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Abstract. In this paper, we design a new model of preconditioner for
systems of linear equations. The convergence properties of the proposed
methods have been analyzed and compared with the classical methods.
Numerical experiments of convection-diffusion equations show a good im-
provement on the convergence, and show that the convergence rates of
proposed methods are superior to the other modified iterative methods.
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1 Introduction

Consider the following linear system equations

Ax = b, (1)

where A ∈ Rn×n is nonsingular and x, b ∈ Rn. Suppose diag(A) = I and
A = I − L − U , where I, is the identity matrix, −L and −U are strictly
lower and strictly upper triangular matrices of A, respectively. For any
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splitting, A = M − N with det(M) 6= 0, the basic iterative methods for
solving Eq. (1) is

x(i+1) = M−1Nx(i) + M−1b, i = 0, 1, . . . . (2)

This iterative process converges to the unique solution x = A−1b for any
initial vector value x0 ∈ Rn if and only if the spectral radius ρ(M−1N) < 1,
where T = M−1N is called the iteration matrix. There are some several
iterative methods for solving Eq. (1) based on Eq. (2), for instance Jacobi,
Gauss − Seidel, SOR, etc (see [4, 18, 24, 25, 26, 27, 28, 31, 33] and the
references therein). For Eq. (1) a preconditioner P transforms the system
to

PAx = Pb, P ∈ Rn×n. (3)

Furthermore, it can be transformed to

AFy = b, x = Fy, (4)

where P and F are linear operators, called left and right preconditioners
respectively. Therefore, we have

x(i+1) = M−1
P NP x(i) + M−1

P Pb, i = 0, 1, . . . ,

where PA = MP −NP and MP is nonsingular. Moreover,

y(i+1) = M−1
F NF y(i) + M−1

F b, i = 0, 1, . . . ,

where AF = MF − NF and MF is nonsingular. The purpose of precon-
ditioning is to change the matrix of the system, in order to accelerate the
convergence of iterative solvers. To improve the convergence rate of a basic
iterative method, various models of preconditioning systems have been pro-
posed (see e.g., [1, 2, 3, 7, 16, 29]). In the literature, various authors have
suggested different models of (I+S)-type preconditioner for the above men-
tioned problem. In [15], Milaszewicz presented the preconditioner (I + S′),
where the elements of the first column below the diagonal of A are elim-
inated. Gunawardena, Jain and Snyder considered [10] a modification of
Jacobi and Gauss-Seidel methods and reported that the convergence rate
of the Gauss-Seidel method using the preconditioner

P = I + S, (5)

is superior to that of the standard Gauss-Seidel method, where S = (sij)n×n

with

sij =
{

−aij , for j = i + 1, i = 1, 2, . . . , n− 1,
0, otherwise.
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Inspiring from the same idea, Kohno et al. [13] proposed an extended
modification of Jacobi and Gauss-Seidel methods. Their preconditioner is
(I + Sα) where

(Sα)ij =
{

−αiaij , for j = i + 1, 0 ≤ αi ≤ 1,
0, otherwise.

(6)

In [30] Usui et al. proposed to adopt

P = I + U (or I + L), (7)

as the preconditioner, where U(L) is strictly upper (strictly lower) trian-
gular part of the matrix A. They have obtained excellent convergence rate
compared with that of by other iterative methods.

Kotakemori et al. [14] used

P̃ = I + Smax, (8)

where Smax is

(Smax)ij =
{

−ai,Vi , for i = 1, 2, . . . , n− 1, j > i,
0, Otherwise,

(9)

and,
Vi = min j ∈ {j| max

j
|aij |} for i < n.

Also, Harano and Niki [12] considered the preconditioner

P = I + (1 + γ)(L + U), (10)

where U(L) is strictly upper (strictly lower) triangular of matrix A and
γ is a small positive number. Furthermore, some more preconditioners
presented in the literature can be found in [5, 6, 17, 20, 21, 22, 23, 32, 34].
In this article we propose a new preconditioner of (I + S)-type.

2 Prerequisite

We begin with some basic notation and preliminary results which we refer
to later. For more details (see e.g. [4] and [31]).

