ρ((M(E1))
−1(F1)) = ρ(L +F )< 1.

Thus, for the nonnegative Jacobi iteration tensor (M(E1))
−1F1 = L +F and by the Perron-Frobneius

theorm, there exists a nonnegative vector x1 such that (M(E1))
−1(F1)xm−1

1 = ρ(F1)x
[m−1]
1 . Thus, we

have

((M(E2))
−1F2)αβxm−1

1 = (Pαβ(s,k)(L +F )− (Ss
α+Kk

β)Im)xm−1
1

= (I+Ss
α+Kk

β)(L +F )xm−1
1 − (Ss

α+Kk
β)Imxm−1

1

= (L +F )xm−1
1 +(Kk

β+Ss
α)(L +F )xm−1

1 − (Ss
α+Kk

β)Imxm−1
1

= ((M(E1))
−1F1)αβxm−1

1 − (Ss
α+Kk

β)(Im− (L +F ))xm−1
1

= ((M(E1))
−1F1)αβxm−1

1 − (Ss
α+Kk

β)(1−ρ((M(E1))
−1)F1)αβx[m−1]

1 .

This results in

((M(E2))
−1F2)αβxm−1

1 − ((M(E1))
−1F1)αβxm−1

1 =−(Ss
α+Kk

β)(1−ρ((M(E1))
−1F1))αβx[m−1]

1 ≤ 0,

due to Ss
α+Kk

β ≥O and 0 < ρ((M(E1))
−1F1)< 1.

Case 2. By Theorm 1, we know that Aαβ(s,k) = E5−F5 is convergent, i.e. 0 < ρ((M(E5))
−1F5)< 1

and thus, for the nonnegative Jacobi iteration tensor (M(E5))
−1F5 and by the Perron-Frobenius theorem,

there exists a nonnegative vector x2 such that (M(E5))
−1F5xm−1

2 = ρ((M(E5))
−1F5)x

[m−1]
2 . Therefore

we have

Aαβ(s,k)xm−1
2 = E5xm−1

2 −F5xm−1
2

= E5xm−1
2 −M(E5)(M(E5))

−1F5xm−1
2

= (I−SαK−KβS)x[m−1]
2 −ρ((M(E5))

−1F5)(I−SαK−KβS)Imxm−1
2

= (I−SαK−KβS)x[m−1]
2 −ρ((M(E5))

−1F5)(I−SαK−KβS)x[m−1]
2

= (1−ρ((M(E5))
−1F5))(I−SαK−KβS)x[m−1]

2 ≥ 0.

Case 3. Since (M(E2)αβ)
−1 = I and (M(E5)αβ)

−1 = (I−SαK−KβS)−1, thus

(M(E5)αβ)
−1 ≥ (M(E2)αβ)

−1.

Let (ρ(((M(E5))
−1F5)αβ),x) be a Perron eigenpair of ((M(E5))

−1F5)αβ, then by part 2, we have
Aαβ(s,k)xm−1 ≥ 0 and by Lemma 5, we have ρ(((M(E5))

−1F5)αβ) ≤ ρ(((M(E2))
−1F2)αβ). Now

suppose that x is a nonnegative Perron vector of ((M(E1))
−1F1)αβ, then by part 1, we have

((M(E2))
−1F2)αβxm−1

1 ≤ ((M(E1))
−1F1)αβxm−1

1 = ρ(((M(E2))
−1F2)αβ)x

[m−1]
1 .

Since ((M(E2))
−1F2)αβ ≥ O , then we have ρ(((M(E2))

−1F2)αβ) ≤ ρ(((M(E1))
−1F1)αβ), and the

proof is completed.
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Remark 5. It is easy to see that for every Perron vector x of nonnegative Jacobi iteration tensor of
convergence splitting method, we have, Aαβ(s,k)xm−1 ≥ 0.

Proposition 3. [33] Let A ∈ R[m,n] be a strong M -tensor. If equation (7) holds for any β1, j, β2, j ∈
[0,1], j = k+1, . . . ,n, α1,i,α2,i ∈ [0,1], i= 1, . . . ,n−s, α′= (α1,i), α

′′= (α2,i), β
′= (β1, j), β

′′= (β2, j)
and α′ ≥α′′, β′ ≥ β′′, then we have

1. ρ(((M(E1))
−1F1)α′β′)≤ ρ(((M(E1))

−1F1)α′′β′′);

2. ρ(((M(E2))
−1F2)α′β′)≤ ρ(((M(E2))

−1F2)α′′β′′);

3. ρ(((M(E3))
−1F3)α′)≤ ρ(((M(E3))

−1F3)α′′);

4. ρ(((M(E4))
−1F4)β′)≤ ρ(((M(E4))

−1F4)β′′);

5. ρ(((M(E5))
−1F5)α′β′)≤ ρ(((M(E5))

−1F5)α′′β′′).

