
Introducing three new smoothing functions: Analysis on
smoothing-Newton algorithms

Nurullah Yilmaz∗

Department of Mathematics, Suleyman Demirel University, Isparta, Turkey
Email(s): nurullahyilmaz@sdu.edu.tr

Journal of Mathematical Modeling
Vol. 12, No. 3, 2024, pp. 463-479. Research Article JMM

�
�

�
�

�
�

�
�

Abstract. In this paper, we focus on solving the system of absolute value equations (AVE), which is one
of the most popular classes of nonlinear equations. First, a new smoothing technique with three different
smoothing functions is introduced, and the AVE is transformed into a family of parametrized smooth
equations with the help of these smoothing functions. Then, a smoothing Newton-type algorithm with
hybridized inexact line search is developed based on the proposed smoothing technique. The numerical
experiments have been carried out on some well-known and randomly generated test problems, and the
results are analyzed in terms of line search techniques. The numerical results show that the proposed
hybrid approach is more efficient than the other algorithms.
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1 Introduction

Let us consider the following AVE of the form:

Ax+B|x|= c, (1)

where A,B ∈ Rn×n, B 6= 0, c ∈ Rn and |x| := (|x1|, |x2|, . . . , |xn|). The AVE in (1) is one of the important
sub-class of system of nonlinear equations. Besides being nonlinear, the AVE in (1) is nonsmooth due to
the presence of the absolute value term.

The AVE was first introduced by Rohn in [32] as a generalization of the following system of equa-
tions:

Ax−|x|= c, (2)

which is the subject of many interesting research papers [10, 17, 24, 37]. The main motivation of all
research on AVE of the form (2) stems from the equivalence between AVE and linear complementarity
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problems (LCP). Moreover, the relations between AVE of the form (2) and mixed integer programming,
bimatrix games and interval linear equations have increased the popularity of the problem [15, 22, 24].

Two main research directions have been adopted for AVE as theoretical and numerical. In theoretical
studies, it is concentrated on finding the conditions for the existence and uniqueness of the solutions [21,
29]. In addition, various generalizations of AVE have been introduced such as new generalization of AVE
(NGAVE) [20, 39], non-Lipschitz generalization of AVE (NAVE) [41, 43], AVE associated with circular
cone (CCAVE) [26], AVE associated with second-order cone (SOCAVE) [27,34] due to application areas
especially engineering sciences [28]. The relation between generalizations of AVE and optimization
problems (LCP and others) is theoretically investigated. The sufficient conditions for solvability and
nonsolvability of generalizations of AVE with unique and multiple solutions have been discussed. We
also recall the following results about the existence and uniqueness of the solution of AVE of type (1).

Theorem 1 ([17,34]). If the minimal singular values of the matrix A is strictly greater than the maximal
singular value of the matrix B, then AVE of type (1) is uniquely solvable for any b ∈ Rn.

From numerical point of view, various multi-step algorithms have been proposed to solve AVE of
the forms (1) and (2) such as generalized Newton algorithms [22, 23], Picard iteration [18], fixed point
iteration [3], Levenberg-Marquardt algorithm [16] and others [1, 10, 19]. In [22], generalized Newton
method and in [23] a hybrid algorithm is proposed by Mangasarian. A quadratically convergent descend
method to solve AVE of type (1) is presented in [36] and a dynamic model to solve AVE is proposed
in [25]. Also, recently several algorithms have been proposed to solve AVE [2, 4, 14].