Definition 1. A real n× n matrix A = (aij) is called:
(i) Z-matrix if for any i 6= j, ai,j ≤ 0.
(ii) M -matrix, if A is nonsingular, and A−1 ≥ 0.
(iii) H-matrix if and only if < A >= (mi,j) ∈ Rn×n is an M -matrix, where

mi,i = |ai,i|; mi,j = −|ai,j |, i 6= j.
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Definition 2. Let A be a real matrix. The splitting A = M −N is called:
(i) convergent if ρ(M−1N) < 1.
(ii) regular if M−1 ≥ 0 and N ≥ 0.
(iii) weak regular if M−1N ≥ 0 and N ≥ 0.
(iv) M -splitting if M is a nonsingular M-matrix and N ≥ 0.
Clearly, a regular splitting is weak regular.

Lemma 1. Let A = M − N be an M-splitting of A. Then ρ(M−1N) < 1
if and only if A is M-matrix.

Lemma 2. Let A be a Z-matrix. Then A is M -matrix if and only if there
is a positive vector x such that Ax > 0.

Lemma 3. Assume that A and B are Z-matrices and A is an M -matrix.
If A ≤ B then B is also an M -matrix.

Lemma 4. Let A = M1 − N1 = M2 − N2 be two regular splittings of A,
where A−1 ≥ 0. If M−1

1 ≥ M−1
2 , then ρ(M−1

1 N1) ≤ ρ(M−1
2 N2).

3 The new preconditioner and its theoretical anal-
ysis

Consider a model of (I + S)-type preconditioner, say the preconditioner
presented by Gunawardena et al. [10] . Then, the new preconditioner is
proposed follows

(I + K) = (I + S){(I − S) + (L + U)(I + S)}. (11)

Theorem 1. Let A be a Z-matrix, then (I +K) is nonnegative. Moreover,

(I + K) ≥ (I + S).

Proof. By Eq. (11) we have

(I + K) = (I + S){I − S + L + U + US + LS}
= (I + S){I + L + (U − S)︸ ︷︷ ︸

≥0

+(U + L)S︸ ︷︷ ︸
≥0

}

= (I + S)︸ ︷︷ ︸
≥0

+(I + S){L + (U − S) + (U + L)S}︸ ︷︷ ︸
≥0

,

and the proof is completed.
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In what follows, we prove that under certain conditions, the precondi-
tioned matrix is Z-matrix.

Let A be a Z-matrix and consider Â = (I + S)A, then the preconditioned
matrix is as follows

Â = (I + S)A = (I − L− U) + S − SL− SU.

Then
Â = D̂ − L̂− Û ,

where

D̂ = (I −D1), L̂ = (L− L1), Û = ((U − S) + U1 + SU), (12)

in which D1, L1 and U1 are respectively, the diagonal, strictly lower and
strictly upper triangular parts of

SL = D1 + L1 + U1 ≥ 0. (13)

Now, for Ā = (I + K)A, we have

Ā = (I + S)A + (I + S)(−S)A︸ ︷︷ ︸
−S(I+S)A

+U(I + S)A + SU(I + S)A

+(I + S)L(I + S)A
= (I + S)A + (I + S)L(I + S)A + ((U − S) + SU)(I + S)A
= (I + (I + S)L + Ũ)(I + S)A,

where Ũ = ((U − S) + SU). Thus, by Eq.(12) and Eq.(13) we obtain

(I + K)A = (I + L + D1 + L1 + U1 + Ũ)(I + S)A
= ((I −D1) + L̂ + (U1 + Ũ))(D̂ − L̂− Û).

Therefore
Ā = (I + K)A = D̄ − L̄− Ū ,

where

D̄ = (I + D1)D̂ −D2 −D3,

L̄ = (I + D1)L̂− L̂D̂ + (L̂)2 + L2 + L3,

Ū = (I + D1)Û + U2 + (U1 + Ũ)D̂ + (U1 + Ũ)Û ,
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and

L̂Û = D2 + L2 + U2 ≥ 0,

(U1 + Ũ)L̂ = D3 + L3 + U3 ≥ 0.

