This paper discusses stability and uniform asymptotic stability of the trivial solution of the following coupled systems of fractional differential equations on networks \begin{equation*} \left\{ \begin{array}{l l l} ^{cH}D^{\alpha} x_{i}=f_{i}(t,x_{i})+\sum\limits_{j=1}^{n}g_{ij}(t,x_{i},x_{j}),&t> t_{0}, \\ x_{i}(t_{0})=x_{i0}, \end{array} \right. \end{equation*} where $^{cH}D^{\alpha} $ denotes the Caputo-Hadamard fractional derivative of order $ \alpha $, $ 1<\alpha\leq 2 $, $ i=1,2,\dots,n$, and $ f_{i}:\mathbb{R}_{+}\times\mathbb{R}^{m_i} \to \mathbb{R}^{m_i} $, $ g_{ij} : \mathbb{R}_{+}\times \mathbb{R}^{m_i}\times \mathbb{R}^{m_j} \to \mathbb{R}^{m_i} $ are given functions. Based on graph theory and the classical Lyapunov technique, we prove stability and uniform asymptotic stability under suitable sufficient conditions. We also provide an example to illustrate the obtained results.
Belbali, H., & Benbachir, M. (2021). Stability for coupled systems on networks with Caputo-Hadamard fractional derivative. Journal of Mathematical Modeling, 9(1), 107-118. doi: 10.22124/jmm.2020.17303.1500
MLA
Hadjer Belbali; Maamar Benbachir. "Stability for coupled systems on networks with Caputo-Hadamard fractional derivative". Journal of Mathematical Modeling, 9, 1, 2021, 107-118. doi: 10.22124/jmm.2020.17303.1500
HARVARD
Belbali, H., Benbachir, M. (2021). 'Stability for coupled systems on networks with Caputo-Hadamard fractional derivative', Journal of Mathematical Modeling, 9(1), pp. 107-118. doi: 10.22124/jmm.2020.17303.1500
VANCOUVER
Belbali, H., Benbachir, M. Stability for coupled systems on networks with Caputo-Hadamard fractional derivative. Journal of Mathematical Modeling, 2021; 9(1): 107-118. doi: 10.22124/jmm.2020.17303.1500