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Abstract. In this paper, we apply the Laplace decomposition method to
obtain a series solutions of the Burgers-Huxley and Burgers-Fisher equa-
tions. The technique is based on the application of Laplace transform to
nonlinear partial differential equations. The method does not need lin-
earization, weak nonlinearity assumptions or perturbation theory and the
nonlinear terms can be easily handled by using the Adomian polynomials.
We compare the numerical results of the proposed method with those of
some available methods.
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1 Introduction

The decomposition method has been shown to solve efficiently, easily and
accurately a large class of linear and nonlinear ordinary, partial, determin-
istic or stochastic differential equations. The method is very well suited to
physical problems since it does not require unnecessary linearization, per-
turbation and other restrictive methods and assumptions which may change
the problem being solved, sometimes seriously. This paper presents a
Laplace transform numerical scheme, based on the decomposition method,
for solving nonlinear differential equations. The analysis will be adapted to
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the approximate solution of a class of nonlinear second-order initial-value
problems, though the algorithm is well suited for a wide range of nonlinear
problems. Khuri in [9] proposed a Laplace Decomposition Method (LDM)
for the approximate solution of a class of nonlinear ordinary differential
equations. In [12], Yusufoglu developed this method for the solution of
Duffing equation. Nasser [10] exploited this method to solve Falkner-Skan
equation. LDM was proved to be compatible with the versatile nature of
the physical problems and was applied to a wide class of functional equa-
tions, respectively, in [7] and [11]. In this paper, the method is implemented
for two numerical examples and the numerical results show that the scheme
approximates the exact solution with a high degree of accuracy using only
few terms of the iterative scheme.

The rest of this paper is organized as follows. In Section 2, we give an
analysis of LDM. Section 3 is devoted to the convergence of the Adomian
decomposition method for ordinary differential equations. In Section 4, we
present convergence of the Adomian decomposition method for partial dif-
ferential equations. Application of LDM is presented in Section 5. Finally,
we give our conclusions in Section 6.

2 Laplace decomposition method

The aim of this section is to discuss the use of LDM for solving partial
differential equations written in an operator form

Ltu + Ru + Nu = g, (1)

with initial condition
u(x, 0) = f(x), (2)

where Lt is considered a first-order partial differential operator, R and N
are linear and nonlinear operators, respectively, and g is source term. The
method consists of first applying the Laplace transform to both sides of Eq.
(1) and then by using initial condition (2), we have

L[Ltu] + L[Ru] + L[Nu] = L[g], (3)

using the differentiation property of Laplace transform, we get

L[u] =
f(x)

s
+

1
s
L[g]− 1

s
L[Ru]− 1

s
L[Nu]. (4)

The LDM defines the solutions u(x, t) by the infinite series

u(x, t) =
∞∑

n=0

un. (5)
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The nonlinear term N is usually represented by an infinite series of the
so-called Adomian polynomials as

Nu(x, t) =
∞∑

n=0

An. (6)

The Adomian polynomials can be generated for all forms of nonlinearity.
It is determined by the following relation

An(u0, u1, . . . , un) =
1
n!

dn

dλn

[
N

( ∞∑
n=0

un(x, t)

)]
, n = 0, 1, 2, . . . . (7)

Substituting Eqs. (5) and (6) into Eq. (4), gives

L[
∞∑

n=0

un] =
f(x)

s
+

1
s
L[g]− 1

s
L[R(

∞∑
n=0

un)]− 1
s
L[

∞∑
n=0

An]. (8)

Applying the linearity of the Laplace transform, we define the following
recursive formula

L[u0] =
f(x)

s
+

1
s
L[g], (9)

L[uk+1] = −1
s
L[R(uk)]−

1
s
L[Ak], k ≥ 1. (10)

Therefore, by applying the inverse Laplace transform, we can evaluate uk

(k > 0).

3 Convergence of the Adomian decomposition
method for ordinary differential equations

In this section, we investigate the convergence of ADM for initial-value
problems associated with systems of ordinary differential equations.

3.1 Formula of the ADM

In reviewing the basic methodology, we consider an abstract system of
nonlinear differential equations

dy

dt
= f(t, y), y ∈ Rd, f : R× Rd → Rd, (11)
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with initial condition y(0) = y0 ∈ Rd. Assume that f is analytic near
y = y0 and t = 0. Solving Eq. (11) is equivalent to solve the Volterra
integral equation

y(t) = y0 +
∫ t

0
f(s, y(s))ds. (12)

To set up the Adomian method, consider y in a series of the form

y = y0 +
∞∑

n=1

yn, (13)

and write the nonlinear function f(t, y) as the series of functions

f(t, y) =
∞∑

n=0

An(t, y0, y1, . . . , yn). (14)

The dependence of An on t and y0 may be non-polynomial. Formally, An

is obtained by

An =
1
n!

dn

dεn
f
(
t,

∞∑
i=0

εiyi

)∣∣∣
ε=0

, n = 0, 1, 2, . . . (15)

where ε is a formal parameter. Functions An are polynomials in (y1, . . . , yn),
which are referred to as the Adomian polynomials.

In what follows, we shall consider a scaler differential equation and set
d = 1. A generalization for d ≥ 2 is possible but is technically longer.