Among the numerical techniques, the smoothing Newton algorithms received considerable atten-
tion. Smoothing can be briefly expressed as approximating the nonsmooth function by a family of
parametrized smooth functions. Mathematically, the smoothing function is defined as follows:

Definition 1 ([30]). Let H : Rn→ Rn be a locally Lipschitz continuous function.

i. The function H̃ : Rn×R+→ R is called a smoothing function of H, if H̃(·,τ) is continuously differen-
tiable in Rn for any fixed τ , and for any x ∈ Rn,

‖H(x)− H̃(z,τ)‖→ 0, as τ ↓ 0 and z→ x.

ii. H̃(x,τ) is said to approximate H at x superlinearly if, for any y→ x and τ ↓ 0, we have

H̃(x,τ)−H(x)− H̃ ′(x,τ)(y− x) = o(‖y− x‖)+O(τ).

iii. H̃(x,τ) is said to approximate H at x quadratically if, for any y→ x and τ ↓ 0, we have

H̃(x,τ)−H(x)− H̃ ′(x,τ)(y− x) = O(‖y− x‖2)+O(τ).

Notation: R+ denotes positive real numbers, ‖ · ‖ denotes the Euclidean norm and x∗ denotes the
optimal solution. Also D⊂ Rn, we define the complement of D as Dc.

Many interesting smoothing techniques have been proposed to solve nonsmooth problems in the lit-
erature [6, 9, 40, 44]. They are one of the important tools in solving nonsmooth problems such as image
processing in [8], exact penalty formulations of constrained optimization problems [12,31], complemen-
tarity problems [11], in smoothing process of piecewise smooth functions [35, 42]. The smoothing ap-
proaches have been used for solving AVE and smoothing Newton method was first proposed to solve AVE
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by Caccetta et al. [7]. The smoothing approaches increase its popularity in solving AVE [1,17]. Applica-
tions and numerical comparisons of different smoothing approaches are also presented in [13,33,34,38].
It is observed from all of these studies the smoothing techniques are effective tools for solving AVEs.
New combinations of smoothing techniques with Newton-like algorithms contribute to be constituted
promising, fast and robust methods for solving problem of AVEs.

In this study, we propose a new class of smoothing technique with three different types of smooth-
ing functions which are constructed by using S-shaped functions. Based on the smoothing techniques,
a Newton-type algorithm hybridized line search with Armijo-type technique is developed. Finally, we
demonstrate the implementation and efficiency of the algorithm on some numerical examples, and com-
pare the the numerical results with the existing algorithms.

The remaining parts of the paper are organized as follows: In Section 2, we propose new smoothing
approximations with error estimates and introduce a new Newton type algorithm with hybridized line
search technique. In Section 3, the algorithm is applied on some test problems and obtained results are
compared with the other Newton type algorithms. Finally, the concluding remarks are given.

2 Main Results

2.1 Smoothing Techniques

Let us define H : Rn→ Rn as
H(x) = Ax+B|x|− c. (3)

Now, we aim to solve the problem H(x) = 0. Since the system of equations H(x) = 0 includes absolute
value term, Jacobian-based methods cannot be used to solve it. Therefore, we plan to construct new
smoothing approaches for absolute value function and by using these smoothing approaches, we obtain
a family of smooth approximation.

The function ϕ(t) = |t| is expressed as

ϕ(t) =

{
t, t ≥ 0,
−t, t < 0,

or equivalently as
ϕ(t) = tφ(t), (4)

where

φ(t) =

{
−1, t ≤ 0,
1, t > 0.

For any τ > 0, the smoothing function of ϕ in (4) is defined by

ϕ̃i(t,τ) = tφ̃i(t,τ), (5)

where φ̃i(t,τ) is designed by considering S−shaped functions

φ̃1(t,τ) =
t√

τ2 + t2
,
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and
φ̃2(t,τ) = tanh

( t
τ

)
.

