Effects of Hall current and ion-slip on unsteady hydromagnetic generalised Couette flow in a rotating Darcian channel

Document Type : Research Article

Authors

Department of Mathematics, V. S. K. University, Bellary-583105, India

Abstract

Unsteady hydromagnetic generalised Couette flow of a viscous, incompressible and electrically conducting fluid between two horizontal parallel porous plates Darcian channel in the presence of a uniform transverse magnetic field taking Hall current and ion-slip into account in a rotating system is investigated. An exact solution of the governing equations is obtained by Laplace transform technique. The expression for the shear stress at the moving porous plate due to primary and secondary flows is also derived. Asymptotic behavior of the solution is analyzed at the start-up and final stage of the motion to gain some physical insight into the flow pattern. Numerical values of primary and secondary velocities and that of shear stress at the moving porous plate of the channel due to primary and secondary flows are displayed graphically for various values of different flow parameters.

Keywords