3.2 Gauss-Seidel-type iterative schemes

We consider the following four Gauss-Seidel-type splittings:

Aαβ(s,k) = Pαβ(s,k)(Im−L )−Pαβ(s,k)F = M1−N1,

Aαβ(s,k) = (Im−L +Kk
βIm−Kk

βL −Dα−Lα−Dβ−Lβ)− (F −Ss
αIm +Ss

αF +Fα+Fβ)

= M2−N2,

Aα(s) = (Im−L −Dα−Lα)− (F −Ss
αIm +Ss

αF +Fα) = M3−N3,

Aβ(k) = ((I+Kk
β)(Im−L )−Dβ−Lβ)− (F +Fβ) = M4−N4,

where Dα = DαIm, Lα = LαIm, Dβ = DβIm, Lβ = LβIm, and Dα, Dβ, Lα, Lβ are the diagonal
parts and the strictly lower triangle parts of M(Ss

αL ) and M(Kk
βF ), respectively, i.e.

Ss
αL = Dα+Lα+Fα, Kk

βF = Dβ+Lβ+Fβ.

Remark 6. Splitting Aα(1) = M3−N3, is the same as the splitting in [21].

Remark 7. If k = s = 1, similar to Remark 4, we have

Aαβ(1,1) = ((I+Kβ)(Im−L )−SαL −KβSIm)− ((I+Sα)F −SαIm +KβF ′) = M5−N5.

Theorem 3. Let A ∈ R[m,n] be a strong M -tensor. Then for any β j ∈ [0,1], j = k+ 1, . . . ,n and αi ∈
[0,1], i = 1, . . . ,n− s, Aαβ(s,k) = M1−N1 is convergent. Also,
when k < s if 

0 < αiai(n−i)...(n−i)a(n−i)i...i < 1, i = 1,2, . . . ,k,
0 < αiai(n−i)...(n−i)a(n−i)i...i +βiai(i−k)...(i−k)a(i−k)i...i < 1, i = k+1, . . . ,s,
0 < βiai(i−k)...(i−k)a(i−k)i...i < 1, i = s+1, . . . ,n,

(9)
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for k > s if 
0 < αiai(n−i)...(n−i)a(n−i)i...i < 1, i = 1,2, . . . ,s,
0 < αiai(n−i)...(n−i)a(n−i)i...i +βiai(i−k)...(i−k)a(i−k)i...i < 1, i = s+1, . . . ,k,
0 < βiai(i−k)...(i−k)a(i−k)i...i < 1, i = k+1, . . . ,n,

(10)

and for k = s if
0 < αiai(i+k)...(i+k)a(i+k)i...i < 1, i = 1,2, . . . ,k,
0 < αiai(i+k)...(i+k)a(i+k)i...i +βiai(i−k)...(i−k)a(i−k)i...i < 1, i = k+1, . . . ,n− k,
0 < βiai(i−k)...(i−k)a(i−k)i...i < 1, i = n− k+1, . . . ,n.

(11)

hold, then the tensor splitting Aαβ(s,k) = M2−N2 is convergent. Besides, if

0 < αiai(n−i)...(n−i)a(n−i)i...i < 1, i = 1,2, . . . ,s,

holds, then Aα(s) = M3−N3 is convergent. Finally, if

0 < βiai(i−k)...(i−k)a(i−k)i...i < 1, i = k+1, . . . ,n,

holds, then Aβ(k) = M4−N4 is convergent.

Proof. Let Aαβ(s,k) = M1−N1. Due to Proposition 1, Aαβ(s,k) is a strong M -tensor, and N1 ≥ O .
Since

(M(M1))
−1N1 = (I−L)−1(Pαβ(s,k))−1Pαβ(s,k)N1 ≥O,

then, Aαβ(s,k) = M1−N1 is a weak regular splitting and, using Lemma 2, it is convergent. Suppose
that Aαβ(s,k) = M2−N2 and k = s. Since M2 = Im−L +Kk

βIm−Kk
βL −Dα−Lα−Dβ−Lβ,

then we have
M(M2) = I−Dα−Dβ−L+Kk

β−Kk
βL−Lα−Lβ.

