This article solves computationally a system of reaction-diffusion singularly perturbed Fredholm integro-differential equations. A non-standard finite difference approach applies the derivative components, whereas the composite trapezoidal rule handles the integral components. The proposed computational method for a system of reaction-diffusion singularly perturbed Fredholm integro-differential equations exhibits a convergence rate of order two. An computational example is provided to substantiate the efficacy of the theoretical results.
Prince, P. . A. , Govindarao, L. and Elango, S. (2025). Non-standard finite difference scheme for system of singularly perturbed Fredholm integro-differential equations. Journal of Mathematical Modeling, 13(4), 865-882. doi: 10.22124/jmm.2025.30538.2740
MLA
Prince, P. . A. , , Govindarao, L. , and Elango, S. . "Non-standard finite difference scheme for system of singularly perturbed Fredholm integro-differential equations", Journal of Mathematical Modeling, 13, 4, 2025, 865-882. doi: 10.22124/jmm.2025.30538.2740
HARVARD
Prince, P. . A., Govindarao, L., Elango, S. (2025). 'Non-standard finite difference scheme for system of singularly perturbed Fredholm integro-differential equations', Journal of Mathematical Modeling, 13(4), pp. 865-882. doi: 10.22124/jmm.2025.30538.2740
CHICAGO
P. . A. Prince , L. Govindarao and S. Elango, "Non-standard finite difference scheme for system of singularly perturbed Fredholm integro-differential equations," Journal of Mathematical Modeling, 13 4 (2025): 865-882, doi: 10.22124/jmm.2025.30538.2740
VANCOUVER
Prince, P. . A., Govindarao, L., Elango, S. Non-standard finite difference scheme for system of singularly perturbed Fredholm integro-differential equations. Journal of Mathematical Modeling, 2025; 13(4): 865-882. doi: 10.22124/jmm.2025.30538.2740