A numerical algorithm for solving a class of matrix equations

Huamin Zhang†‡§, Hongcai Yin† and Rui Ding†∗

†Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi 214122, P.R. China
Emails: zhangeasymail@126.com, rding12@126.com
‡School of Management Science and Engineering, Anhui University of Finance & Economics, Bengbu 233000, P.R. China
Email: hongcaiyin@sina.com
§Department of Mathematics & Physics, Bengbu College, Bengbu 233030, P.R. China

Abstract. In this paper, we present a numerical algorithm for solving matrix equations \((A \otimes B)X = F\) by extending the well-known Gaussian elimination for \(Ax = b\). The proposed algorithm has a high computational efficiency. Two numerical examples are provided to show the effectiveness of the proposed algorithm.

Keywords: Gaussian elimination, Kronecker product, matrix equation.

AMS Subject Classification: 15AXX, 65FXX.

1 Introduction

Numerical solutions or iterative algorithms for different matrix equations have received much attention \([34, 22, 23, 11]\). For example, Charnsethikul presented a numerical algorithm for solving \(n \times n\) linear equations \(AX = b\) with parameters covariances \([2]\). The iterative algorithms can solve linear matrix equations \([10, 9, 25, 29, 17]\) but the Gaussian elimination method is direct and important for solving linear equations \([20, 15]\). In order to avoid

*Corresponding author.
Received: 26 January 2014 / Revised: 19 February 2014 / Accepted: 19 February 2014.

© 2014 University of Guilan http://research.guilan.ac.ir/jmm
the error accumulations and to improve the numerical stability, several pivoting strategies have been adopted [15, 14], e.g., the partial pivoting strategy, the complete pivoting strategy and the rook pivoting strategy. Studies on Gaussian elimination include the pivoting strategies [28], stabilities [27] and coefficient matrices [15].

The matrix equations play an important role in system theory [32, 12, 3, 5], control theory [26, 31, 30, 18], stability analysis [21, 24, 13, 4]. A conventional method for solving equations $AXB = F$ is to use the Kronecker product [15]. However, high dimensions of the associated matrices result in heavy computational burden [15]. There exist many methods which transform the matrix into forms for which solutions may be readily computed, such as the Jordan canonical form [19], the companion form [1] and the Hessenberg-Schur form [16]. However, these methods require computing additional matrix transformations or decompositions. Besides these methods, the iterative algorithms [32, 33] and the hierarchical identification principle [6, 7, 8] have also been used to solve the linear equations. Recently, the solution of matrix equation $AXB = F$ has been discussed under different conditions [6]. In this paper, we consider the matrix equation $(A \otimes B)X = F$ and present a new and efficient algorithm based on the Gaussian elimination.

This paper is organized as follows. Section 2 introduces the Gaussian elimination for equations $AX = F$. Section 3 discusses numerical algorithms for matrix equations $(A \otimes B)X = F$. Section 4 gives two numerical examples to illustrate the effectiveness of the proposed algorithm. Finally, we provide some concluding remarks in Section 5.

2 Gaussian elimination for $AX=F$

Consider the following matrix equation

$$AX = F, \quad (1)$$

where $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ and $F \in \mathbb{R}^{n \times m}$ are given constant matrices, $X \in \mathbb{R}^{n \times m}$ is the unknown matrix to be solved. Let

$$F = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{bmatrix} \in \mathbb{R}^{n \times m}, \quad f_i \in \mathbb{R}^{1 \times m}, \quad i = 1, 2, \ldots, n.$$
Assume that A is invertible and let $[A|F]^{(1)} := [A|F]$ be the augmented matrix of system (1), and denoted as

$$[A|F]^{(1)} = \begin{bmatrix}
|a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} & f_1^{(1)} \\
|a_{21}^{(1)} & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} & f_2^{(1)} \\
| \vdots & \vdots & \ddots & \vdots & \vdots \\
|a_{n1}^{(1)} & a_{n2}^{(1)} & \cdots & a_{nn}^{(1)} & f_n^{(1)} \\
\end{bmatrix},$$

where

$$a_{ij}^{(1)} = a_{ij}, \ i, j = 1, 2, \ldots, n,$$

$$f_i^{(1)} = f_i \in \mathbb{R}^{1 \times m}, \ i = 1, 2, \ldots, n.$$

With these symbols, we give the Gaussian elimination for solving matrix equations $AX = F$.

Algorithm 1.