The first four Adomian polynomials for d = 1 are listed as follows

A0 = f(t, y0), (16)
A1 = y1f

′(t, y0),

A2 = y2f
′(t, y0) +

1
2
y2
1f

′′(t, y0),

A3 = y3f
′(t, y0) + y1y2f

′′(t, y0) +
1
6
y3
1f

′′′(t, y0),

where primes denote the partial derivatives with respect to y.
It was proven by Abbaoui and Cherruault [1] that the Adomian poly-

nomials An are defined by the explicit formula

An =
n∑

k=1

1
k!

f (k)(t, y0)
( ∑

p1+...+pk=n

yp1 . . . ypk

)
, n ≥ 1, (17)
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or, in an equivalent form, by

An =
∑
|nk|=n

f (|k|)(t, y0)
yk1
1 . . . ykn

n

k1! . . . kn!
, n ≥ 1, (18)

where |k| = k1 + · · · + kn, and |nk| = k1 + 2k2 + · · · + nkn. Khelifa and
Cherruault in [8] obtained a bound for Adomian polynomials by,

|An| ≤
(n + 1)n

(n + 1)!
Mn+1, (19)

where
sup
t∈J

|f (k)(t, y0)| ≤ M, (20)

for a given time interval J ⊂ R.
Substituting Eqs. (13) and (14) into Eq. (12) gives a recursive equation

for yn+1 in terms of (y0, y1, . . . , yn) as

yn+1(t) =
∫ t

0
An(s, y0(s), . . . , yn(s))ds, n = 0, 1, 2, . . . (21)

Convergence of series (13) obtained by Eq. (21) is a subject of our studies
in next section.

3.2 Convergence analysis

From Eq. (15), it is clear that An’s are some polynomials in terms of
y1, . . . , yn and thus yn+1 is obtained from Eq. (21) explicitly, if we compute
An. The first proof of convergence of the ADM was given by Cherruault,
who used fixed point theorem for abstract functional equations. Further-
more, Boumenir and Gordon in [4] discussed the rate of convergence of the
ADM.

The proof of the convergence for ADM for the functional equation

y = y0 + f(y), y ∈ H, (22)

is given as follows, where H is a Hilbert space and f : H → H. Let
Sn = y1 + y2 + · · ·+ yn, and fn(y0 + Sn) =

∑n
i=0 Ai. ADM is equivalent to

determining the sequence
{
Sn

}
n∈N defined by

Sn+1 = fn(y0 + Sn), S0 = 0. (23)

If the limits
S = lim

n→∞
Sn, f = lim

n→∞
fn, (24)
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exist in a Hilbert space H, then S solves a fixed-point equation S = f(y0+S)
in H. The convergence of the ADM was proved in [5], under the following
two conditions

||f || ≤ 1, ||fn − f || = εn → 0 as n →∞. (25)

These two conditions are rather restrictive. The first condition implies
a constraint on the nonlinear function Eq. (22) while, the second condition
implies the convergence of the series

∑∞
n=0 An. It is difficult to satisfy

the two conditions for a given nonlinear function f(y). In the following,
we shall prove convergence of the Adomian method in the context of the
ODEs system (11) by using the Cauchy-Kovalevskaya theorem [5]. We only
require that the function f be analytic in t and y. Let us start by reviewing
the Cauchy-Kovalevskaya theorem for ordinary differential equations.

Theorem 1. Let f : R × Rd → Rd be a real analytic function in the
domain [−t0, t0] × Bδ0(y0) for some t0 > 0 and δ0 > 0. Let y(t, y0) be a
unique solution for t ∈ [−t0, t0] of the initial-value problem{

dy
dt = f(t, y),
y(0) = y0.

Then y(t, y0) is also a real analytic function of t near t = 0, that is, there
exists τ ∈ (0, t0) such that y : [−τ, τ ] → Rd is a real analytic function.

Remark 1. Existence, uniqueness and continuity dependence on t and
y0 of y(t, y0) follows from the Picard’s method since if f is real analytic,
then it is locally Lipschitz (see [4, 5]).

Remark 2. We shall consider and prove Theorem 1 for d = 1. Generaliza-
tion for d ≥ 2 can be developed by more complicated formulas (For more
details the reader is referred to the proof of Cauchy-Kovalevskaya theorem)
(see [4, 5]).

Proof of Theorem 1. By Cauchy estimation for a real analytic function in
the domain [−t0, t0]×Bδ0(y0), there exists a constant C > 0 such that

1 + |f(0, y0)| ≤ C, (26)∑
k1+k2=k

1
k1!k2!

|∂k1
t ∂k2

y f(0, y0)| ≤
C

ak
, ∀k ≥ 1, k1, k2 ≥ 0. (27)
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By the Cauchy estimation (26) and (27), the Taylor series for f(t, y) at
t = 0 and y = y0 is bounded by

1 + |f(t, y)| ≤ C
∞∑

k=0

(ρ

a

)k
=

C

1− ρ
a

=
Ca

a− ρ
= g(ρ), (28)

where ρ = |t|+ |y − y0| < a. By the Weierstrass M-Test, the Taylor series
for f converges for all

|t|+ |y − y0| < a. (29)

Therefore, we have

1 + |f(0, y0)| ≤ C = g(0), (30)∑
k1+k2=k

1
k1!k2!

|∂k1
t ∂k2

y f(0, y0)| ≤
C

ak
≡ 1

k!
g(k)(0), ∀k ≥ 1, k1, k2 ≥ 0.

Let us consider a problem for ρ ∈ R+{
dρ
dt = g(ρ) = Ca

a−ρ ,

ρ(0) = 0.

This problem has an explicit solution

ρ(t) = a−
√

a2 − 2aCt, (31)

which is an analytic function of t in |t| < a
2C . By comparison principle, if{

dy
dt = f(t, y),
y(0) = y0,

and 1 + |f(t, y)| ≤ g(|t|+ |y(t)− y0|), for all |t|+ |y(t)− y0| < a then

|t|+ |y(t)− y0| ≤ ρ(t) = a−
√

a2 − 2aCt =
∞∑

k=1

1
k!

ρ(k)(0)tk. (32)

Therefore, for all t ≥ 0,

|y(t, 0)− y0| ≤ t
(
ρ′(0)− 1

)
+
∑
n≥2

1
k!

