In this paper for a given set of real or complex interval numbers $\sigma$ satisfying special conditions, we find an interval nonnegative matrix $C$ such that for each point set $\delta$ of given interval spectrum $\sigma$, there exists a point matrix $A$ of $C$ such that $\delta$ is its spectrum. We also study some conditions for the solution existence of the problem.
Nazari, A., Zeinali, M., & Mesgarani, H. (2018). Inverse eigenvalue problem of interval nonnegative matrices of order $\le 3$. Journal of Mathematical Modeling, 6(2), 187-194. doi: 10.22124/jmm.2018.10836.1171
MLA
Alimohammad Nazari; Maryam Zeinali; Hamid Mesgarani. "Inverse eigenvalue problem of interval nonnegative matrices of order $\le 3$". Journal of Mathematical Modeling, 6, 2, 2018, 187-194. doi: 10.22124/jmm.2018.10836.1171
HARVARD
Nazari, A., Zeinali, M., Mesgarani, H. (2018). 'Inverse eigenvalue problem of interval nonnegative matrices of order $\le 3$', Journal of Mathematical Modeling, 6(2), pp. 187-194. doi: 10.22124/jmm.2018.10836.1171
VANCOUVER
Nazari, A., Zeinali, M., Mesgarani, H. Inverse eigenvalue problem of interval nonnegative matrices of order $\le 3$. Journal of Mathematical Modeling, 2018; 6(2): 187-194. doi: 10.22124/jmm.2018.10836.1171