The Cahn-Hilliard equation is discretized by a Galerkin finite element method based on continuous piecewise linear functions in space and discontinuous piecewise constant functions in time. A posteriori error estimates are proved by using the methodology of dual weighted residuals.
Mesforush, A., & Larsson, S. (2022). A posteriori error analysis for the Cahn-Hilliard equation. Journal of Mathematical Modeling, 10(4), 437-452. doi: 10.22124/jmm.2022.22244.1960
MLA
Ali Mesforush; Stig Larsson. "A posteriori error analysis for the Cahn-Hilliard equation". Journal of Mathematical Modeling, 10, 4, 2022, 437-452. doi: 10.22124/jmm.2022.22244.1960
HARVARD
Mesforush, A., Larsson, S. (2022). 'A posteriori error analysis for the Cahn-Hilliard equation', Journal of Mathematical Modeling, 10(4), pp. 437-452. doi: 10.22124/jmm.2022.22244.1960
VANCOUVER
Mesforush, A., Larsson, S. A posteriori error analysis for the Cahn-Hilliard equation. Journal of Mathematical Modeling, 2022; 10(4): 437-452. doi: 10.22124/jmm.2022.22244.1960