ρ(k)(0)tk, (33)

where the Taylor series absolutely converges in |t| < a
2C . To prove that

y(t, y0) is analytic in |t| < min
(
a, a

2C

)
, it remains to prove |y(k)(0, y0)| ≤

ρ(k)(0) for any k ≥ 1. If this is the case, then the Taylor series for y(t, y0)
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has a majorant convergent series, such that the Taylor series for y(t, y0)
converges, by the Weierstrass M-Test. To prove that |y(k)(0, y0)| ≤ ρ(k)(0),
from the ODE system we have

d2y

dt2
=

∂f

∂t
+

∂f

∂y

∂y

∂t
=

∂f

∂t
+ f

∂f

∂y
, (34)

d3y

dt3
=

∂2f

∂t2
+ 2f

∂2f

∂t∂y
+

∂f

∂t

∂f

∂y
+ f

(∂f

∂y

)2
+ f2 ∂2f

∂y2 ,

and therefore

|d
2y

dt2
| ≤ |∂f

∂t
|+ |∂f

∂y
||f |, (35)

≤ g′(0)(1 + |f |) ≤ g(0)g′(0) =
d2ρ

dt2
(0),

|d
3y

dt3
| ≤ |∂

2f

∂t2
|+ 2| ∂2f

∂y∂t
||f |+ |∂f

∂t
||∂f

∂y
|+ |f ||∂f

∂y
|2 + |f |2|∂

2f

∂y2 |,

≤ g′′(0)(1 + |f |)2 + (g′(0))2(1 + |f |),

≤ g2(0)g′′(0) + (g′(0))2g(0) =
d3ρ

dt3
(0).

Generally
y(k+1)(0, y0) = Pk(f)t=0,y=y0 , (36)

where Pk(f) is a polynomial of f and its partial derivatives up to kth order
evaluated at t = 0 and y = y0. Since Pk(f) has positive coefficients and by
Eq. (29) we obtain

|y(k+1)(0, y0)| = |Pk(f)|t=0,y=y0 ≤ Pk(|f |)|t=0,y=y0 (37)

≤ Pk(1 + |f |)|t=0,y=y0 ≤ Pk(g)|ρ=0 = ρ(k+1)(0), k ≥ 0,

where the last identity follows from dρ
dt = g(ρ). Thus, the statement of the

theorem is proved. 2

We can now state the main result of this subsection.

Theorem 2. Let f : R×Rd → R be a real analytic function in the domain
[−t0, t0]× Bδ0(y0) for some t0 > 0 and δ0 > 0. Let yn(t) be defined by the
recurrence Eq. (21). There exists a τ ∈ [0, t0] such that the nth partial sum
of the Adomian series (13) converges to the solution y(t, y0) of the Volterra
Eq. (12) in C([−τ, τ ], Rd).
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Proof. Similar to Theorem 1 we prove the theorem d = 1. From the
iteration of the Adomian method, we set

yk+1 =
∫ t

0
Ak(s, y0(s), . . . , yn(s)), k ≥ 0, (38)

where

Ak =
1
k!

dk

dεk
f
(
t, y0 +

∞∑
m=1

εmym

)∣∣∣
ε=0

. (39)

For k = 0 we have

|y1(t)| ≤
∫ t

0
|f(s, y0)|ds ≤ g(0)t ≡ ρ′(0)t, (40)

and for k = 1,

|y2(t)| ≤
∫ t

0
|f ′(s, y0)||y1(s)|ds ≤ t2

2
g′(0)g(0) ≡ t2

2
ρ′′(0). (41)

By induction assume that

|yn(t)| ≤ 1
n!

tnρ(n)(0). (42)

We shall prove

|yn+1(t)| ≤
1

(n + 1)!
tn+1ρ(n+1)(0). (43)

Let

Yn(t) =
n∑

m=0

εmym(t), (44)

where ε > 0 is a formal parameter. Then,

|Yn(t)| ≤
n∑

m=0

εm|ym(t)| ≤
n∑

m=0

εmtmρ(m)(0)
m!

=
∞∑

m=0

εmtmρ(m)(0)
m!

−
∞∑

m=n+1

εmtmρ(m)(0)
m!

. (45)

Let m− (n + 1) = l then

Yn(t) = ρ(εt)− εn+1tn+1
∞∑
l=0

εltl

(1 + l + n)!
ρ1+l+n(0). (46)
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Therefore, there exists a C∞ function Ỹn(t) on [−τ, τ ] such that

Yn(t) = ρ(εt)− εn+1tn+1Ỹn(t), ∀t ∈ [−τ, τ ], (47)

where τ is defined by Theorem 1. The first few estimates of Adomian
polynomials are given by

|A0| ≤ C = g(0) = ρ′(0), (48)

|A1| ≤ |f ′||y1| ≤
C

a
g(0)t = tg(0)g′(0) = tρ′′(0),

|A2| ≤ |f ′||y2|+
1
2
|f ′′||y2

1| ≤
C

a
|y2|+

C

a2
|y1|2,

≤ t2

2
(
g(0)(g′(0))2 + g′′(0)(g(0))2

)
=

t2

2
ρ′′′(0).

To estimate An(t) in general case, we use the formula

An(t) =
1
n!

dn

dεn
f(t, Yn(t))|ε=0,

and compute

|An(t)| ≤ 1
n!

∣∣∣ dn

dεn
f(t, Yn)

∣∣∣
ε=0

≤ tn

n!