Notice that Dα and Dβ are diagonal part of M(Ss
αL ) and M(Kk

βF ), respectively. It is not difficult
to see that

(I−Dα−Dβ)ii =


1−αiai(i+k)...(i+k)a(i+k)i...i, i = 1,2, . . . ,k,
1−αiai(i+k)...(i+k)a(i+k)i...i−βiai(i−k)...(i−k)a(i−k)i...i, i = k+1, . . . ,n− k,
1−βiai(i−k)...(i−k)a(i−k)i...i, i = n− k+1, . . . ,n.

(12)

Since equation (11) holds, (I−Dα−Dβ)
−1 exists and (I− (Dα +Dβ))

−1 = I+ (Dα +Dβ) + . . .+
(Dα+Dβ)

n−1 + . . .≥ I. By taking H := L+Lα+Lβ−Kk
β+Kk

βL, it is easy to show that H is a lower
triangular matrix. To prove H≥O, it is sufcient to show that (L−Kk

β)i+1,i ≥ 0 for any i = 1, . . . ,n−1.
Actually, this is shown by

(L−Kk
β)i+1,i =−ai+1,i...i− (−βi+1ai+1,i...i) = ai+1,i...i(βi+1−1)≥ 0.
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By the Neumanns series [26], we have

(M(M2))
−1 = [(I−Dα−Dβ)−H]−1

= [I− (I− (Dα+Dβ))
−1H]−1(I− (Dα+Dβ))

−1

= {I+(I− (Dα+Dβ))
−1H+[(I− (Dα+Dβ)

−1H]2 + . . .

+[(I− (Dα+Dβ))
−1H]n−1 + . . .}(I− (Dα+Dβ))

−1

≥ O.

Since N2 ≥O (like what was said in the proof H≥O), Aαβ(s,k) =M2−N2 is a weak regular splitting
and, using Lemma 2, it is convergent. A similar proof can be used for the cases k < s and k > s.
Aα(s) = M3−N3 and Aβ(k) = M4−N4 can be proved similarly.

Proposition 4. Let A be a strong M -tensor and equations (9)-(11) hold. The following relations hold:

1. ∃ x ∈ Rn
+,Aαβ(s,k)xm−1 ≥ 0;

2. ρ((M(M2)
−1N2)αβ)≤ ρ((M(M3)

−1N3)αβ)≤ ρ((M(M1)
−1N1)αβ)< 1;

3. ρ((M(M2)
−1N2)αβ)≤ ρ((M(M4)

−1N4)αβ)≤ ρ((M(M1)
−1N1)αβ)< 1.

Proof. Case 1. Aαβ(s,k) is a strong M -tensor by Proposition 1. Using Lemma 2, there exists x ∈ Rn
+

such that Aαβ(s,k)xm−1 ≥ 0.
Case 2. From Theorem 3, Aαβ(s,k) = M2−N2 and Aαβ(s,k) = M3−N3 are two weak regular
splitting. By taking H′ := L+Lα ≥O and using Neumanns series, we have

(M(M2))
−1 = [(I−Dα−Dβ)−H]−1

= [I− (I− (Dα+Dβ))
−1H]−1(I− (Dα+Dβ))

−1

= {I+(I− (Dα+Dβ))
−1H+[(I− (Dα+Dβ)

−1H]2

+ . . .+[(I− (Dα+Dβ))
−1H]n−1 + . . .}(I− (Dα+Dβ))

−1

≥ {I+(I−Dα)
−1H′+[(I−Dα)

−1H′]2

+ . . .+[(I−Dα)
−1H′]n−1 + . . .}(I−Dα)

−1

= [(I−Dα)−H′]−1

= (M(M3))
−1.

By Theorem 3, we know that Aαβ(s,k) = M2−N2 is convergent, i.e. 0 < ρ((M(M2))
−1N2) < 1

and thus, for the nonnegative Gauss-Seidel iteration tensor (M(M2))
−1N2, there exists a nonnega-

tive vector x such that (M(M2))
−1N2xm−1 = ρ((M(M2))

−1N2)x[m−1]. Using Theorem 2, we have
Aαβ(s,k)xm−1 ≥ 0. By Lemma 5, we have ρ(((M(M2))

−1N2)αβ) ≤ ρ(((M(M3))
−1N3)αβ). Sim-

ilar discussion give us ρ(((M(M3))
−1N3)αβ) ≤ ρ(((M(M1))

−1N1)αβ). According to Theorem 3
Aαβ(s,k) = M1−N1 is convergent and therefore ρ(((M(M1))

−1N1)αβ)< 1.
Case 3. The proof of this case is similar to the case 2.

