Numerical solution of system of nonlinear Fredholm integro-differential equations using CAS wavelets

Document Type : Research Article


Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran


 In this paper, we use the CAS wavelets as basis functions to numerically solve a system of nonlinear Fredholm integro-differential equations. To simplify the problem, we transform the system into a system of algebraic equations using the collocation method and operational matrices. We show the convergence of the presented method and then demonstrate its high accuracy with several illustrative examples. This approach is particularly effective for equations that admit periodic functions because the employed basis CAS functions are inherently periodic. Throughout our numerical examples, we observe that this method provides exact solutions for equations with trigonometric functions at a lower computational cost when compared to other methods.


Main Subjects