1. For $i = 1$, let

$$|a_{j1}^{(1)}| := \max\{|a_{11}^{(1)}|, |a_{21}^{(1)}|, \ldots, |a_{n1}^{(1)}|\},$$

interchange the 1st row and jth row. If A is invertible, then $a_{11}^{(1)} \neq 0$ can be used to eliminate $a_{21}^{(1)}, a_{31}^{(1)}, \ldots, a_{n1}^{(1)}$. Let $m_{k1} := a_{k1}^{(1)}/a_{11}^{(1)}$, $k = 2, 3, \ldots, n$, we have

$$[A|F]^{(2)} := \begin{bmatrix}
|a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} & f_1^{(1)} \\
|0 & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} & f_2^{(1)} \\
| \vdots & \vdots & \ddots & \vdots & \vdots \\
|0 & a_{n2}^{(1)} & \cdots & a_{nn}^{(1)} & f_n^{(1)} \\
\end{bmatrix},$$

where

$$a_{kj}^{(2)} = a_{kj}^{(1)} - m_{k1}a_{1j}^{(1)}, \ k = 2, 3, \ldots, n, \ j = 2, 3, \ldots, n,$$

$$f_k^{(2)} = f_k^{(1)} - m_{k1}f_1^{(1)}, \ k = 2, 3, \ldots, n.$$

2. For $i = 2$, let

$$|a_{j2}^{(2)}| := \max\{|a_{22}^{(2)}|, |a_{32}^{(2)}|, \ldots, |a_{n2}^{(2)}|\},$$
interchange the 2nd row and jth row. If A is invertible, then \(a_{22}^{(2)} \neq 0 \) can be used to eliminate \(a_{32}^{(2)}, a_{42}^{(2)}, \ldots, a_{n2}^{(2)} \). Set

\[
m_{k2} := \frac{a_{k2}^{(2)}}{a_{22}^{(2)}}, \quad k = 3, 4, \ldots, n,
\]

and subtract \(m_{k2} \) times the second row of \([A|F]^{(2)}\) from the kth row gives

\[
[A|F]^{(3)} := \left[\begin{array}{ccccc|c} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & \cdots & a_{1n}^{(1)} & f_1^{(1)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \cdots & a_{2n}^{(2)} & f_2^{(2)} \\ 0 & 0 & a_{33}^{(3)} & \cdots & a_{3n}^{(3)} & f_3^{(3)} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & a_{n3}^{(3)} & \cdots & a_{nn}^{(3)} & f_n^{(3)} \end{array} \right],
\]

where

\[
a_{kj}^{(3)} = a_{kj}^{(2)} - m_{k2}a_{2j}^{(2)}, \quad k = 3, 4, \ldots, n, \quad j = 3, 4, \ldots, n,
\]

\[
f_k^{(3)} = f_k^{(2)} - m_{k2}f_2^{(2)}, \quad k = 3, 4, \ldots, n.
\]

3. For \(i = 3, 4, \ldots, n \), continuing in this way, let

\[
|a_{ji}^{(i)}| = \max\{|a_{ii}^{(i)}|, |a_{i+1,i}^{(i)}|, \ldots, |a_{ni}^{(i)}|\},
\]

interchange the ith row and jth row. If A is invertible then \(a_{ii}^{(i)} \neq 0 \), \(i = 3, 4, \ldots, n \). Set

\[
m_{ki} := \frac{a_{ki}^{(i)}}{a_{ii}^{(i)}}, \quad i = 3, 4, \ldots, n, \quad k = i + 1, i + 2, \ldots, n
\]

and subtract \(m_{ki} \) times the ith row of \([A|F]^{(i)}\) from the kth row. After \(n - 3 \) steps we end up with

\[
[A|F]^{(n)} := \left[\begin{array}{ccccc|c} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & \cdots & a_{1n}^{(1)} & f_1^{(1)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \cdots & a_{2n}^{(2)} & f_2^{(2)} \\ 0 & 0 & a_{33}^{(3)} & \cdots & a_{3n}^{(3)} & f_3^{(3)} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & a_{nn}^{(n)} & f_n^{(n)} \end{array} \right]. \quad (2)
\]
Here $a_{kj}^{(i+1)}$ and $f_k^{(i+1)}$ satisfy

$$a_{kj}^{(i+1)} = a_{kj}^{(i)} - m_{ki}a_{ij}^{(i)}, \quad i = 3, 4, \ldots, n,$$
$$k = i + 1, i + 2, \ldots, n, \quad j = i + 1, i + 2, \ldots, n,$$
$$f_k^{(i+1)} = f_k^{(i)} - m_{ki}f_i^{(i)}, \quad i = 3, 4, \ldots, n, \quad k = i + 1, i + 2, \ldots, n.$$