Proposition 5. Let A ∈ R[m,n] be a strong M -tensor. If equations (9)-(11) hold for any β1, j, β2, j ∈
[0,1], j = k+1, . . . ,n, α1,i,α2,i ∈ [0,1], i = 1, . . . ,n− s, α′ = (α1,i), α

′′ = (α2,i), then
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1. ρ(((M(M ))−1N1)α′β′)≤ ρ(((M(M1))
−1N1)α′′β′′);

2. ρ(((M(M2))
−1N2)α′β′)≤ ρ(((M(M2))

−1N2)α′′β′′);

3. ρ(((M(M3))
−1N3)α′)≤ ρ(((M(M3))

−1N3)α′′);

4. ρ(((M(M4))
−1N4)β′)≤ ρ(((M(M4))

−1N4)β′′).

3.3 The preconditioned SOR-type method

In [23], the SOR-type method was given by taking E = 1
ω (Im−ωL ) for solving equations (1) as

follows

x j+1 = ((M(Im−ωL ))−1((1−ω)Im +ωF )xm−1
j +ω(M(Im−ωL ))−1b)[

1
m−1 ].

In this paper, we consider the following preconditioned SOR-type method

x j+1 = (Hαβ(ω)xm−1
j +hαβ(ω))

[
1

m−1 ],
where

Hαβ(ω) = M(Eαβ(ω))−1Fαβ(ω), hαβ(ω) = M(Eαβ(ω))−1bαβ(s,k),

Eαβ(ω) = 1
ω (Dαβ−ωLαβ), Fαβ(ω) = 1

ω ((1−ω)Dαβ+ωFαβ),
and

Dαβ = Im−Dα−Dβ,

Lαβ = L −Kk
βIm +Kk

βL +Lα+Lβ,

Fαβ = F −Ss
αIm +Ss

αF +Fα+Fβ.

Remark 8. When s = 1 and k = 0, the new preconditioned SOR method is similar to the preconditioned
SOR method which is proposed in [21].

In the following, we present some propositions and omit their proof due to the similarity of their
proof with those of in [24].

Proposition 6. Let A ∈ R[m,n] be a strong M -tensor. If A = Im−L −F and 0 < ω1 < ω2 ≤ 1, then
ρ(Hαβ(ω2))≤ ρ(Hαβ(ω1))< 1.

Proposition 7. Let A ∈R[m,n] be a strong M -tensor. For any ω ∈ (0,1], ρ(Θαβ)≤ ρ(Hαβ(ω)), where
Θαβ is the iteration tensor of the preconditioned Gauss-Seidel-type methods.

Proposition 8. Let A ∈ R[m,n] be a strong M -tensor and αi,β j ∈ [0,1], i = 1,2, . . . ,n− 1. If 0 <
ω ≤ 1, ai(i+1)...(i+1)a(i+1)i...i > 0, i = 1,2, . . . ,n−1 and 0 < ai1...1a1i...i < 1, i = 2,3, . . . ,n, then we have
ρ(Hαβ(ω))≤ ρ(H (ω))< 1.

Proposition 9. Let A ∈ R[m,n] be a strong M -tensor with
ai(i+1)...(i+1)a(i+1)i...i > 0, i= 1,2, . . . ,n−1 and 0< ai1...1a1i...i < 1, i= 2,3, . . . ,n. If β1, j, β2, j ∈ [0,1], j =
k + 1, . . . ,n, α1,i,α2,i ∈ [0,1], i = 1, . . . ,n− s, α′ = (α1,i), α

′′ = (α2,i), β
′ = (β1, j), β

′′ = (β2, j) and
α′ ≥α′′, β′ ≥ β′′, then we have ρ(Hα′β′(ω))≤ ρ(Hα′′β′′(ω))< 1.



492 S. Karimi, E. Khosravi Dehdezi

Proposition 10. Let A ∈ R[m,n] be a strong M -tensor. If 0 < ω1 < ω2 ≤ 1, then

ρ((M(Im−ω2L ))−1(ω2F +(1−ω2)Im))≤ ρ((M(Im−ω1L ))−1(ω1F +(1−ω1)Im))< 1.