∣∣∣ dn

dµn
f(t, ρ(µ))

∣∣∣
µ=εt=0

(50)

≤ tn

n!
|Pn(ρ(0))| ≤ tn

n!
ρ(n+1)(0), (51)

where the last inequality is obtained in Eq. (37). Using the iterative
formula (38), we finally obtain

|yn+1(t)| ≤
1

(n + 1)!
tn+1ρ(n+1)(0). (52)

Therefore the Adomian series is majorant by the same power series as the
analytic solution in Theorem 1. By the Weierstrass M-Test, the Adomian
series converges. Moreover, it follows from Eq. (38) that the series (14)
for Aomian polynomials converges as well, such that the Adomian series
solves the same Volterra integral Eq. (12) in C([−τ, τ ], R). By uniqueness
of solutions, the Adomian series is equivalent to the solution y(t, y0) of the
Volterra equation (12). 2

3.3 Rate of the convergence

In this subsection, a simple method is introduced to determine the rate of
convergence of the ADM. Using this method, we give a bound for the error
of the Adomian decomposition series.
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Theorem 3. Under the same condition as in Theorem 2, the rate of con-
vergence is exponential in the sense that there exists C0 > 0 such that

En ≤ C0

(2Cτ

a

)n+1
, n ≥ 1 (53)

for all τ < a
2C , where

En =

∥∥∥∥∥y −
n∑

m=0

ym

∥∥∥∥∥ , (54)

and the parameters a and C are defined in Cauchy estimation (26) and
(27).

Proof. By Theorem 2, we have

|yn+1(t)| ≤
tn+1ρ(n+1)(0)

(n + 1)!
, ∀t ∈ [0, T ], (55)

such that

||yn+1|| ≤
τn+1ρ(n+1)(0)

(n + 1)!
, (56)

where the norm ||.|| in C([−τ, τ ], Rd) is defined by

||y|| = sup
|t|<t0

|y(t)|. (57)

Since ρ(t) is explicitly given by

ρ(t) = a−
√

a2 − 2Cat, (58)

we have
ρ(n)(0) =

(2n− 3)!Cn

an−1
. (59)

By Theorem 2, the Adomian series y(t) =
∑∞

m=0 ym(t) converges and the
error is estimated by

En =
∣∣∣∣∣∣ ∞∑

j=n+1

yi

∣∣∣∣∣∣ ≤ ∞∑
j=n+1

||yi|| ≤
∞∑

j=n+1

τ jρ(j)(0)
j!

≤
∞∑

j=n+1

a

j!

(Cτ

a

)j
(2j−3)!.

(60)
Let k = j − (n + 1), then

En ≤ a
(2Cτ

a

)n+1
∞∑

k=0

(2k + 2n− 1)!
2k+n+1(k + n + 1)!

(2Cτ

a

)k
. (61)
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Since
(2k + 2n− 1)!

2k+n+1(k + n + 1)!
≤ 1

2k + 2n
≤ 1, ∀n ≥ 1, k ≥ 1, (62)

we obtain

En ≤ a
(2Cτ

a

)n+1
∞∑

k=0

(2Cτ

a

)k
=

a
(

2Cτ
a

)n+1

1− 2Cτ
a

, (63)

for all τ < a
2C . The theorem is proved with C0 = a

1− 2Cτ
a

. 2

4 Convergence of the Adomian decomposition
method for partial differential equations

In this section, we analyze the convergence of the ADM for nonlinear partial
differential equations in the form

ut = L(u) + N(u), (64)

where L is an unbounded differential operator from a Banach space X to
a Banach space Y , (X ⊆ Y ), and N(u) is a nonlinear function that maps
an element of X to an element of X.

Let E(t) be a fundamental solution operator associated with the linear
Cauchy problem {

vt = Lv,
v(0) = f ∈ X,

such that v(t) = E(t)f . For symbolic notations, we write E(t) = etL. In
what follows, we shall assume that

||E(t)f ||X ≤ C||f ||X . (65)

For instance, if L ≡ i∂2
x, then the above linear initial-value Cauchy problem

defines the Schrödinger equation which is solved in the Fourier transform
form as

v(x, t) =
1√
2π

∫
R

e−iξ2t+iξxf̂(ξ)dξ, ∀(x, t) ∈ R2, (66)

where

f̂(ξ) =
1√
2π

∫
R

e−iξxf(x)dx, ∀ξ ∈ R. (67)
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Therefore, E(t) is defined in the Fourier transform form by Ê(t) = e−iξ2t.
By the Parseval’s identity, E(t) preserves the Hs-norm in the sense that

||E(t)f ||2Hs =
1
2π

∫
R
(1 + ξ2)s

∣∣∣Ê(t)f
∣∣∣2dξ, (68)

=
1
2π

∫
R
(1 + ξ2)s

∣∣∣Ê(t)
∣∣∣2∣∣∣f̂ ∣∣∣2dξ,

=
1
2π

∫
R
(1 + ξ2)s

∣∣∣f̂ ∣∣∣2dξ,

= ||f ||2Hs ,

such that the assumption (65) holds with C = 1.
By Duhamel’s principle, the initial-value problem (64) can be reformu-

lated as an integral equation

u(t) = E(t)f +
∫ t

0
E(t− s)N(u(s))ds. (69)

Remark 3. If L : X → Y, N : X → X, and ||E(t)f ||X ≤ C||f ||X for
some C > 0, then there exists a unique fixed-point of the integral Eq. (69)
in space C([0, T ], X) for a sufficiently small T > 0, which corresponds to
a unique solution of the PDE problem (64) in space u(t) ∈ C([0, T ], X) ∩
C1([0, T ], Y ).

To set up the Adomian method, define

u(t) =
∞∑

n=0

un(t), (70)

where u0(t) = E(t)f and

un+1(t) =
∫ t

0
E(t− s)An(u0(s), . . . , un(s))ds, n ≥ 0, (71)

in which An is the same Adomian polynomials as before introduced and
generated from an analytic function N(u).

We would like to prove convergence of the Adomian series (69) in space
X.