4. Referring to (2), we can get the linear system,

$$
\begin{bmatrix}
 a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\
 0 & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} \\
 \vdots & \ddots & \ddots & \vdots \\
 0 & \cdots & 0 & a_{nn}^{(1)}
\end{bmatrix}
\begin{bmatrix}
 X_1 \\
 X_2 \\
 \vdots \\
 X_n
\end{bmatrix}
=
\begin{bmatrix}
 f_1^{(1)} \\
 f_2^{(1)} \\
 \vdots \\
 f_n^{(1)}
\end{bmatrix},
$$

(3)

where

$$X :=
\begin{bmatrix}
 X_1 \\
 X_2 \\
 \vdots \\
 X_n
\end{bmatrix} \in \mathbb{R}^{n \times n}, \quad X_i \in \mathbb{R}^{1 \times m}, \quad i = 1, 2, \ldots, n.$$

From (3), we have

$$X_n = \frac{f_n^{(n)}}{a_{nn}^{(n)}} := P_n. \quad (4)$$

The current augmented matrix corresponding to (3) is denoted as

$$[A|F]^{(n)}_{(1)} =
\begin{bmatrix}
 a_{11}^{(1)} & \cdots & a_{1,n-2}^{(1)} & a_{1,n-1}^{(1)} & a_{1n}^{(1)} & f_1^{(1)} \\
 0 & \ddots & \ddots & \ddots & \vdots & \vdots \\
 \vdots & \ddots & a_{n-2,n-2}^{(n-2)} & a_{n-2,n-1}^{(n-2)} & a_{n-2,n}^{(n-2)} & f_{n-2}^{(n-2)} \\
 0 & \ddots & 0 & a_{n-1,n-1}^{(n-1)} & a_{n-1,n}^{(n-1)} & f_{n-1}^{(n-1)} \\
 0 & \cdots & 0 & 0 & 1 & P_n
\end{bmatrix}.$$

5. According to (3) and (4), we get

$$X_{n-1} = \frac{1}{a_{n-1,n}^{(n-1)}} \left[f_{n-1}^{(n-1)} - a_{n-1,n}^{(n-1)} X_n \right] := P_{n-1}. \quad (5)$$
The current augmented matrix corresponding to (3) is denoted as

$$[A|F]^{(n)}_{(2)} = \begin{bmatrix}
a^{(1)}_{11} & \cdots & a^{(1)}_{1,n-2} & a^{(1)}_{1,n-1} & a^{(1)}_{1,n} & f^{(1)}_1 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & a^{(n-2)}_{n-2,n-2} & a^{(n-2)}_{n-2,n-1} & a^{(n-2)}_{n-2,n} & f^{(n-2)}_{n-2} \\
0 & \cdots & 0 & 1 & 0 & P_{n-2} \\
0 & \cdots & 0 & 0 & 1 & P_n
\end{bmatrix}.$$

6. According to (3), (4) and (5), we have

$$X_i = \frac{1}{a^{(i)}_{ii}} \left[f^{(i)} - \sum_{j=i+1}^{n} a^{(i)}_{ij} X_j \right] := P_i, \quad i = n-2, n-3, \ldots, 1. \quad (6)$$

It follows from (4), (5) and (6) that

$$\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{bmatrix} \begin{bmatrix}
X_1 \\
X_2 \\
\vdots \\
X_n
\end{bmatrix} = \begin{bmatrix}
P_1 \\
P_2 \\
\vdots \\
P_n
\end{bmatrix},$$

and its augmented matrix is denoted as

$$[A|F]^{(n)}_{(n)} = \begin{bmatrix}
1 & 0 & \cdots & 0 & P_1 \\
0 & 1 & \cdots & 0 & P_2 \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & P_n
\end{bmatrix}.$$

From the above discussion, we get a solution to the equation $AX = F$ by Algorithm 1. In the following section we will tackle matrix equation $(A \otimes B)X = F$ by using the result in Section 2.

