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Abstract. In this paper, we introduce the concept of Moore-Penrose inverse of a rectangular interval
matrix based on a modified interval arithmetic. We determine the Moore-Penrose inverse in such a way
that it satisfies all the four criteria similar to the real case. Also, we use the Moore-Penrose inverse for
solving rectangular interval linear systems, algebraically.
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1 Introduction

There are numerous applications of matrices both in mathematics and other sciences. Matrices play
vital roles in solving problems related to eigenvalues and eigenvectors, robotics, projection of three-
dimensional images into two-dimensional screens, creating a realistic decreeing motion, quantum me-
chanics and electrical circuits, see [10, 21, 22]. Some of them merely take advantage of the compact
representation of a set of numbers in a matrix. But due to the rounding and measurement errors, often
we do not know the exact value of the measured quantities. In this case a common approach is using
interval numbers which include these quantities, safety. Using this interval parameters in the structure of
matrices, creates interval matrices.

Hansen and Smith [9] started the use of interval arithmetic in matrix computations. After this moti-
vation, several authors such as Alefeld and Herzberger [1], Hansen [8], Jaulin et al. [14], Neumaier [19],
Rohn [24], and Ganesan [7] studied interval matrices.

Matrices play an important role in forming the structure of system of linear equations. Systems
of linear equations appear in various fields of science such as computer science, physics, technology,
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business, engineering and economics. However, many applications deal with data that are not deter-
ministic and should be determined by physical measurements. But due to the measurement errors, the
measured parameters are accompanied by errors and uncertainties. One approach for uncertainty quan-
tification is to consider interval parameters. So we will have the system of interval linear equations. In
the existing literature, often interval linear systems with square coefficient matrix have been considered,
see [2–6, 11–13, 17, 23, 26]. In contrast, interval linear systems with rectangular coefficient matrix have
been given less attention. Here, we want to consider the rectangular interval linear systems and find the
exact (algebraic) solution of them, using the Moore-Penrose inverse of the interval coefficient matrix
under the modified interval arithmetic.

The rest of the paper is organized as follows. Section 2 gives an overview of the generalized intervals
and modified interval arithmetic. In Section 3, we introduce the Moore-Penrose inverse of an interval
matrix and then present an approach for finding the exact solution of a rectangular interval linear system
under modified interval arithmetic introduced in Section 2. Finally, in Section 4 we complete the paper
with a brief conclusion.

2 Preliminaries

In this paper, boldface letters stand for the interval quantities and ordinary letters denote the real quan-
tities. The set of real interval numbers is denoted by IR and IRm×n stands for the set of m-by-n real
interval matrices. If S ⊆ Rm×n is a bounded set of real matrices, then the interval hull of S is denoted by
2S and is defined as

2S = ∩{X ∈ Rm×n : X ⊇ S},

in other words, 2S is the tightest interval matrix which encloses S.

2.1 Interval linear systems

A system of interval linear equations with coefficient matrix A ∈ IRm×n and right-hand side vector
b ∈ IRm is denoted by

Ax = b, (1)

and is interpreted as the family of the system of linear equations

Ax = b, A ∈ A, b ∈ b.

The system of interval linear equations (1) frequently appears in the cases when the components of
the input data are accompanied by some errors. These types of systems appear for instance in circuit
analysis therein each circuit consists of resistance, inductance and capacitance and has been mathemat-
ically modeled as a system of linear equations, but due to the uncertainties in the problem, it should be
modeled as an interval system of equations, see [25]. Also interval system of equations appears in auto-
matic control, social sciences, astrophysics, traffic control and expert systems to ergonomics, economics,
robotics and finding numerical solution of the boundary value problems, see [16, 27].

The solution set of (1) is defined as

Ξ(A,b) := {x ∈ Rn : (∃A ∈ A)(∃b ∈ b)(Ax = b)}.
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Often the solution set of an interval system of linear equations is very complicated, so we are interested
in finding some enclosures for Ξ(A,b). The interval vector with smallest radius containing Ξ(A,b) is
the hull of the solution set and is denoted by AHb, i.e.,

AHb :=2Ξ(A,b). (2)

If A ∈ IRn×n is a regular matrix, i.e., every matrix within A is nonsingular then the inverse of A is
defined as

A−1 :=2{A−1 : A ∈ A}, (3)

that is A−1 is the smallest interval matrix containing the set {A−1 : A ∈ A}. If A ∈ IRn×n is regular then
we have

AHb⊆ A−1b,

therein A−1b denotes the multiplication of A−1 by b which is calculated by the operations of classical
interval arithmetic.