Moreover, since

L̄ = (I + D1)L̂− L̂D̂ + (L̂)2 + L2 + L3 = (2D1)L̂ + (L̂)2 + L2 + L3,

Ū = (I + D1)Û + U2 + (U1 + Ũ)D̂ + (U1 + Ũ)Û = (2D1)Û + U2 + (Û)2,

we get
L̄, Ū ≥ 0.

Therefore we proved the following result.

Theorem 2. Let A be Z-matrix, then Ā = (I + K)A is also Z-matrix.

Next, we consider the AOR preconditioned method and show that under
some conditions the AOR method with Ā = (I + K)A is better than the
unpreconditioned AOR method.

The AOR iterative method to solve Eq. (1) is written as (see [11])

x(i+1) = Lr,wx(i) + (I − rL)−1wb, i = 0, 1, . . . , (14)

with the iteration matrix

Lr,w = (I − rL)−1[(1− w)I + (w − r)L + wU ], (15)

where (w, r) are real parameters with w 6= 0. Then the iterative matrix
with preconditioner of Eq.(11) defined as

L̄r,w = (D̄ − rL̄)−1[(1− w)D̄ + (w − r)L̄ + wŪ ]. (16)

Theorem 3. Let Lr,w and L̄r,w be the iterations matrices given b Eq. (15)
and Eq. (16), respectively. If A is an M-matrix, then we have

ρ(L̄r,w) ≤ ρ(Lr,w) < 1.

Proof. Since A = Mr,w −Nr,w is M-splitting, where

Mr,w =
1
w

(I − rL), Nr,w =
1
w

[(1− w)I + (w − r)L + wU ].

then by Lemma 1 ρ(Lr,w) < 1. On the other hand, since A is M-matrix it
is easy to see that Ā is also M-matrix (by Lemma 2). Now, it follows that
the entries of its diagonal are positive. Thus

Nr,w =
1
w

[(1− w)D̄ + (w − r)L̄ + wŪ ] ≥ 0,
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Ā ≤ M̄ =
1
w

(D̄ − rL̄).

Then by Lemma 3 M̄ is also an M-matrix and therefore Ā is a regular
splitting. Moreover, it can be shown that D̄ ≤ I andL̄ ≥ L. Thus,
M̄−1 ≥ M−1 and finally by Lemma 4 the proof is completed.

Theorem 4. Let Lr,w and L̄r,w be the iteration matrices given by Eq. (15)
and Eq. (16), respectively. If A is an H-matrix, then for 0 ≤ r ≤ w ≤ 1,
w 6= 0 and r 6= 1, we have

ρ(L̄r,w) ≤ ρ(< L̄r,w >) ≤ ρ(< Lr,w >) < 1.

Proof. Let A be an H-matrix. Then < A > is M-matrix. Therefore by
Theorem 3

ρ(< L̄r,w >) ≤ ρ(< Lr,w >) < 1.

By definition of preconditioned AOR we have

|L̄r,w| = |(D̄ − rL̄)−1[(1− w)D̄ + (w − r)L̄ + wŪ ]|
= |(D̄(I − rD̄−1L̄)−1[D̄{(1− w)I + (w − r)D̄−1L̄ + wD̄−1Ū}]|
= |((I − rD̄−1L̄)−1[(1− w)I + (w − r)D̄−1L̄ + wD̄−1Ū ]|
= |((I + rD̄−1L̄ + (rD̄−1L̄)2 + · · · )

+[(1− w)I + (w − r)D̄−1L̄ + wD̄−1Ū ]|
= |((rD̄−1L̄ + (rD̄−1L̄)2 + · · · )[(1− w)I + (w − r)D̄−1L̄ + wD̄−1Ū ]

+[(1− w)I + (w − r)D̄−1L̄ + wD̄−1Ū ]|
≤ ({r|D̄−1L̄|+ (r|D̄−1L̄|)2 + · · · )
×[(1− w)I + (w − r)|D̄−1L̄|+ w|D̄−1Ū |])
+[(1− w)I + (w − r)|D̄−1L̄|+ w|D̄−1Ū |]

= (I − r|D̄−1L̄|)−1[(1− w)I + (w − r)|D̄−1L̄|+ w|D̄−1Ū |])
= < L̄r,w > .