Theorem 4. Let N : X → X be a real analytic function in the ball
Ba(f) ⊂ X for some radius a > 0. Assume that L : X → Y satisfies
||E(t)f ||x ≤ C||f ||X for some C > 0. Let u0(t) = E(t)f and un(t) for
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n ≥ 1 be defined by the recurrence Eq. (70). There exists a T > 0 such that
the nth partial sum of the Adomian series (70) converges to the solution u
of Eq. (69) in C([0, T ], X).

Proof. Assume that N(u) is analytic in u ∈ X. Then, by Cauchy esti-
mation, there exist a > 0, and b > 0 such that∣∣∣∣∂k

uN(f)
∣∣∣∣

X
≤ bk!

ak
, k ≥ 0. (72)

The Taylor series for N(u) at u = f

N(u) =
∞∑

k=0

1
k!

[∂k
uN(f)](u− f)k, (73)

converges for any ||u− f ||X < a, and moreover, we obtain that

||N(u)||X ≤
∞∑

k=0

1
k!

bk!
ak
||u− f ||kX , (74)

≤ b

1− ||u−f ||X
a

,

=
ba

a− ρ
≡ g(ρ),

where ρ = ||u− f ||X < a. It is now clear that
∣∣∣∣∂k

uN(f)
∣∣∣∣ ≤ g(k)(0) for any

k ≥ 0.
From Eq. (71), we find that ||u0 − f ||X ≤ (C + 1)||f ||X ≡ a, and

||u1||X ≤
∫ t

0
||E(t− s)A0||Xds ≤ C

∫ t

0
||A0||Xds, (75)

≤ Cg(0)t = Ctρ′(0),

||u2||X ≤
∫ t

0
||E(t− s)A1||Xds ≤ C

∫ t

0
||A1||Xds,

≤ C2g′(0)g(0)t = C2 t2

2
ρ′′(0).

By induction one can see that

||un+1(t)||X ≤ Cn+1

(n + 1)!tn+1ρ(n+1)(0)
. (76)

Therefore, the Adomian series in X is majorant by the convergent power
series for ρ(t) = a −

√
a2 − 2abCt for any t ∈ [0, T ] for T < a

2bC , in full
correspondence with the proof Theorem 2. 2
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5 Numerical experiments

In this section, we give two examples to illustrate the LDM method.

Example 1. ([3]) Consider the generalized Burgers-Fisher equation

ut + αuσux − uxx = βu(1− uσ), ∀ 0 6 x 6 1, t > 0,

where the initial condition is given by

u(x, 0) = (
1
2
− 1

2
tanh[

ασx

2(σ + 1)
])

1
σ .

The exact solution of Eq. (11) is given by

u(x, t) = (
1
2
− 1

2
tanh[

ασ

2(σ + 1)
(x− (

α

σ + 1
+

β(σ + 1)
α

)t)])
1
σ ,

where α, β ≥ 0 and σ > 0 are given parameters. Taking the Laplace
transform on both sides of Eq. (11), then, by using the differentiation
property of Laplace transform and initial condition (12) gives

L[u] =
1
s
(
1
2
− 1

2
tanh[

ασ

2(σ + 1)
x])

1
σ − α

1
s
L[uσux] +

1
s
L[uxx]

+β
1
s
L[u]− β

1
s
L[uuσ].

The LDM defines the solutions u(x, t) by the series

u(x, t) =
∞∑

n=0

un(x, t).

Inserting this series into both sides of Eq. (13) yields

L[
∞∑

n=0

un] =
1
s
(
1
2
− 1

2
tanh[

ασ

2(σ + 1)
x])

1
σ − α

1
s
L[

∞∑
n=0

An],

+
1
s
L[

∞∑
n=0

unxx] + β
1
s
L[

∞∑
n=0

un]− β
1
s
L[

∞∑
n=0

Bn],

where An and Bn are the so-called Adomian polynomials defined by Eq. (7)
that represent the nonlinear terms uσux and uuσ, respectively (see [10]).
Now we define the following recursive formula

L[u0] =
1
s
(
1
2
− 1

2
tanh[

ασ

2(σ + 1)
x])

1
σ ,

L[uk+1] = −α
1
s
L[Ak] +

1
s
L[ukxx] + β

1
s
L[uk]− β

1
s
L[Bk], k > 0.
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Taking the inverse Laplace transform of both sides of Eq. (15), we get

u0(x, t) = (
1
2
− 1

2
tanh[

ασ

2(σ + 1)
x])

1
σ ,

u1(x, t) =
1
4
(
1
2
− 1

2
tanh[

ασ

2(σ + 1)
x])−2+ 1

σ t[4β
1
2
− 1

2
tanh[

ασ

2(σ + 1)
x]2

+(1− 1
2

tanh[
ασ

2(σ + 1)
x])2

×(
(
(−1− 1

2 tanh[ ασ
2(σ+1) x])α2σ2(−1+σ−tanh[ ασ

2(σ+1) x](σ+1))

2(σ+1)2 ) + · · ·
σ2

)],

and so on. Using Eq. (14), the series solution is therefore given by

u(x, t) = (
1
2
− 1

2
tanh[

ασ

2(σ + 1)
x])

1
σ

+
1
4
(
1
2
− 1

2
tanh[

ασ

2(σ + 1)
x])−2+ 1

σ t[4β
1
2
− 1

2
tanh[

ασ

2(σ + 1)
x]2

+(1− 1
2

tanh[
ασ

2(σ + 1)
x])2

×(
(
(−1− 1

2
tanh[ ασ

2(σ+1)
x])α2σ2(−1+σ−tanh[ ασ

2(σ+1)
x](σ+1))

2(σ+1)2
) + · · ·

σ2
)].

The comparison between the absolute errors of the solution for Eq. (11),
by LDM, Adomian Decomposition method (ADM) [3], Differential Trans-
form method (DTM) and Variational Iteration Method (VIM) are shown
in Tables 1-3 for different values of α and β for σ = 1, 2. Also we plot
the evolution results for the approximate solutions derived by LDM and
the exact solution in Fig. 1, respectively. Also, Fig. 2 shows the absolute
errors of the computed solutions for different values of α and β for σ = 1
and Fig. 3 shows numerical results for σ = 2.

