Let $I\subseteq\mathbb{R}$ be an interval and $\beta\colon I\to I$ a strictly increasing continuous function with a unique fixed point $s_0\in I$ satisfying $(t-s_0)(\beta(t)-t)\le 0$ for all $t\in I$. Hamza et al. introduced the general quantum difference operator $D_{\beta}$ by $D_{\beta}f(t):=\frac{f(\beta(t))-f(t)}{\beta(t)-t}$ if $t\ne s_0$ and $D_{\beta}f(t):=f'(s_0)$ if $t=s_0$. In this paper, we establish results concerning Taylor's formula associated with $D_{\beta}$. For this, we define two types of monomials and then present our main results. The obtained results are new in the literature and are useful for further research in the field.
Georgiev, S., & Tikare, S. (2023). Taylor's formula for general quantum calculus. Journal of Mathematical Modeling, 11(3), 491-505. doi: 10.22124/jmm.2023.23936.2139
MLA
Svetlin G. Georgiev; Sanket Tikare. "Taylor's formula for general quantum calculus". Journal of Mathematical Modeling, 11, 3, 2023, 491-505. doi: 10.22124/jmm.2023.23936.2139
HARVARD
Georgiev, S., Tikare, S. (2023). 'Taylor's formula for general quantum calculus', Journal of Mathematical Modeling, 11(3), pp. 491-505. doi: 10.22124/jmm.2023.23936.2139
VANCOUVER
Georgiev, S., Tikare, S. Taylor's formula for general quantum calculus. Journal of Mathematical Modeling, 2023; 11(3): 491-505. doi: 10.22124/jmm.2023.23936.2139