3 The matrix equation $(A \otimes B)X = F$

Consider the matrix equation

$$(A \otimes B)X = F,$$

where $A = [a_{ij}] \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{m \times m}$ and $F \in \mathbb{R}^{(nm) \times l}$ are given constant matrices, $X \in \mathbb{R}^{(nm) \times l}$ is the unknown matrix to be solved.
Let \(I_n \) denote an \(n \times n \) identity matrix. For an \(m \times l \) matrix

\[
Y = [y_1, y_2, \ldots, y_l] \in \mathbb{R}^{m \times l}, \quad y_i \in \mathbb{R}^m,
\]

Let \(\text{col}[Y] \) represent an \(ml \)-dimensional vector formed by the columns of \(Y \), i.e.,

\[
\text{col}[Y] := \begin{bmatrix} y_1 \\
y_2 \\
\vdots \\
y_l \end{bmatrix} \in \mathbb{R}^{ml}.
\]

Using the relationship \(A \otimes B = (A \otimes I_m)(I_n \otimes B) \) in [35] and from Eq. (7), we have

\[
(A \otimes I_m)(I_n \otimes B)X = F.
\]

It follows that

\[
\begin{bmatrix}
a_{11}I_m & a_{12}I_m & \cdots & a_{1n}I_m \\
a_{21}I_m & a_{22}I_m & \cdots & a_{2n}I_m \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1}I_m & a_{n2}I_m & \cdots & a_{nn}I_m
\end{bmatrix}
\begin{bmatrix}
B & 0 & \cdots & 0 \\
0 & B & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & B
\end{bmatrix}
\begin{bmatrix}
X_1 \\
X_2 \\
\vdots \\
X_n
\end{bmatrix}
= \begin{bmatrix}
F_1 \\
F_2 \\
\vdots \\
F_n
\end{bmatrix},
\]

where

\[
X := \begin{bmatrix}
X_1 \\
X_2 \\
\vdots \\
X_n
\end{bmatrix}, \quad F := \begin{bmatrix}
F_1 \\
F_2 \\
\vdots \\
F_n
\end{bmatrix}, \quad X_i \in \mathbb{R}^{m \times l}, \quad F_i \in \mathbb{R}^{m \times l}.
\]

Eq. (8) can be written as

\[
\begin{bmatrix}
a_{11}I_m & a_{12}I_m & \cdots & a_{1n}I_m \\
a_{21}I_m & a_{22}I_m & \cdots & a_{2n}I_m \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1}I_m & a_{n2}I_m & \cdots & a_{nn}I_m
\end{bmatrix}
\begin{bmatrix}
BX_1 \\
BX_2 \\
\vdots \\
BX_n
\end{bmatrix}
= \begin{bmatrix}
F_1 \\
F_2 \\
\vdots \\
F_n
\end{bmatrix},
\]

or in a compact form

\[
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix}
\begin{bmatrix}
\{\text{col}[(BX_1)^T]\}^T \\
\{\text{col}[(BX_2)^T]\}^T \\
\vdots \\
\{\text{col}[(BX_n)^T]\}^T
\end{bmatrix}
= \begin{bmatrix}
\{\text{col}[F_1^T]\}^T \\
\{\text{col}[F_2^T]\}^T \\
\vdots \\
\{\text{col}[F_n^T]\}^T
\end{bmatrix}. \quad (9)
\]
Let
\[
G := \begin{bmatrix}
\{\text{col}[F_1]\}^T \\
\{\text{col}[F_2]\}^T \\
\vdots \\
\{\text{col}[F_n]\}^T
\end{bmatrix} \in \mathbb{R}^{n \times (ml)},
\tag{10}
\]
and \([A|G]\) be the augmented matrix of Eq. (9). According to Algorithm 1, simplifying \([A|G]\) gives
\[
[A|G]_{(n)}^{(n)} = \begin{bmatrix}
1 & 0 & \cdots & 0 & P_1 \\
0 & 1 & \ddots & \vdots & P_2 \\
\vdots & \ddots & \ddots & 0 & 0 \\
0 & \cdots & 0 & 1 & P_n
\end{bmatrix}.
\tag{11}
\]
Thus, we obtain an important intermediate result
\[
\{\text{col}[(BX_i)^T]\}^T = P_i \in \mathbb{R}^{1 \times (ml)}, \ i = 1, 2, \ldots, n.
\]

