In this paper, we give a necessary and sufficient condition for the powers of an interval matrix to be nilpotent. We show an interval matrix is nilpotent if and only if , where is a point matrix, introduced by Mayer (Linear Algebra Appl. 58 (1984) 201-216), constructed by the property. We observed that the spectral radius, determinant, and trace of a nilpotent interval matrix equal zero but in general its converse is not true. Some properties of nonnegative nilpotent interval matrices are derived. We also show that an irreducible interval matrix is nilpotent if and only if is nilpotent.
Golpar raboky, E. and Eftekhari, T. (2019). On nilpotent interval matrices. Journal of Mathematical Modeling, 7(2), 251-261. doi: 10.22124/jmm.2019.12669.1239
MLA
Golpar raboky, E. , and Eftekhari, T. . "On nilpotent interval matrices", Journal of Mathematical Modeling, 7, 2, 2019, 251-261. doi: 10.22124/jmm.2019.12669.1239
HARVARD
Golpar raboky, E., Eftekhari, T. (2019). 'On nilpotent interval matrices', Journal of Mathematical Modeling, 7(2), pp. 251-261. doi: 10.22124/jmm.2019.12669.1239
CHICAGO
E. Golpar raboky and T. Eftekhari, "On nilpotent interval matrices," Journal of Mathematical Modeling, 7 2 (2019): 251-261, doi: 10.22124/jmm.2019.12669.1239
VANCOUVER
Golpar raboky, E., Eftekhari, T. On nilpotent interval matrices. Journal of Mathematical Modeling, 2019; 7(2): 251-261. doi: 10.22124/jmm.2019.12669.1239