If A ∈ IRm×n is a rectangular matrix with m < n then Ξ(A,b) is either empty or unbounded and AHb
is not defined. If m≥ n and A is regular then Ξ(A,b) may still be empty, so that AHb is not necessarily
an interval matrix. However, sometimes it is more appropriate to consider the following family of least
square problems for all A ∈ A and b ∈ b:

Find x ∈ Rn such that ||Ax−b||2 is minimum. (4)

The solution set (4) is the set

Ξ
L(A,b) := {x ∈ Rn : (∃A ∈ A)(∃b ∈ b)(||Ax−b||2 is minimum)}.

Similar to Ξ(A,b), the structure of ΞL(A,b) is very complicated. The hull of ΞL(A,b) is denoted by
ALb, i.e.,

ALb :=2Ξ
L(A,b). (5)

By the above definitions, for A ∈ IRm×n and b ∈ IRm it is obvious that

AHb⊆ ALb.

In the classical interval arithmetic, the Moore-Penrose inverse of an interval matrix A ∈ IRm×n is
denoted by A† and is defined as

A† :=2{A† : A ∈ A}. (6)

The Moore-Penrose inverse of an interval matrix introduced in relation (6), helps us to find a subset of
the solution set of problem (4).

As mentioned in [18], we can reduce the problem (4) (m > n) to the square case by observing that

AHb⊆ ALb⊆ x, (7)

in which x satisfies in (
r
x

)
=

(
I A

A> 0

)H( b
0

)
,



148 M. Dehghani-Madiseh

and r satisfies in the coupled system {
r+Ax = b,
A>r = 0,

and I is the identity matrix, or
AHb⊆ ALb⊆ (A>A)H(A>b). (8)

But the approach via (7) and (8) is not recommended, since ALb depends very sensitively on scaling
of the problem.

2.2 Modified interval arithmetic

We want to consider the generalized interval numbers which for the first time were introduced by Kaucher
[15]. Kaucher extended the set of proper intervals IR= {x = [x,x] : x≤ x,x,x ∈R} by the set ¯IR= {x =
[x,x] : x ≥ x,x,x ∈ R} of improper intervals, resulting in a more flexible set of generalized intervals
KR= {x = [x,x] : x,x ∈ R}. For example [−1,1] and [1,−1] are generalized intervals. Now, we want to
consider a modified interval arithmetic on KR which was introduced by Nirmala et al. [20]. The set of
m-by-n generalized interval matrices is denoted by KRm×n.

The midpoint and width of an interval number x = [x,x] are denoted by m(x) and r(x), respectively,
and are defied as

m(x) =
x+ x

2
, r(x) =

x− x
2

.

Also the magnitude of x is denoted by |x| and is defined as

|x|= max{|x| : x ∈ x}.

The concepts of midpoint, radius and magnitude of interval matrices are defined, componentwise.
For generalized interval numbers x,y ∈ KR, the modified interval operation ~ ∈ {+,−,∗,/} is de-

fined as follows
x~y = [m(x)~m(y)− k,m(x)~m(y)+ k],

therein
k = min{(m(x)~m(y))−α,β − (m(x)~m(y))},

in which α and β , respectively, are lower bound and upper bound of the interval x�y, where � denotes
the classical interval operation. In particular, we have

Addition:

x+y = [x,x]+ [y,y] = [m(x)+m(y)− k,m(x)+m(y)+ k],

where k =
(x+ y)− (x+ y)

2
.

Subtraction:

x−y = [x,x]− [y,y] = [m(x)−m(y)− k,m(x)−m(y)+ k],

where k =
(x+ y)− (x+ y)

2
,

also if x = y then x−y = [0,0].
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Multiplication:

x∗y = xy = [x,x][y,y] = [m(x)m(y)− k,m(x)m(y)+ k],

where k = min{(m(x)m(y))−α,β − (m(x)m(y))} ,
α = min{xy,xy,xy,xy}, β = max{xy,xy,xy,xy}.

Division:

1/x =
1

[x,x]
= [

1
m(x)

− k,
1

m(x)
+ k],

where k = min{1
x
(
x− x
x+ x

),
1
x
(
x− x
x+ x

)}, m(x) 6= 0 ,

x/y = x∗ 1
y
, m(x) 6= 0,

also, if x = y, then x/y = [1,1].

If � and ~, respectively, stand for the classical and modified interval operations, then for x,y ∈KR we
have

x~y⊆ x�y.

It is to be noted that under the modified interval arithmetic, the set of generalized interval numbers
KR possesses group properties with respect to addition and multiplication operations and satisfies the
distributive law and hence many other important results.

In the modified interval arithmetic, there is a specific index for comparing two interval numbers.
According to this index, two interval numbers x,y∈KR are said to be equivalent when m(x) = m(y) and
in this case we write x ≈ y. In particular, if m(x) = m(y) and r(x) = r(y) then x = y. If m(x) = 0 then
x is considered as zero interval number. Similar relations hold in a completely similar way for matrices,
i.e., two interval matrices A,B ∈KRm×n are said to be equivalent when m(A) = m(B) and is denoted by
A≈ B.