Another alternative is proposed in [35] as

φ̃3(t,τ) =


−1, t ≤−τ,

S(t,τ), −τ ≤ t ≤ τ

1, t > τ,

where S(t,τ) = −1
2τ3 t3 + 3

2τ
t. Useful properties of smoothing functions are presented in the following:

Proposition 1. Let ϕ̃i : R×R+ → R be defined as in (5) for i = 1,2,3. Then, for any τ > 0 and for
i = 1,2,3 we have

(i) ϕ̃i is continuously differentiable at (t,τ) ∈ R×R+,

(ii) 0≤ ϕ(t)− ϕ̃i(t,τ)≤ τ ,

(iii) limτ↓0 ϕ̃i(t,τ) = ϕ(t) for any t ∈ R,

(iv) ϕ̃i(t,ε) approximates ϕ(t) at x quadratically,

Proof. (i) For i = 1, we have
∂ ϕ̃1(t,τ)

∂ t
=

t3 +2tτ2

(t2 + τ2)
3
2
, (6)

and
∂ ϕ̃1(t,τ)

∂τ
=

−τt2

(t2 + τ2)
3
2
. (7)

For i = 2, the partial derivatives are computed as

∂ ϕ̃2(t,τ)
∂ t

=
1
τ

(
−t tanh2

( t
τ

)
+ τ tanh

( t
τ

)
+ t
)
, (8)

and
∂ ϕ̃2(t,τ)

∂τ
=

t2

τ2

(
tanh2

( t
τ

)
−1
)
. (9)

Finally, partial derivatives of ϕ̃3(t,τ) are computed as

∂ ϕ̃3(t,τ)
∂ t

=


−1, t <−τ,
∂S(t,τ)

∂ t , −τ ≤ t ≤ τ,

1, t > τ,

(10)

and

∂ ϕ̃3(t,τ)
∂τ

=


0, t <−τ,
∂ (tS(t,τ))

∂τ
, −τ ≤ t ≤ τ,

0, t > τ,

(11)

where ∂ (tS(t,τ))
∂ t = −2

τ3 t3+ 3
τ
t and ∂ (tS(t,τ))

∂τ
= 3

2τ4 t4− 3
2τ2 t2. It can be seen from the Eqs. (6)-(11) that

the functions ϕ̃i(t,τ) are continuously differentiable for all i = 1,2,3.
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(ii) Let us start with i = 1. For any τ > 0, we first consider the case t ≥ 0, then we have

ϕ(t)− ϕ̃1(t,τ) = t− t2
√

τ2 + t2

=
t
√

τ2 + t2− t2
√

τ2 + t2

≤ τ.

For the case t < 0, we obtain

ϕ(t)− ϕ̃1(t,τ) =−t− t2
√

τ2 + t2

=
−t
√

τ2 + t2− t2
√

τ2 + t2

≤ τ.

Let i = 2 and consider the case t ≥ 0, then we have

ϕ(t)− ϕ̃2(t,τ) = t− t
e

2t
τ −1

e
2t
τ +1

=
2t

e
2t
τ +1

≤ τ

and for the case t < 0, we obtain

ϕ(t)− ϕ̃2(t,τ) =−t− t
e

2t
τ −1

e
2t
τ +1

=
−2te

2t
τ

e
2t
τ +1

≤ τ.

For i = 3, it is sufficient to investigate the case −τ ≤ t ≤ τ since ϕ(t) = ϕ̃3(t,τ) outside of the
interval [−τ,τ]. Therefore, we obtain

ϕ(t)− ϕ̃3(t,τ) = |t|− tS(t,τ)

≤ τ.

(iii) Since 0≤ ϕ(t)− ϕ̃i(t,τ)≤ τ for i = 1,2,3, we obtain the desired result. Moreover, we have

lim
τ→0

∂ ϕ̃i(t,τ)
∂ t

=

{
−1, t < 0,
1, t > 0.

(12)

for i = 1,2,3.
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(iv) For any τ > 0, we have to show that the following equality

ϕ̃i(y,τ)−ϕ(t)− ∂ ϕ̃i(y,τ)
∂y

(y− t) = O(|y− t|2)+O(τ) (13)

holds for i= 1,2,3. We first consider the smoothing function ϕ̃1(t,τ) with the following two cases:

Case 1. Let t = 0, then we have

y2

(y2 + τ2)
1
2
−
√

t2− y3 +2yτ2

(y2 + τ2)
3
2
(y− t) =

y2

(y2 + τ2)
1
2
− y3 +2yτ2

(y2 + τ2)
3
2

y

= O(τ)

= O(|y− t|2)+O(τ).

