In this paper, we establish the existence of denumerably many positive solutions for singular iterative system of fractional order boundary value problem involving Riemann--Liouville integral boundary conditions with increasing homeomorphism and positive homomorphism operator by using H\"{o}lder's inequality and Krasnoselskii's cone fixed point theorem in a Banach space.
Rajendra Prasad, K. , Khuddush, M. and Rashmita, M. (2021). Denumerably many positive solutions for singular iterative system of fractional differential equation with R-L fractional integral boundary conditions. Journal of Mathematical Modeling, 9(2), 257-275. doi: 10.22124/jmm.2020.16598.1441
MLA
Rajendra Prasad, K. , , Khuddush, M. , and Rashmita, M. . "Denumerably many positive solutions for singular iterative system of fractional differential equation with R-L fractional integral boundary conditions", Journal of Mathematical Modeling, 9, 2, 2021, 257-275. doi: 10.22124/jmm.2020.16598.1441
HARVARD
Rajendra Prasad, K., Khuddush, M., Rashmita, M. (2021). 'Denumerably many positive solutions for singular iterative system of fractional differential equation with R-L fractional integral boundary conditions', Journal of Mathematical Modeling, 9(2), pp. 257-275. doi: 10.22124/jmm.2020.16598.1441
CHICAGO
K. Rajendra Prasad , M. Khuddush and M. Rashmita, "Denumerably many positive solutions for singular iterative system of fractional differential equation with R-L fractional integral boundary conditions," Journal of Mathematical Modeling, 9 2 (2021): 257-275, doi: 10.22124/jmm.2020.16598.1441
VANCOUVER
Rajendra Prasad, K., Khuddush, M., Rashmita, M. Denumerably many positive solutions for singular iterative system of fractional differential equation with R-L fractional integral boundary conditions. Journal of Mathematical Modeling, 2021; 9(2): 257-275. doi: 10.22124/jmm.2020.16598.1441