Proposition 11. Let A ∈ R[m,n] be a strong M -tensor. If 0 < ω1 < ω2 ≤ 1 and αi,β j ∈ [0,1], i =
1, . . . ,n− s, j = k+1, . . . ,n, then ρ(Hαβ(ω2))≤ ρ(Hαβ(ω1))< 1.

4 Numerical Examples

In this section, we give some numerical examples to show the performance of the proposed precondi-
tioned methods. All experiments are carried out in double precision in MATLAB on a machine with
CPU 2.70 GHz and 8 GB of RAM. All used codes came from the MATLAB tensor toolbox developed
by Bader and Kolda [3, 4]. We denote by PJ, PGS and PSOR the preconditioned Jacobi, preconditioned
Gauss-Seidel and preconditioned SOR tensor splittings proposed in [33], [22] and [24], respectively.
From the five splittings proposed to Jacobi and Gauss-Seidel, we choose the 2nd and 5th splitting and
denote PαβE2F2, PαβE5F5 and PαβM2N2, PαβM5N5 the preconditioned Jacobi and preconditioned
Gauss-Seidel, respectively.

In addition, PαβSOR denotes the preconditioned SOR-type splitting method. In all tables, Iter and
Time denote the number of iterations and elapsed CPU Time in seconds, respectively. The stoping
criterion is

∥∥r j
∥∥ < 10−12, where r j = b−A xm−1

j , and the initial guess is x0 = 0, the right hand side
vector b is 1 = (1, . . . ,1)T. We also take that the maximum number of iterations up to 2000. Also, we
suppose that β = β1 and α= α1, where the scalars α and β are given.

Example 1. Consider a strong M -tensor A ∈ R3×3×3as follows

A (:, :,1) =

 1.00 −0.01 −0.02
−0.02 −0.03 −0.04
−0.04 −0.05 −0.06

 ,

A (:, :,2) =

 −0.06 −0.07 −0.08
−0.08 1.00 −0.09
−0.01 −0.02 −0.03

 ,

A (:, :,3) =

 −0.03 −0.04 −0.05
−0.05 −0.06 −0.07
−0.07 −0.08 1.00

 .

We compared PJ, PGS and PSOR with PαβE2F2,PαβM2N2 and PαβSOR, respectively. We chose
ω = 1.2 for the SOR method. We took α = β in the interval [0,10] with the step size 0.5 and s,k = 2.
The numerical results are reported in Table 1.
In addition, we selected ω in the interval [0.5,1.8] with the step size 0.1 and obtained the solution by

using the proposed preconditioned SOR method for α = 0,β = 5 and s = 1,k = 2. We have reported the
results in Table 2.

From Table 1, we find that all the preconditioned methods perform better in CPU times and iteration
numbers than the ones with unpreconditioned (α = β = 0). Also, the proposed preconditioned schemes
of Jacobi, Gauss-Seidel and SOR methods are all better than the corresponding ones that are considered
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Table 1: Iteration number (Iter) and CPU Time (Time) for Example 1.

PJ PGS PSOR PαβE2F2 PαβM2N2 PαβSOR
α Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time

0.0 51 0.0066 50 0.0065 39 0.0100 51 0.0048 50 0.0055 39 0.0050
0.5 51 0.0046 49 0.0041 39 0.0044 50 0.0018 49 0.0030 38 0.0018
1.0 50 0.0044 47 0.0032 39 0.0033 49 0.0028 48 0.0019 37 0.0014
1.5 50 0.0039 46 0.0040 39 0.0024 48 0.0017 47 0.0018 36 0.0017
2.0 50 0.0040 45 0.0020 39 0.0021 46 0.0017 46 0.0017 35 0.0012
2.5 49 0.0040 44 0.0020 39 0.0021 45 0.0017 45 0.0017 35 0.0016
3.0 49 0.0030 43 0.0024 39 0.0020 44 0.0016 44 0.0016 34 0.0012
3.5 48 0.0028 43 0.0019 39 0.0019 43 0.0015 43 0.0013 33 0.0011
4.0 48 0.0032 42 0.0023 39 0.0027 42 0.0022 42 0.0013 32 0.0012
4.5 47 0.0021 43 0.0021 39 0.0019 41 0.0015 41 0.0012 31 0.0013
5.0 47 0.0023 43 0.0023 39 0.0028 40 0.0016 40 0.0012 30 0.0010
5.5 46 0.0023 44 0.0024 39 0.0021 39 0.0021 39 0.0014 29 0.0023
6.0 46 0.0026 44 0.0022 39 0.0019 38 0.0022 38 0.0014 28 0.0016
6.5 45 0.0024 45 0.0022 39 0.0020 37 0.0016 36 0.0019 27 0.0012
7.0 44 0.0022 46 0.0024 39 0.0020 35 0.0020 35 0.0014 26 0.0022
7.5 44 0.0027 48 0.0024 39 0.0019 34 0.0017 33 0.0013 24 0.0012
8.0 43 0.0023 49 0.0025 39 0.0021 29 0.0014 31 0.0013 22 0.0009
8.5 43 0.0029 50 0.0027 39 0.0021 31 0.0016 28 0.0012 21 0.0008
9.0 42 0.0026 52 0.0028 39 0.0022 33 0.0018 27 0.0010 23 0.0013
9.5 42 0.0024 53 0.0028 39 0.0022 34 0.0017 31 0.0014 25 0.0014
10.0 41 0.0024 55 0.0028 39 0.0022 34 0.0017 32 0.0014 28 0.0017