Case 2. Let t 6= 0 then we have

y2

(y2 + τ2)
1
2
−
√

t2− y3 +2yτ2

(y2 + τ2)
3
2
(y− t)

=
y2

(y2 + τ2)
1
2
−
√

t2− y3 +2yτ2

(y2 + τ2)
3
2
(y− t)+

√
t2

(y2 + τ2)
1
2
−

√
t2

(y2 + τ2)
1
2

=− (y− t)2τ2

(y2 + τ2)
3
2
+

y3t− (y2 + τ2)
3
2
√

t2 + t2τ2

(y2 + τ2)
3
2

= O(|y− t|2)+O(τ).

The proofs for i = 2 and i = 3 can be obtained similarly.

By replacing the smoothing functions ϕ̃i(t) with the each component of |x| for i = 1,2,3, the smooth
approximation of |x| is obtained. Therefore, corresponding smoothed version of H(x) = 0 in (3) is
defined by:

H̃i(x,τ) =
[

Ax+BΦ̃i(x,τ)− c
τ

]
= 0, (14)

where Φ̃i(x,τ) = (ϕ̃i(x1,τ), ϕ̃i(x2,τ), . . . , ϕ̃i(xn,τ)) and τ > 0. After smoothing process, it is permitted
to use Newton type algorithms to solve the system of equations of the form H̃i(x,τ) = 0.

Proposition 2. For any τ > 0, the Jacobian of H(x,τ) at x ∈ Rn is

H̃
′
i (x,τ) =

[
A+B∇xΦ̃i(x,τ) B∇τΦ̃i(x,τ)

0 1

]
, (15)

where

∇xΦ̃i(x,τ) =


∂ϕi(x1,τ)

∂x1
0 · · · 0

0 ∂ϕi(x2,τ)
∂x2

· · · 0
...

...
. . .

...
0 · · · 0 ∂ϕi(xn,τ)

∂xn

 ,
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and

∇τΦi(x,τ) =


∂ϕi(x1,τ)

∂τ
∂ϕi(x2,τ)

∂τ
...

∂ϕi(xn,τ)
∂τ

 ,
for i = 1,2,3.

Theorem 2. Let the functions H(x) and H̃i(x,τ) be defined as (3) and (14), respectively. Then, we have

‖H(x)− H̃i(x,τ)‖ ≤ σmax(B)
√

nτ,

where σmax(B) represents the maximal singular value of the matrix B.

Proof. For any τ > 0,

‖H(x)− H̃i(x,τ)‖2 =‖B|x|−BΦ̃i(x,τ)‖2

=‖B(|x|− ϕ̃i(x,τ))‖2

≤(σmax(B))
2

n

∑
j=1

∣∣|x j|− ϕ̃i(x j,τ)
∣∣2

≤(σmax(B))
2 nτ

2,

for i = 1,2,3. This completes the proof.

Theorem 3. Let the functions H(x) and H̃i(x,τ) be defined as (3) and (14), respectively. H̃i(x,τ) ap-
proximates H(x) at x quadratically.

Proof. For any τ > 0, we have to show that the equality

H̃i(y,τ)−H(x)− ∂ H̃i(y,τ)
∂y

(y− x) = O(|y− x|2)+O(τ), (16)

holds for i = 1,2,3. From the Proposition 1 (iv), it is easy to see that each component of (16) holds the
above property. Then, the desired result is obtained.

Theorem 4 ([17,34]). If the minimal singular values of the matrix A is strictly greater than the maximal
singular value of the matrix B, then H̃ ′i (x,τ) is nonsingular.