Then
ρ(|L̄r,w|) ≤ ρ(< L̄r,w >).

Therefore we have

ρ(L̄r,w) ≤ ρ(|L̄r,w|) ≤ ρ(< L̄r,w >),

which completes the proof.
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Theorem 5. Let L̄r1,w1and L̄r2,w2(0 ≤ ri ≤ wi ≤ 1; i = 1, 2.) be the iter-
ation matrices of preconditioned AOR methods, with different parameters.
If A be an M-matrix, w1 ≤ w2 and r1

w1
≤ r2

w2
, then we have

ρ(L̄r2,w2) ≤ ρ(L̄r1,w1) < 1.

Proof. By Theorem 4, we have

ρ(L̄r1,w1) < 1.

Moreover, since A is M-matrix, Ā is also an M-matrix. Thus similar to
Theorem 3, we can see the splittings

Mr1,w1 =
1
w1

(I − r1L), Nr1,w1 =
1
w1

[(1− w1)I + (w1 − r1)L + w1U ],

Mr2,w2 =
1
w2

(I − r2L), Nr2,w2 =
1
w2

[(1− w2)I + (w2 − r2)L + w2U ].

are regular and

L̄r1,w1 = M−1
r1,w1

Nr1,w1 , L̄r2,w2 = M−1
r2,w2

Nr2,w2 ,

On the other hand,

Mr2,w2 −Mr1,w1 =
1
w2

(I − r2L)− 1
w1

(I − r1L)

= (
w1 − w2

w1w2
)I − (

r2w1 − r1w2

w1w2
)L.

Now, since w1 ≤ w2, then
w1 − w2

w1w2
≤ 0.

Furthermore, since r1
w1

≤ r2
w2

we have

r2w1 − r1w2

w1w2
≥ 0,

which gives
Mr2,w2 ≤ Mr1,w1 .

Since Mr1,w1 and Mr2,w2 are M-matrices, then

M−1
r1,w1

≤ M−1
r2,w2

.

Therefore by Lemma 4 the proof is complete.
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Remark 1. In Eq. (15) by choosing special parameters, the similar results
can be obtained. For example:
(i) Jacobi method for w = 1 and r = 0.
(ii) JOR (Jacobioverrelaxation) method for r = 0.
(iii) Gauss− Seidel method for r = w = 1.
(iv) SOR method for r = w.

4 Numerical experiments

In this section, we give some examples to illustrate the results obtained in
previous sections. First, a simple numerical experiment is carried out to
investigate the validity of the proposed method. The convergence behaviors
of iterative methods are illustrated by comparing the spectral radii of the
corresponding iteration matrices for a small sized dense system.

Example 1. The coefficient matrix A of Eq. (1) is given by

A =



1 −0.2 −0.023 −0.18 −0.27 −0.31 −0.1
−0.1 1 −0.31 −0.18 −0.07 −0.1 −0.2
−0.01 −0.1 1 −0.1 −0.2 −0.17 −0.0098
−0.021 −0.2 −0.03 1 −0.3 −0.01 −0.1
−0.01 −0.014 −0.09 −0.3 1 −0.1 −0.1
−0.02 −0.023 −0.1 −0.27 −0.3 1 −0.1
−0.18 −0.0081 −0.1 −0.19 −0.1 −0.2 1


.

In the Table 1, we reported the spectral radius of the corresponding iter-
ation matrix with different parameters w and r. We denoted the spectral
radius of the AOR method by ρ. Furthermore, ρ̂ and ρ̃ are spectral ra-
dius of the iteration matrix with preconditioners Eq. (8) and Eq. (11),
respectively. From Table 1, we can see that the preconditioned iterative
methods are superior to the basic iterative methods. The table has also
shown that the preconditioned iterative methods associated with (I +K) is
the best. Furthermore, based on Theorem 5, we can see that in Table 1, the
best convergence rate belongs to the preconditioned Gauss-Seidel method
(r = w = 1).