3 Moore-Penrose inverse of an interval matrix and rectangular interval
linear systems

In this section, we first introduce a new concept for A† similar to the real case and then using A†, find
the exact solution of the rectangular interval linear systems under the modified interval arithmetic. In
Subsection 3.1, all arithmetic operations are implemented under the modified interval arithmetic.

3.1 Moore-Penrose inverse of an interval matrix

Definition 1. For A ∈ KRm×n, the Moore-Penrose inverse of A is defined as an interval matrix A† ∈
KRn×m satisfying all of the following four criteria:

(1) AA†A≈ A, (2) A†AA† ≈ A†, (3) (AA†)> ≈ AA†, (4) (A†A)> ≈ A†A.

Theorem 1. The Moore-Penrose inverses of an interval matrix are equivalent.
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Proof. Let A ∈KRm×n and B,C ∈KRn×m are two Moore-Penrose inverses for A. We have

AB≈ (AB)> ≈ B>A> ≈ B>(ACA)> ≈ B>A>C>A> ≈ (AB)>(AC)> ≈ ABAC≈ AC.

So, AB≈ AC. Similarly, we conclude that BA≈ CA. The proof is completed by observing that

B≈ BAB≈ BAC≈ CAC≈ C.

Note that in the above argument, we utilized the associative law of multiplication between interval
matrices which holds under the modified interval arithmetic. Now, we present some results which provide
us efficient formulas for constructing the Moore-Penrose inverse of an interval matrix. In the upcoming
results, by A−1, we mean the inverse of the regular matrix A, which is constructed by the proposed
technique in [20].

Theorem 2. Let A ∈KRm×n with m < n. If AA> is regular then A† = A>(AA>)−1.

Proof. We have to show B=A>(AA>)−1 satisfies in all mentioned criteria in Definition 1. We can write

(1) ABA≈ A(A>(AA>)−1)A≈ (AA>)(AA>)−1A≈ IA≈ A,

(2) BAB≈ (A>(AA>)−1)A(A>(AA>)−1)≈ A>((AA>)−1(AA>))(AA>)−1 ≈ A>I(AA>)−1

≈ A>(AA>)−1 ≈ B,

(3) (AB)> ≈ (A(A>(AA>)−1))> ≈ ((AA>)(AA>)−1)> ≈ I> ≈ I≈ AB,

(4) (BA)> ≈ ((A>(AA>)−1)A)> ≈ A>((AA>)>)−1A≈ A>(AA>)−1A≈ (A>(AA>)−1)A
≈ BA.

So, B = A†.

Theorem 3. Let A ∈KRm×n with m > n. If A>A is regular, then A† = (A>A)−1A>.

Proof. We must show B = (A>A)−1A> satisfies in four conditions mentioned in Definition 1. We have

(1) ABA≈ A((A>A)−1A>)A≈ A(A>A)−1(A>A)≈ AI≈ A,

(2) BAB≈ ((A>A)−1A>)A((A>A)−1A>)≈ ((A>A)−1(A>A))((A>A)−1A>)≈ IB≈ B,

(3) (AB)> ≈ (A((A>A)−1A>))> ≈ A((A>A)>)−1A> ≈ A(A>A)−1A> ≈ A((A>A)−1A>)≈ AB,

(4) (BA)> ≈ ((A>A)−1A>A)> ≈ ((A>A)−1(A>A))> ≈ I> ≈ I≈ BA.

So, we conclude that B = A†.

For some special cases, we have the following remarks.

Remark 1. The Moore-Penrose inverse of a regular square interval matrix is its inverse.

Remark 2. The Moore-Penrose inverse of an interval number x ∈KR is

x† =

{
0, x≈ 0,
1
x , otherwise.
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Remark 3. The Moore-Penrose inverse of an interval vector x ∈KRn is

x† =

{
0>, x≈ 0,
x>
x>x , otherwise.

Remark 4. The Moore-Penrose inverse of a zero interval matrix is its transpose.

It is to be noted that the introduced Moore-Penrose inverse in (6) in classical interval arithmetic, does
not satisfy in four mentioned criteria in Definition 1. However, our proposed formulas for constructing
Moore-Penrose inverse lead us to an interval matrix which satisfies in all criteria mentioned in Definition
1.

3.2 Rectangular interval linear systems

Consider the interval system of linear equations

Ax = b. (9)

As previously mentioned, the solution set Ξ(A,b) in some cases is empty or unbounded and in the latter
case, AHb is not defined. So, sometimes it is more appropriate to consider the interval lease square
problem (4). Some characterizations of the solution set Ξ(A,b) are presented in Theorems 4 and 5
below, which have been expressed under the classical interval arithmetic.