Theorem 5. Suppose that x∗ is a solution H(x) = 0 in (3) and x̄ is a solution of H̃i(x,τ) = 0 in (14).
Then,

‖H(x∗)− H̃i(x̄,τ)‖ ≤ σmax(B)
√

nτ,

for i = 1,2,3. Moreover, we have H̃i(x̄,τ)→ H(x∗) for τ → 0.

Proof. It is easy to see that H(x∗) = H̃i(x̄,τ) = 0 and ‖H(x̄)‖ ≥ 0. By considering Theorem 2, we obtain

‖H(x∗)− H̃i(x̄,τ)‖2 ≤‖H(x̄)− H̃i(x̄,τ)‖2

≤(σmax(B))
2 nτ

2,

for any τ > 0 and for i = 1,2,3.
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2.2 Algorithm

In this section, we present the algorithm to solve problem (1). First of all, let us define the function as

G(x) =
1
2
‖H(x)‖2,

and smoothing function G̃i(x,τ) : Rn×R+→ R as

G̃i(x,τ) =
1
2
‖H̃i(x,τ)‖2,

for i = 1,2,3.

Assumption 1. The maximal singular value of the matrix B is strictly lower than the minimal singular
value of the matrix A.

Under the above condition, it is proved in [17] that the AVE of the form (1) is uniquely solvable for
any c ∈ Rn.

Smoothing Newton Algorithm (SNA)

Step 0 Select σ ,β ,δ ∈ (0,1), τ0 > 0 and denote e0 := (0,1) ∈ Rn ×R. Let β0 = min
{

β ,τ0
}

and
w0 := (x0,τ0) such that x0 ∈ Rn. Set k := 0.

Step 1 If ‖H̃i(ω
k)‖= 0, then stop otherwise go to Step 2.

Step 2 Find the search direction dk := (dxk ,dτk) ∈ Rn×R by

H̃i(ω
k)+ H̃ ′i (ω

k)dk = βkτke0. (17)

Step 3 Compute the step size αk := max{δ m : m = 1,2, . . .} such that

‖H̃i(ω
k +αkdk)‖ ≤max

{
[1−σ(1−βk)αk]‖H̃i(ω

k)‖, (18)(
‖H̃i(ω

k)‖2 +2σαkH̃i(ω
k)T H̃ ′i (ω

k)dk
) 1

2
}
.

Step 4 Set ωk+1 = ωk +αkdk and k = k+1 and go to Step 1.

The solvability of equation (17) can be proved as in [17] by Theorem 3.2. Thus, we deal with the
convergence of the SNA. The line search process of SNA is designed inspiring from [43,45] and Armijo
rule [5] which is the following.

Theorem 6. Let the sequence ωk =(xk,τk) be generated by SNA iteratively and Assumption 1 is satisfied.
Then, the sequence {ωk} is bounded and the accumulation point ω∗ is a solution of (1) with H̃i(ω

∗) = 0
for i = 1,2,3.
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Proof. The boundedness of {ωk} is obtained by considering Lemma 4.1 in [17]. Let us define the first
part of the right hand side of the inequality (18) as m(k) = [1−σ(1−βk)αk]‖H̃i(ω

k)‖ and the second

part as n(k) =
(
‖H̃i(ω

k)‖2 +2σαkH̃i(ω
k)T H̃ ′i (ω

k)dk
) 1

2 for k = 1,2, . . . . Without loss of generality let us
assume that m(k)≥ n(k) for any k ∈ N. Then the inequality in (18) transforms into the following form:

‖H̃i(ω
k +αkdk)‖ ≤ [1−σ(1−βk)αk]‖H̃i(ω

k)‖. (19)

At this stage, we first show that τk → 0. Let limk→∞ τk = τ̂ . If τ̂ = 0, then the desired result is
obtained. Assume that τ̂ > 0, then we have τ0 ≥ τk ≥ τ̂ > 0. Since the iteration sequence