Example 2. ([3]) Consider the generalized Burgers-Huxley equation

ut + αuσux − uxx = βu(1− uσ)(uσ − γ), 0 6 x 6 1, t > 0,

subject to the initial condition

u(x, 0) = (
γ

2
+

γ

2
tanh[A1x])

1
σ .

Note that the exact solution of Eq. (19) is given by

u(x, t) = (
γ

2
+

γ

2
tanh[A1(x−A2t)])

1
σ ,
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Table 1: Absolute errors for α = β = 0.001, σ = 1, by using 5-terms ADM,
one iteration of VIM, 5-terms of DTM and 2-terms of LDM for Example 1.

x t ADM VIM DTM LDM
0.1 0.005 9.68619E-6 7.55579E-17 2.49989E-6 3.19327E-28

0.001 1.93724E-6 3.10571E-18 4.99975E-7 5.19268E-31
0.010 1.93724E-5 2.91807E-16 4.99982E-6 5.00494E-27

0.5 0.005 9.68691E-6 3.88214E-16 2.49939E-6 1.62271E-27
0.001 1.93738E-6 1.56119E-17 4.99875E-7 2.60468E-30
0.010 1.93738E-5 1.54243E-15 4.99875E-6 2.58591E-27

0.9 0.005 9.68619E-6 7.00870E-16 2.49989E-6 2.92609E-27
0.001 1.93738E-6 2.81182E-17 4.99775E-7 4.69010E-30
0.010 1.93738E-5 2.79305E-15 4.99782E-6 4.67132E-26

Table 2: Absolute errors for α = β = 1, σ = 2, by using 5-terms ADM, one
iteration of VIM, 5-terms of DTM and 2-terms of LDM for Example 1.

x t ADM VIM DTM LDM
0.1 0.0005 1.40177E-3 2.49584E-8 4.31483E-4 2.49584E-8

0.0001 2.80396E-4 9.97913E-10 1.62647E-4 9.97913E-10
0.0010 2.80301E-3 9.98871E-8 7.67572E-4 9.98871E-8

0.5 0.0005 1.34526E-3 1.46692E-8 2.36200E-3 1.46692E-8
0.0001 2.69094E-4 5.86290E-10 2.14691E-3 5.86290E-10
0.0010 2.69000E-3 5.87371E-8 2.63089E-3 5.87371E-8

0.9 0.0005 1.27699E-3 3.75350E-9 5.97983E-3 2.92609E-27
0.0001 2.55438E-4 1.49658E-10 5.81437E-3 1.49658E-10
0.0010 2.55346E-3 1.50741E-8 6.18665E-3 1.50741E-8
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Table 3: Absolute errors for α = 1, β = 0, σ = 1, by using 5-terms ADM,
one iteration of VIM, 5-terms of DTM and 2-terms of LDM for Example 1.

x t ADM VIM DTM LDM
0.1 0.005 6.34216E-8 4.83815E-9 1.13584E-13 1.26299E-15

0.001 2.02886E-6 1.19482E-10 1.58893E-13 2.02888E-18
0.010 6.42801E-5 1.19190E-8 1.07702E-13 2.01066E-14

0.5 0.005 5.66705E-8 2.38739E-8 1.23392E-8 6.07712E-15
0.001 1.8471E-6 9.56179E-10 1.26967E-8 9.73050E-18
0.010 1.8471E-6 9.53427E-8 1.18923E-8 9.71452E-14

0.9 0.005 4.12803E-8 4.10692E-8 7.56982E-7 9.91363E-15
0.001 1.37967E-6 1.64382E-9 7.68925E-7 1.58668E-17
0.010 4.75268E-5 9.53427E-8 7.42046E-7 1.58555E-13

where

A1 =
−ασ + σ

√
α2 − 4β(1 + σ)

4(1 + σ)
γ,

A2 =
γα

(1 + σ)
−

(1 + σ − γ)(−α +
√

α2 − 4β(1 + σ))
2(1 + σ)

,

where α, β, γ and σ are parameters, β > 0, σ > 0, γ ∈ (0, 1).
Using the differentiation property of Laplace transform we get

L[u] =
1
s
(
γ

2
+

γ

2
tanh[A1x])

1
σ − α

1
s
L[uσux] +

1
s
L[uxx]− βγ

1
s
L[u]

+β(1 + γ)
1
s
L[u1+σ]− β

1
s
L[u2σ].

The second step in LDM is that we represent the solution as an infinite
series given by

u(x, t) =
∞∑

n=0

un.

By substituting Eq. (22) in Eq. (21), we get

L[
∞∑

n=0

un] =
1
s
(
γ

2
+

γ

2
tanh[A1x])

1
σ − α

1
s
L[

∞∑
n=0

An] +
1
s
L[

∞∑
n=0

unxx]

−βγ
1
s
L[

∞∑
n=0

un] + β(1 + γ)
1
s
L[

∞∑
n=0

Bn]− β
1
s
L[

∞∑
n=0

Cn],
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where An, Bn and Cn are so-called Adomian polynomials by Eq. (7) that
represent the nonlinear terms uσux, u1+σ and u2σ, respectively. Matching
both sides of Eq. (25), we have the following relation

L[u0] =
1
s
(
γ

2
+

γ

2
tanh[A1x])

1
σ ,

L[u1] =
1
s
L[−αA0 + u0xx − βγu0 + β(1 + γ)B0 − βC0].

