In this paper, we introduce the concept of Moore-Penrose inverse of a rectangular interval matrix based on a modified interval arithmetic. We determine the Moore-Penrose inverse in such a way that it satisfies all the four criteria similar to the real case. Also, we use the Moore-Penrose inverse for solving rectangular interval linear systems, algebraically.
Dehghani-Madiseh, M. (2024). Moore-Penrose inverse of an interval matrix and its application. Journal of Mathematical Modeling, 12(1), 145-155. doi: 10.22124/jmm.2023.24972.2219
MLA
Marzieh Dehghani-Madiseh. "Moore-Penrose inverse of an interval matrix and its application". Journal of Mathematical Modeling, 12, 1, 2024, 145-155. doi: 10.22124/jmm.2023.24972.2219
HARVARD
Dehghani-Madiseh, M. (2024). 'Moore-Penrose inverse of an interval matrix and its application', Journal of Mathematical Modeling, 12(1), pp. 145-155. doi: 10.22124/jmm.2023.24972.2219
VANCOUVER
Dehghani-Madiseh, M. Moore-Penrose inverse of an interval matrix and its application. Journal of Mathematical Modeling, 2024; 12(1): 145-155. doi: 10.22124/jmm.2023.24972.2219