Example 2. (Application to the model of convection-diffusion equa-
tion)
Consider the three-dimensional convection-diffusion equation

−(uxx + uyy + uzz) + 2ux + uy + uz = f(x, y, z),
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Table 1: Numerical results for Example 1.

w r ρ ρ̂ ρ̃

1.0 0.0 0.7328 0.6709 0.4257
0.9 0.4 0.7188 0.6519 0.4343
0.9 0.5 0.7058 0.6351 0.4193
0.9 0.6 0.6912 0.6160 0.4026
0.9 0.7 0.6746 0.5939 0.3837
0.9 0.8 0.6553 0.5679 0.3615
1.0 1.0 0.5604 0.4380 0.2191

on the unit cube domain Ω = [0, 1] × [0, 1], with Dirichlet boundary con-
ditions. When the seven-point finite difference discretization, for example,
the centered differences to the diffusive terms, and the centered differences
or the first-order upwind approximations to the convective terms, are ap-
plied to the above model, we get the system of linear equations Eq. (1)
with the coefficient matrix

A = Tx ⊗ I ⊗ I + I ⊗ Ty ⊗ I + I ⊗ I ⊗ Tz,

where, the equidistant step-size h = 1/(n+1) is used in the discretization on
all of the three directions and the natural lexicographic ordering is employed
to the unknowns. In addition,⊗ denotes the Kronecker product, and Tx,
Ty, and Tz are tridiagonal matrices given by

Tx = tridiag(−2 + 2h

12
, 1,−2− 2h

12
),

Ty = Tz = tridiag(−2 + h

12
, 0,−2− h

12
).

For more details, we refer to [9, 8]. Then, we have solved the obtained
n3×n3 linear system of equations by the GMRES (k) method, and precon-
ditioned GMRES(k) method. In this experiment, we choose Usui et al.’s
model (I +L) and (I +K) as our preconditioner. The initial approximation
of x(0) is zero vector and we choose the right- hand side vector, such that
x = (1, 1, . . . , 1)T be the solution of Ax = b. As a stopping criterion, we
choose

‖rk‖2

‖r0‖2
≤ eps = 10−10,

where, ‖ri‖2 is residual norm in restarted GMRES; (see [18, 19]). In Table 2,
we have reported the CPU time, number of iterations (Iter) and the residual
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Table 2: Numerical results for Example 2.
n G(20) PG(20) PK(20)

Iter CPU res Iter CPU res Iter CPU res
3 15 0.010 5.694e-011 12 0.000 2.798e-011 8 0.000 9.996e-011
4 22 0.200 3.335e-011 18 0.010 2.343e-011 11 0.010 4.031e-011
5 31 0.040 6.088e-011 31 0.040 6.885e-011 14 0.020 1.466e-011
6 37 0.080 3.579e-011 29 0.061 8.497e-011 16 0.050 4.512e-011
7 42 0.210 6.617e-011 32 0.150 7.034e-011 18 0.110 8.415e-011
8 45 0.520 9.394e-011 39 0.431 5.405e-011 21 0.320 2.804e-011
9 53 0.982 9.257e-011 43 0.841 5.243e-011 23 0.460 4.653e-011
10 59 1.802 7.600e-011 46 1.512 5.402e-011 24 0.761 8.274e-011

norm (res) for the corresponding preconditioned GMRES methods. Here
G(20) represents the restarted GMRES (20) method. The preconditioned
restarted GMRES (20) method with Usui et al.’s preconditioner is denoted
by PG(20), while PK(20), correspond to preconditioner (I+K). From the
table, we can see that the preconditioned GMRES methods are superior to
the basic GMRES method and our preconditioner is better than Usui et
al.’s preconditioner.

5 Conclusion

In this paper, we have proposed a new model preconditioner from class
of (I + S)-type based on the iterative methods. From theoretical point of
view and numerical experiments, it may be concluded that the convergence
behaviors of our proposed method is superior to the basic iterative methods
and better than the other preconditioner of (I + S)-type.
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