Let
\[
\begin{align*}
P_i &= [P_{i1}, P_{i2}, \ldots, P_{im}], \ P_{ij} \in \mathbb{R}^{1 \times l}, \ i = 1, 2, \ldots, n, \ j = 1, 2, \ldots, m, \\
H_i &= \begin{bmatrix} P_{i1} \\ P_{i2} \\ \vdots \\ P_{im} \end{bmatrix} \in \mathbb{R}^{m \times l}, \ i = 1, 2, \ldots, n.
\end{align*}
\tag{12}
\]
According to the definition of \(\text{col}[X]\), we have \(BX_i = H_i, \ i = 1, 2, \ldots, n\). This means that
\[
B[X_1, X_2, \ldots, X_n] = [H_1, H_2, \ldots, H_n].
\tag{13}
\]
Then the solution of Eq. (7) can be obtained by Algorithm 1. The above procedures can be summarized as Algorithm 2.

Algorithm 2.

1. Form \(G\) by (10).
2. According to Algorithm 1, simplify the augmented matrix \([A|G]\) by (11).
3. Form \(H_i\) by (12).
4. Obtain the solution of Eq. (7) by solving (13).
4 Numerical examples

Example 1. Suppose that \((A \otimes B)X = F\), where

\[
A = \begin{bmatrix}
1 & 1 \\
2 & -1
\end{bmatrix}, \quad \begin{bmatrix}
1 & 1 \\
-1 & 1
\end{bmatrix}, \quad F = \begin{bmatrix}
F_1 \\
F_2
\end{bmatrix} = \begin{bmatrix}
7 & 15 \\
13 & 7 \\
5 & 6 \\
-7 & 2
\end{bmatrix}.
\]

According to Algorithm 2, we construct matrix \(G\). Letting \([A|G]^{(1)} := [A|G]\) gives

\[
[A|G]^{(1)} = \begin{bmatrix}
1 & 1 & 7 & 15 & 13 & 7 \\
2 & -1 & 5 & 6 & -7 & 2
\end{bmatrix}.
\]

Consider the entries of the first column, due to \(2 > 1\), interchange these two rows, we have

\[
\begin{bmatrix}
2 & -1 & 5 & 6 & -7 & 2 \\
1 & 1 & 7 & 15 & 13 & 7
\end{bmatrix}.
\]

Adding \(-1/2\) times the first row to the second row gives

\[
[A|G]^{(2)} = \begin{bmatrix}
2 & -1 & 5 & 6 & -7 & 2 \\
0 & 1.5 & 4.5 & 12 & 16.5 & 6
\end{bmatrix}.
\]

Dividing the second row of \([A|G]^{(2)}\) by \(a^{(2)}_{22} = 1.5\) gives

\[
[A|G]^{(2)}_{(1)} = \begin{bmatrix}
2 & -1 & 5 & 6 & -7 & 2 \\
0 & 1 & 3 & 8 & 11 & 4
\end{bmatrix}.
\]

Adding the second row to the first row of the matrix \([A|G]^{(2)}_{(1)}\), we have

\[
\begin{bmatrix}
2 & 0 & 8 & 14 & 4 & 6 \\
0 & 1 & 3 & 8 & 11 & 4
\end{bmatrix}.
\]

Dividing the first row by \(a^{(1)}_{11} = 2\) gives

\[
[A|G]^{(2)}_{(2)} = \begin{bmatrix}
1 & 0 & 4 & 7 & 2 & 3 \\
0 & 1 & 3 & 8 & 11 & 4
\end{bmatrix}.
\]

Then we have

\[
P = \begin{bmatrix}
P_1 \\
P_2
\end{bmatrix} = \begin{bmatrix}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{bmatrix} = \begin{bmatrix}
4 & 7 & 2 & 3 \\
3 & 8 & 11 & 4
\end{bmatrix},
\]

\[
H_1 = \begin{bmatrix}
P_{11} \\
P_{12}
\end{bmatrix} = \begin{bmatrix}
4 & 7 \\
2 & 3
\end{bmatrix}, \quad H_2 = \begin{bmatrix}
P_{21} \\
P_{22}
\end{bmatrix} = \begin{bmatrix}
3 & 8 \\
11 & 4
\end{bmatrix},
\]
\[
[B|H_1, H_2] = \begin{bmatrix}
1 & 1 & 4 & 7 & 3 & 8 \\
-1 & 1 & 2 & 3 & 11 & 4
\end{bmatrix}.
\]