Theorem 4. [19] Let A ∈ IRm×n and b ∈ IRm. Then we have

Ξ(A,b) = {x ∈ Rn : Ax∩b 6= /0}= {x ∈ Rn : 0 ∈ Ax−b}.

Theorem 5. [19] Let A ∈ IRm×n and b ∈ IRm. Then we have

x ∈ Ξ(A,b)⇔ |m(A)x−m(b)| ≤ r(A)|x|+ r(b).

Example 1. Consider the interval linear system Ax = b with

A =

 [-1,1] [1,3]
1 0
0 1

 , b =

 [0,10]
[1,3]

[100,500]

 .

The midpoints of A and b are

m(A) =

 0 2
1 0
0 1

 , m(b) =

 5
2

300

 ,

so for x =
(

x1
x2

)
, we obtain

|m(A)x−m(b)|=
∣∣∣∣
 0 2

1 0
0 1

( x1
x2

)
−

 5
2

300

∣∣∣∣=
 |2x2−5|
|x1−2|
|x2−300|

 .
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On the other hand, we have

r(A) =

 1 1
0 0
0 0

 , r(b) =

 5
1

200

 ,

thus

r(A)|x|+ r(b) =

 1 1
0 0
0 0

( |x1|
|x2|

)
+

 5
1

200

=

 |x1|+ |x2|+5
1

200

 .

By Theorem 5, if x ∈ Ξ(A,b) then it should satisfies in the following system of inequalities
|2x2−5| ≤ |x1|+ |x2|+5,
|x1−2| ≤ 1,
|x2−300| ≤ 200.

But the above system does not have any solution, so according to Theorem 5, we conclude that Ξ(A,b) =
/0.

The above example and many others motivate us to consider the interval linear system Ax≈ b instead
of Ax = b. If A∈KRm×n with m < n, then for obtaining the solution set of the system Ax≈ b, we utilize
the Moore-Penrose inverse of A proposed by Theorem 2 and so we will have the following theorem in
the modified interval arithmetic.

Theorem 6. Consider the rectangular interval system of linear equations Ax ≈ b with A ∈ KRm×n

(m < n) and b ∈ KRm and suppose that AA> is regular. If x = A†b , where A† is the constructed
Moore-Penrose inverse of A by Theorem 2 under the modified interval arithmetic, then Ax≈ b.

Proof. Since AA> is regular, so by Theorem 2 we have A† = A>(AA>)−1. Thus using the associative
law of multiplication between interval matrices which holds under the modified interval arithmetic, we
can write

Ax≈ A(A†b)≈ A
(
(A>(AA>)−1)b

)
≈ (AA>)(AA>)−1b≈ Ib≈ b.

Example 2. Consider the rectangular interval system of linear equations Ax≈ b, therein

A =

(
[0.2,0.25] [0,0.1] [0.4,0.5]
[0.3,0.5] [0.1,0.2] 0

)
, b =

(
[1,2]
[3,4]

)
.

We solve this system under modified interval arithmetic. We have

AA> =

(
[0.2000,0.3113] [0.0599,0.1351]
[0.0599,0.1351] [0.1000,0.2651]

)
,

so determinant of AA> is

det(AA>) = [0.2000,0.3113][0.1000,0.2651]− [0.0599,0.1351][0.0599,0.1351] = [0.0045,0.0698].
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Since 0 /∈ det(AA>), thus AA> is invertible. The adjoint matrix (AA>)∗ of AA> is

(AA>)∗ =
(

[ 0.1000, 0.2651] [ -0.1351, -0.0599]
[ -0.1351, -0.0599] [ 0.2000, 0.3113]

)
.

Thus by the proposed technique in [20], the inverse of AA> is

(AA>)−1 =
(AA>)∗

det(AA>)
=

(
[ 1.4346, 8.3917] [ -4.3889, -0.8607]

[ -4.3889, -0.8607] [ 2.8693, 10.8943]

)
.

Finally using Theorem 2, the Moore-Penrose inverse of A is

A† = A>(AA>)−1 =

 [-1.5547,1.6658] [-0.1483,4.4725]
[-0.7014,0.4053] [0.0244,1.7776]
[0.5738,3.8480] [-2.0181,-0.3443]

 .

Now, if x = A†b, then

x =

 [-3.7023,19.0037]
[-1.1814,7.0443]
[-6.6614,5.0260]

 .

It is to be noted that x satisfies Ax≈ b.

4 Conclusion

In this paper, we introduced a new concept for Moore-Penrose inverse of an interval matrix which is
similar to the real case. We then proposed some formula for constructing the Moore-Penrose inverse
in the framework of the generalized intervals and under the modified interval arithmetic. Also, we
investigated the rectangular interval system of linear equations and using the introduced Moore-Penrose
inverse of the coefficient matrix, we obtained the exact solution of those systems.
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