1
Department of Mathematics, Govt. Degree College, Sabbavaram, Anakapalli, 531035, India
2
JNTU Vizianagaram, AP, India
3
Andhra University
10.22124/jmm.2025.28778.2559
Abstract
This study explores an iterative system of singular three-point boundary value problems within the context of time scales. The objective is to identify conditions that guarantee the existence of countable positive solutions. The research employs Holder’s inequality and Krasnoselskii’s cone fixed point theorem, set within a Banach space framework, to derive the necessary criteria. The theoretical findings are illustrated through a practical example, highlighting the sufficiency of the derived conditions for ensuring multiple positive solutions
Ramakrishna, M. V. , Vali, . K. and Khuddush, M. (2025). Boundary value problems for singular iterative dynamic equations on time scales. Journal of Mathematical Modeling, (), -. doi: 10.22124/jmm.2025.28778.2559
MLA
Ramakrishna, M. V. , , Vali, . K. , and Khuddush, M. . "Boundary value problems for singular iterative dynamic equations on time scales", Journal of Mathematical Modeling, , , 2025, -. doi: 10.22124/jmm.2025.28778.2559
HARVARD
Ramakrishna, M. V., Vali, . K., Khuddush, M. (2025). 'Boundary value problems for singular iterative dynamic equations on time scales', Journal of Mathematical Modeling, (), pp. -. doi: 10.22124/jmm.2025.28778.2559
CHICAGO
M. V. Ramakrishna , . K. Vali and M. Khuddush, "Boundary value problems for singular iterative dynamic equations on time scales," Journal of Mathematical Modeling, (2025): -, doi: 10.22124/jmm.2025.28778.2559
VANCOUVER
Ramakrishna, M. V., Vali, . K., Khuddush, M. Boundary value problems for singular iterative dynamic equations on time scales. Journal of Mathematical Modeling, 2025; (): -. doi: 10.22124/jmm.2025.28778.2559