in this paper when the parameters α and β are taken suitably. The best answers in terms of CPU times
and iteration numbers are bold numbers in Table 1. In Table 2 and for different choices of ω , we have
marked some of the best results in terms of CPU times and iteration number which are obtained for the
cases β = 0 and s = 2.

Example 2. Let B ∈ R[3,n] be a nonnegative tensor with M(B)=hilb(n,n), where hilb is the function
of MATLAB, for i = 2,3, . . . ,n,bii−1i = biii−1 = bii+1i = biii+1 = 1

3 and other entries are zeros. Let
A = n2I −0.01B. We took α = β = 1, s = k = n−1 and applied PαβE2F2,PαβE5F5,PαβM2N2,
PαβM5N5 and PαβSOR for solving multiliear (1). Also we obtained experimentally the optimal pa-
rameter ω in the interval [0,2].

The numerical results are reported in Table 3 which illustrate that the proposed preconditioned meth-
ods perform better in CPU times than the ones with the others. From Table 3, we find that when n
increases, the CPU times for obtaining the appropriate solution increase. Also, if the parameters α,β ,
and ω are chosen suitably, the proposed preconditioned schemes of Jacobi, Gauss-Seidel, and SOR meth-
ods are all better than the corresponding ones that are considered in this paper. The best outcomes in
terms of CPU times and iteration numbers for every n are bold numbers in Table 3, which show that
the proposed second scheme of the preconditioned Jacobi method is the best. Note that in this table,
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Table 2: Iteration numbers (Iter) and CPU times (Time) for the preconditioned SOR-type method.

Pα=5(1) Pα=5(2) P5,5(1,1) P5,5(1,2) P5,5(2,1) P5,5(2,2)
ω Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time
0.5 103 0.0206 95 0.0106 105 0.0119 94 0.0133 97 0.0128 96 0.0148
0.6 83 0.0089 77 0.0025 85 0.0036 76 0.0026 79 0.0027 77 0.0027
0.7 69 0.0018 63 0.0018 70 0.0020 63 0.0018 60 0.0019 64 0.0024
0.8 58 0.0017 53 0.0015 60 0.0022 53 0.0019 56 0.0017 54 0.0016
0.9 50 0.0014 45 0.0014 51 0.0018 46 0.0014 48 0.0014 46 0.0016
1.0 43 0.0014 39 0.0012 44 0.0013 40 0.0012 42 0.0014 40 0.0012
1.1 37 0.0012 34 0.0007 39 0.0007 35 0.0010 37 0.0011 35 0.0010
1.2 33 0.0009 29 0.0007 34 0.0010 30 0.0009 32 0.0019 30 0.0008
1.3 29 0.0008 25 0.0007 30 0.0008 26 0.0007 29 0.0008 26 0.0008
1.4 31 0.0009 28 0.0008 30 0.0009 29 0.0008 33 0.0011 28 0.0010
1.5 40 0.0010 35 0.0009 39 0.0013 37 0.0010 44 0.0011 35 0.0010
1.6 53 0.0014 45 0.0012 51 0.0013 47 0.0012 59 0.0017 46 0.0019
1.7 71 0.0028 60 0.0022 70 0.0020 64 0.0017 81 0.0013 61 0.0010
1.8 105 0.0015 84 0.0012 101 0.0014 92 0.0013 135 0.0020 85 0.0019

Table 3: Iteration number (Iter) and CPU Time (Time) for Example 2.