In general the recursive relation is given by

L[uk+1] = −α
1
s
L[Ak] +

1
s
L[ukxx]− βγ

1
s
L[uk]

+β(1 + γ)
1
s
L[Bk]− β

1
s
L[Ck]. (78)

Using the above recurrence relation and by using the inverse Laplace trans-
form of both sides of it, we have

u0(x, t) = (
γ

2
+

γ

2
tanh[A1x])

1
σ ,

u1(x, t) =
1

2
t[−2β(

γ

2
(1 + tanh[A1x])

1
σ )2σ+1

+
2( γ

2
(1 + tanh[A1x])

1
σ )σ+1(A1α(tanh[A1x]− 1) + βσ(1 + γ))

σ

+
γ(1 + tanh[A1x])

1
σ (A2

1(tanh[A1x]− 1)(−1 + σ + tanh[A1x](σ + 1))− βγσ2)

σ2
],

and so on. Using Eq. (14), the series solution are therefore given by

u(x, t) = (
γ

2
+

γ

2
tanh[A1x])

1
σ

+
1

2
t[−2β(

γ

2
(1 + tanh[A1x])

1
σ )2σ+1

+
2( γ

2
(1 + tanh[A1x])

1
σ )σ+1(A1α(tanh[A1x]− 1) + βσ(1 + γ))

σ

+
γ(1 + tanh[A1x])

1
σ (A2

1(tanh[A1x]− 1)(−1 + σ + tanh[A1x](σ + 1))− βγσ2)

σ2
].

In Tables 4, 5 and 6, we present the absolute errors of the computed solution
for Eq. (18), by DTM, ADM, VIM (given in [5]), together with those of
LDM for σ = 1. As the numerical results show, we can conclude that LDM
present remarkable accuracy and better in comparison with the other three
methods. Also the behavior of the exact solution and the computed solution
obtained by LDM is shown in Fig. 4 and Fig. 5. In this figures the absolute
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Table 4: Absolute errors for α = 1, β = 1, γ = 0.001, σ = 1, by using
5-terms ADM, one iteration of VIM, 5-terms of DTM and 2-terms of LDM
for Example 2.

x t ADM VIM DTM LDM
0.1 0.05 1.87406E-8 1.87405E-8 1.87406E-8 1.87406E-8

0.1 3.74812E-8 3.74813E-8 3.74813E-8 3.74812E-8
1.0 3.74812E-7 3.74812E-7 3.748125E-7 3.74812E-7

0.5 0.05 1.87406E-8 1.87405E-8 1.87406E-8 1.87406E-8
0.1 3.74812E-8 3.74813E-8 3.74813E-8 3.74812E-8
1.0 3.74812E-7 3.74813E-7 3.74813E-7 3.74812E-7

0.9 0.05 1.87406E-8 1.87405E-8 1.87406E-8 1.87406E-8
0.1 3.74812E-8 3.74813E-8 3.74813E-8 3.74812E-8
1.0 3.74812E-7 3.74813E-7 3.748125E-7 3.74812E-7

Table 5: Absolute errors for α = 0.1, β = 0.001, γ = 0.1, σ = 1, by using
5-terms ADM, one iteration of VIM, 5-terms of DTM and 2-terms of LDM
for Example 2.

x t ADM VIM DTM LDM
0.1 0.05 1.3634E-7 11.3608E-7 11.3608E-7 11.3607E-7

0.10 2.7243E-7 12.7216E-7 12.7216E-7 12.7215E-7
1.00 2.72200E-6 12.72151E-6 12.72151E-6 12.72150E-7

0.5 0.05 1.3736E-7 1.3608E-7 1.3608E-7 1.3607E-7
0.10 2.7345E-7 2.7216E-7 2.7216E-7 2.7216E-7
1.00 2.72302E-6 2.72151E-6 2.72151E-6 2.72150E-6

0.9 0.05 1.3838E-7 1.3608E-7 1.3608E-7 1.3607E-7
0.10 2.7447E-7 2.7216E-7 2.7216E-7 2.7215E-7
1.00 2.72404E-6 2.72151E-6 2.72151E-7 2.72150E-6
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Table 6: Absolute errors for α = 0.01, β = 0,γ = 0.0001, σ = 1, by using
5-terms ADM, one iteration of VIM, 5-terms of DTM and 2-terms of LDM
for Example 2.

x t ADM VIM DTM LDM
0.1 0.05 2E-14 2E-14 2E-14 1.87E-14

0.10 4E-14 3E-14 3E-14 3.74E-14
1.00 3.7E-13 3.7E-13 3.7E-13 3.74E-14

0.5 0.05 2E-14 2E-14 2E-14 1.87E-14
0.10 4E-14 3E-14 3E-14 3.74E-14
1.00 3.7E-13 3.7E-13 3.7E-13 3.74E-14

0.9 0.05 2E-14 2E-14 2E-14 1.87E-14
0.10 4E-14 3E-14 3E-14 3.74E-14
1.00 3.7E-13 3.7E-13 3.7E-13 3.74E-14

error of the computed solution for different values of α, β and γ for σ = 1
has been displayed.

In addition, the evolution results for the approximate solutions obtained
by LDM, and the exact solutions of Eq. (18) are given in Fig. 6 for σ = 2,
respectively and Fig. 5 shows absolute errors for different values of α, β
and γ when σ = 2. Also, Tables 7, 8 and 9, show the absolute errors for
Eq. (18), by DTM, ADM, and VIM (reported in [4]), are compared with
those of the LDM for σ = 2.