According to Algorithm 1, we have
\[
[B|H_1, H_2]^{(2)} = \begin{bmatrix}
1 & 0 & 1 & 2 & -4 & 2 \\
0 & 1 & 3 & 5 & 7 & 6
\end{bmatrix}.
\]

Finally, we obtain the solution for the equation \((A \otimes B)X = F\) with
\[
X = \begin{bmatrix}
1 & 2 \\
3 & 5 \\
-4 & 2 \\
7 & 6
\end{bmatrix}.
\]

Example 2. Consider matrix equation \((A \otimes B)X = F\), where
\[
A = \begin{bmatrix}
2 & -3 \\
-1 & -2
\end{bmatrix}, \quad B = \begin{bmatrix}
3 & -2 & 1 \\
4 & 0 & 2 \\
-1 & -3 & -4
\end{bmatrix},
\]
\[
F = \begin{bmatrix}
F_1 \\
F_2
\end{bmatrix} = \begin{bmatrix}
-60 & -77 \\
-58 & -84 \\
31 & 44 \\
-19 & -28 \\
-6 & -42 \\
-12 & 13
\end{bmatrix}.
\]

According to Algorithm 2, \(G\) can be obtained by
\[
G = \begin{bmatrix}
\{\text{col}[F_1^T]\}^T \\
\{\text{col}[F_2^T]\}^T
\end{bmatrix} = \begin{bmatrix}
-60 & -77 & -58 & -84 & 31 & 44 \\
-19 & -28 & -6 & -42 & -12 & 13
\end{bmatrix},
\]
and the augmented matrix \([A|G]\) can be written as
\[
[A|G]^{(1)} = \begin{bmatrix}
2 & -3 & -60 & -77 & -58 & -84 & 31 & 44 \\
-1 & -2 & -19 & -28 & -6 & -42 & -12 & 13
\end{bmatrix}.
\]

Simplifying the augmented matrix \([A|G]^{(1)}\) gives
\[
[A|G]^{(2)} = \begin{bmatrix}
1 & 0 & -9 & -10 & -14 & -6 & 14 & 7 \\
0 & 1 & 14 & 19 & 10 & 24 & -1 & -10
\end{bmatrix},
\]
\[
P = \begin{bmatrix}
P_{11} & P_{12} & P_{13} \\
P_{21} & P_{22} & P_{23}
\end{bmatrix} = \begin{bmatrix}
-9 & -10 & -14 & -6 & 14 & 7 \\
14 & 19 & 10 & 24 & -1 & -10
\end{bmatrix}.
\]
Numerical algorithm for solving a class of matrix equations

Constructing the matrix

\[
[H_1, H_2] = \begin{bmatrix}
P_{11} & P_{21} \\
P_{12} & P_{22} \\
P_{13} & P_{23}
\end{bmatrix} = \begin{bmatrix}
-9 & -10 & 14 & 19 \\
-14 & -6 & 10 & 24 \\
14 & 7 & -1 & -10
\end{bmatrix},
\]

we write the augmented \([B|H_1, H_2]\),

\[
[B|H_1, H_2] = \begin{bmatrix}
3 & -2 & 1 & -9 & -10 & 14 & 19 \\
4 & 0 & 2 & -14 & -6 & 10 & 24 \\
-1 & -3 & -4 & 14 & 7 & -1 & -10
\end{bmatrix},
\]

which can be transformed into

\[
[B|H_1, H_2]^{(3)} = \begin{bmatrix}
1 & 0 & 0 & -2 & 1 & 1 & 5 \\
0 & 1 & 0 & 0 & 4 & -4 & -1 \\
0 & 0 & 1 & -3 & -5 & 3 & 2
\end{bmatrix}.
\]

Finally, we obtain the solution for equation \((A \otimes B)X = F\),

\[
X = \begin{bmatrix}
-2 & 1 \\
0 & 4 \\
-3 & -5 \\
1 & 5 \\
-4 & -1 \\
3 & 2
\end{bmatrix}.
\]

5 Conclusions

A new and efficient algorithm for solving linear matrix equation \((A \otimes B)X = F\) has been presented by using the Gaussian elimination. Two examples have illustrated the effectiveness of the proposed algorithm.

References

[34] H.M. Zhang and F. Ding, A property of the eigenvalues of the symmetric positive definite matrix and the iterative algorithm for coupled Sylvester matrix equations, J. Franklin Inst. 351 (1) (2014) 340-357.