PJ PGS PSOR PαβE2F2 PαβE5F5 PαβM2N2 PαβM5N5 PαβSOR
n Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time
30 4 0.0360 5 0.0169 3 0.0228 3 0.0151 3 0.0242 3 0.0196 3 0.0230 3 0.0240
40 4 0.0597 5 0.0273 3 0.0299 3 0.0174 3 0.0327 3 0.0233 3 0.0276 3 0.0243
50 4 0.0739 5 0.0293 3 0.0339 3 0.0201 3 0.0362 3 0.0257 3 0.0306 3 0.0288
60 4 0.0608 5 0.0443 3 0.0483 3 0.0292 3 0.0499 3 0.0417 3 0.0550 3 0.0425
70 4 0.0730 5 0.0558 3 0.0645 3 0.0416 3 0.0787 3 0.0575 3 0.0604 3 0.0657
80 4 0.0985 5 0.0829 3 0.0918 3 0.0497 3 0.1008 3 0.0733 3 0.0829 3 0.0929
90 4 0.1173 5 0.2064 3 0.1300 3 0.0687 3 0.1329 3 0.0859 3 0.0977 3 0.1179

100 4 0.1480 5 0.1406 3 0.1735 3 0.1173 3 0.2311 3 0.1264 3 0.1373 3 0.1449
110 4 0.2133 5 0.3544 3 0.1968 3 0.1314 3 0.2432 3 0.1525 3 0.1618 3 0.1790
120 4 0.2250 5 0.2073 3 0.2406 3 0.1464 3 0.2773 3 0.1978 3 0.1967 3 0.2544

regarding the structure of the M -tensor A = ηI − 0.01B,η = n2 >> ρ(0.01B) ≈ 0.0328 and that
the spectral radius of the iteration tensor increases slowly by increasing the tensor size, there are no
noticeable change on the iterations number.

Example 3. Let B ∈ R[3,10] be a nonnegative tensor and bi1i2i3 = | tan(i1 + i2 + i3)|. It is not difficult to
see that ρ(B)≈ 1450, thus A = 2000I −B is a strong M -tensor [27].

For mentioned methods, we obtained experimentally the optimal parameter ω in the interval [1,2],
the values of α,β are chosen from 0 to 30 and s,k = 1. The numerical results are reported in Table 4.
In this table, † indicates no convergence up to 2000 iterations. We see that the proposed preconditioned
methods perform better in CPU times than the ones with the others.
Moreover, for unpreconditioning schemes(α = β = 0), the proposed preconditioned schemes of Jacobi,
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Table 4: Iteration number (Iter) and CPU Time (Time) for Example 3.

PJ PGS PSOR PαβE2F2 PαβM2N2 PαβSOR
α β Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time
0 0 91 0.0308 87 0.0181 69 0.0302 91 0.0168 87 0.0186 69 0.0191

0.5 0.5 † 0.1253 † 0.0831 † 0.0820 90 0.0143 86 0.0184 68 0.0158
1 1 † 0.1253 † 0.0831 † 0.0820 89 0.0147 85 0.0195 67 0.0227
2 2 † 0.0960 † 0.0596 † 0.0853 87 0.0149 83 0.0241 65 0.0157
3 2 † 0.1025 † 0.0807 † 0.0949 85 0.0169 81 0.0167 64 0.0152
4 2 † 0.1051 † 0.0740 † 0.0788 83 0.0145 79 0.0204 62 0.0148
5 5 † 0.1023 † 0.0745 † 0.0849 81 0.0167 77 0.0201 60 0.0160
7 5 † 0.0953 † 0.0999 † 0.0831 77 0.0144 73 0.0185 57 0.0160
9 5 † 0.0835 † 0.0822 † 0.0989 73 0.0142 69 0.0164 54 0.0150
10 8 † 0.1347 † 0.1228 † 0.1262 71 0.0155 67 0.0193 52 0.0146
12 10 † 0.0975 † 0.0848 † 0.0760 67 0.0159 64 0.0159 49 0.0145
15 12 † 0.0934 † 0.0875 † 0.0987 61 0.0134 58 0.0167 44 0.0153
18 10 † 0.0912 † 0.0985 † 0.1044 55 0.0166 52 0.0186 39 0.0150
20 15 † 0.0987 † 0.0924 † 0.0901 49 0.0138 48 0.0157 38 0.0137
20 20 † 0.0912 † 0.0914 † 0.0926 49 0.0144 48 0.0159 38 0.0182
25 20 † 0.0989 † 0.0932 † 0.0911 40 0.0138 40 0.0151 38 0.0139
25 25 † 0.0999 † 0.0924 † 0.0937 42 0.0139 40 0.0153 37 0.0137
30 20 † 0.0974 † 0.0978 † 0.0945 47 0.0140 48 0.0166 45 0.0140
30 25 † 0.0910 † 0.0934 † 0.0922 48 0.0139 48 0.0170 46 0.0140
30 30 † 0.0900 † 0.0944 † 0.0891 48 0.0141 49 0.0158 46 0.0140