6 Conclusion

The LDM has been successfully applied to find an approximate solution
of the generalized Burgers-Huxley equation and generalized Burgers-Fisher
equation. The results reveal that the LDM is more effective and accuracy
compared to ADM , VIM, DTM. Also illustrate that LDM is a powerful
tool to search for solutions of various nonlinear problems. An excellent
agreement between the present and existing solutions is achieved. The
proposed scheme can be applied for other nonlinear equations of physics
applications.
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Table 7: Absolute errors for α = β = 1,γ = 0.001,σ = 2, by using 5-
terms ADM, one iteration of VIM, 5-terms of DTM and 2-terms of LDM
for Example 2.

x t ADM VIM DTM LDM
0.1 0.1 1.74857E-6 1.74992E-6 1.74982E-6 4.85677E-7

0.2 3.49911E-6 3.49983E-6 3.49962E-6 9.71369E-7
0.3 5.24970E-6 5.24971E-6 5.24940E-6 1.45708E-6
0.4 7.00033E-6 6.99958E-6 6.99916E-6 1.94281E-6
0.5 8.75099E-6 8.74942E-6 8.74890E-6 2.42855E-6

0.3 0.1 1.74459E-6 1.74983E-6 1.74954E-8 4.85645E-7
0.2 3.49506E-6 3.49967E-6 3.49962E-6 9.71327E-7
0.3 5.24557E-6 5.24948E-6 5.24915E-6 1.45701E-6
0.4 6.99612E-6 6.99927E-6 6.99881E-6 1.94272E-6
0.5 8.74670E-6 8.74903E-6 8.74848E-6 2.42845E-6

0.5 0.1 1.74459E-6 1.74976E-6 1.74954E-8 4.85633E-7
0.2 3.49101E-6 3.49953E-6 3.49918E-6 9.71285E-7
0.3 5.24145E-6 5.24925E-6 5.24881E-6 1.45695E-6
0.4 6.99193E-6 6.99897E-6 6.99843E-6 1.94264E-6
0.5 8.74243E-6 8.74866E-6 8.74801E-6 2.42642E-6

0

0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

t

0.4

0.5

0.6

0.7

0

0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

t

0.4

0.5

0.6

0.7

a b

Figure 1: The behavior of u(x, t) : (a) exact solution, (b) the approximate
solution obtained by LD method when α = β = 1 and σ = 1 for Example
1.
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Table 8: Absolute errors for α = γ = 0.01, β = 0.001, σ = 2, by using
5-terms ADM, one iteration of VIM, 5-terms of DTM and 2-terms of LDM
for Example 2.

x t ADM VIM DTM LDM
0.1 0.1 1.2954E-6 1.2911E-6 1.2874E-6 9.3044E-7

0.2 2.5864E-6 2.5821E-6 2.5748E-6 1.8608E-6
0.3 3.8773E-6 3.8732E-6 3.8621E-6 2.7913E-6
0.4 5.1683E-6 5.1641E-6 5.1496E-6 3.7217E-6
0.5 6.4593E-6 6.4552E-6 6.4370E-6 4.6522E-6

0.3 0.1 1.3043E-6 1.2909E-6 1.2858E-6 9.3036E-7
0.2 2.5951E-6 2.5820E-6 2.5731E-6 1.8607E-6
0.3 3.8860E-6 3.8728E-6 3.8603E-6 2.7911E-6
0.4 5.1769E-6 5.1638E-6 5.1477E-6 3.7214E-6
0.5 6.4677E-6 6.4546E-6 1.2827E-6 4.6518E-6

0.5 0.1 1.3131E-6 1.2908E-6 1.74954E-8 9.3029E-7
0.2 2.6037E-6 2.5817E-6 2.5700E-6 1.8605E-6
0.3 3.8945E-6 3.8724E-6 3.8570E-6 2.7908E-6
0.4 5.1853E-6 5.1633E-6 5.1444E-6 3.7211E-6
0.5 6.4760E-6 6.4541E-6 6.4315E-6 4.6514E-6
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Figure 2: The absolute errors of u(x, t) with exact solution when α = β =
0.1 for σ = 1 and when α = 0.1 and β = 0.01 for σ = 1, respectively, (a)
and (b) for Example 1.
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Table 9: Absolute errors for α = 0.01, β = γ = 0.0001, σ = 2, by using
5-terms ADM, one iteration of VIM, 5-terms of DTM and 2-terms of LDM
for Example 2.

x t ADM VIM DTM LDM
0.1 0.1 6E-12 6E-12 6E-12 1.5353E-12

0.2 1.2E-11 1.2E-11 1.3E-11 3.0707E-12
0.3 1.8E-11 1.8E-11 1.8E-11 4.6061E-12
0.4 2.2E-11 2.2E-11 2.3E-11 6.1415E-12
0.5 2.8E-11 2.8E-11 2.8E-11 7.6769E-12

0.3 0.1 6E-12 6E-12 6E-12 9.3036E-7
0.2 1.1E-11 1.1E-11 1.2E-11 3.0707E-12
0.3 1.8E-11 1.8E-11 1.8E-11 4.6061E-12
0.4 2.2E-11 2.3E-11 2.4E-11 6.1415E-12
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Figure 3: The absolute errors of u(x, t) with exact solution for σ = 1 when
α = β = 0.01 and when α = 0.1 and β = 0, respectively (a) and (b) for
Example 1.
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Figure 4: The evolution results for the generalized Burgers-Huxley equation
for σ = 1 when α = 1, β = γ = 0.1: (a) exact solution, (b) the approximate
solution obtained by LD method for Example 2.
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Figure 5: The absolute errors of u(x, t) with exact solution for σ = 1 when
α = 0.1, β = 1, γ = 0.001 and when α = 0.01 and β = 1 and γ = 0.01,
respectively (a) and (b) for Example 2.
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Figure 6: The evolution results for the generalized Burgers-Huxley equation
for σ = 2 when α = β = γ = 0.01: (a) exact solution, (b) the approximate
solution obtained by LD method for Example 2.
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Figure 7: The absolute errors of the generalized Burgers-Huxley equation
for σ = 2 in comparison with exact solution for σ = 2 when α = 0.1, β = 1,
γ = 0.001 and when α = β = 0.1 and γ = 0.01, respectively (a) and (b) for
Example 2.
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