Gauss-Seidel and SOR methods obtained the same outcomes as the corresponding ones that are con-
sidered in this paper. When the parameters α and β are considered nonzero, we see that the PJ, PGS,
and PSOR methods are not convergent while the proposed methods are convergent which improve the
iteration numbers and CPU times compared to the corresponding unpreconditioned methods. The best
results in terms of CPU times and the iteration numbers are marked in this Table.

In the following, we give an example of some test problems to evaluate the comparison results be-
tween the spectra radii of the splittings of the proposed iterative methods.

Example 4. Consider the following test problems:
Case I : Let B ∈R[3,200] be a nonnegative tensor and bi1i2i3 = | tan(i1+ i2+ i3)|. Using the power method
( [27]), we obtained the spectral radius of B, ρ(B)≈ 1.8452e+05, and thus A = (1.8800e+05)I −B
is a strong M -tensor.
Case II : Let B ∈ R[3,50] be a nonnegative tensor and M (B) = sprand(S) where sprand is a MATLAB

function which generates uniformly distributed random entries with the same sparsity structure as S and
other entries are 1e− 1. We choose S as a tridiagonal matrix. Using the power method ( [27]), we
obtained the spectral radius of B, ρ(B) ≈ 2.4660e+ 02, and thus A = (1+ρ(B))I −B is a strong
M -tensor.
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Case III : Let A ∈ R[3,200] with
a1,1,1 = a200,200,200 = 1,
ai,i,i = 2, i = 2, . . . ,199,
ai,i−1,i = ai,i,i−1 =

−1
3 , i = 2, . . . ,199,

ai,i+1,i = ai,i,i+1 =
−1
3 , i = 2, . . . ,199.

Case IV : Let B ∈R[3,3] be a nonnegative tensor and bi1i2i3 = |sin(i1+ i2+ i3)|. Using the power method
( [27]), we obtained the spectral radius of B, ρ(B) ≈ 5.8147, and thus A = 5.8800I −B is a strong
M -tensor.

We applied PαβE2F2,PαβM2N2,PαβSOR for solving (1), with selected parameters α = β = ω =
1. For two cases I, III, we choose b = A ones(n,1)m−1 in (1) where MATLAB function ones(n,1) is an
n-by-1 vector of ones and for the cases II, IV , b = A e2

m−1 in (1) where e2 is the second column of the
identity matrix. The numerical results are given in Table 5. In this table, Iter, Time and ρ(M(E )−1F )
denote iteration number, performance CPU time and the spectral radius of iterative tensor of the cor-
responding tensor splitting iterative method. The results show that PαβE2F2 in terms of CPU time is

Table 5: Numerical results for Example 4.

PαβE2F2 PαβM2N2 PαβSOR
Iter 2196 2191 2191

Case I: Time 20.4094 21.3205 21.1293
ρ(M(E )−1F ) 0.9815 0.9814 0.981

Iter 4993 4993 4993
Case II: Time 0.5218 0.5410 0.5011

ρ(M(E )−1F ) 0.9959 0.9959 0.9959
Iter 54 54 54

Case III: Time 0.5061 1.7410 1.7787
ρ(M(E )−1F ) 0.6025 0.6025 0.6025

Iter 1193 1104 1104
Case IV: Time 0.0236 0.0463 0.0366

ρ(M(E )−1F ) 0.9857 0.9846 0.9846

relatively superior than the other methods.

5 Conclusion

In this paper, we proposed some new preconditioners based on tensor splitting for solving multilinear sys-
tem A xm−1 = b . We also presented some theorems for analyzing and convergence of the preconditioned
Jacobi-, Gauss-Seidel-, and SOR-type iterative methods. Numerical results illusterated the efficiency and
superiority of the proposed methods.
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