{
ωk
}

is bounded and it has at least one accumulation point ω∗ = (x∗,τ∗) with τ∗ = τ̂ > 0, then we obtain
‖H̃i(ω

∗)‖ ≥ τ∗ > 0. Suppose that ωk = (xk,τk)→ ω∗ = (x∗,τ∗). Then, it follows from (17) and Step 4
that

τ
k+1 = τ

k +αkdτk < [1− (1−βk)αk]τ
k,

which implies that limk→∞ αk = 0 by 0 < σ < 1 and τ∗ > 0. Let µk =
αk
δ

, then it follows from (19) that

‖H̃i(ω
k+1 +µkdk)‖> [1−σ(1−βk)µk]‖H̃i(ω

k)‖, (20)

and we have
‖H̃i(ω

k +µkdk)‖−‖H̃i(ω
k)‖

µk
>−σ(1−βk)‖H̃i(ω

k)‖. (21)

Since ‖H(ω∗)‖> 0, by taking the limit of (21) as k→ ∞ we have

H̃i(ω
∗)T H̃ ′i (ω

∗)d∗ ≥−σ(1−β∗)‖H̃i(ω
∗)‖2, (22)

where β∗ = min{β ,τ∗}. On the other hand, by considering (17) we obtain

H̃i(ω
∗)T H̃ ′i (ω

∗)d∗ =−‖H̃i(ω
∗)‖2 +β∗τ

∗‖H̃i(ω
∗)‖H̃i(ω

∗)T e0

≤−‖H̃i(ω
∗)‖2 +β∗τ

∗‖H̃i(ω
∗)‖2.

Therefore, we have
H̃i(ω

∗)T H̃ ′i (ω
∗)d∗ ≤ (−1+β∗)‖H̃i(ω

∗)‖2. (23)

By considering the inequalities in (22) and (23), we have −1+β∗ ≥−σ (1−β∗) which contradicts with
σ < 1.

Now we are ready to show that H̃i(ω
∗) = 0. Assume to contrary that H̃i(ω

∗) 6= 0. Then, we have
‖H̃i(ω

∗)‖ > 0. We know from the previous stage of this proof that τ∗ = 0 and βk → 0 as k→ ∞. The
inequality (18) implies that limk→∞ αk = 0 by 0 < σ < 1 and ‖H̃i(ω

∗)‖> 0. Let µk =
αk
δ

by considering
(19)

‖H̃i(ω
k+1 +µkdk)‖> [1−σ(1−βk)µk]‖H̃i(ω

k)‖, (24)

and taking the limit in (24), we have

H̃i(ω
∗)T H̃ ′i (ω

∗)d∗ ≥−σ‖H̃i(ω
∗)‖2. (25)

On the other hand, by considering (17) we obtain

H̃i(ω
∗)T H̃ ′i (ω

∗)d∗ =−‖H̃i(ω
∗)‖2. (26)
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From (25) and (26), the following inequality

−σ‖H̃i(ω
∗)‖2 ≤−‖H̃i(ω

∗)‖2, (27)

is obtained. The inequality (27) implies that, since ‖H̃i(ω
∗)‖ > 0, which contradicts with σ < 1. Now

we complete the first part of the proof. Let m(k)< n(k), then (18) transforms into the following form:

‖H̃i(ω
k +αkdk)‖ ≤

(
‖H̃i(ω

k)‖2 +2σαkH̃i(ω
k)T H̃ ′i (ω

k)dk
) 1

2
. (28)

The inequality (28) is derived from Armijo rule

G̃i(ω
k +αkdk)− G̃i(ω

k)≤ σαk∇G̃i(ω
k)T dk. (29)

The proof of inequality (29) can be obtained by using the same way at second part of the proof of the
Theorem 3.5 in [43].

Theorem 7. Let w∗ be any accumulation point of the iteration sequence {wk} generated by SNA. Then
{wk} converges to w∗ quadratically.

Theorem 8. Let the sequence ωk be generated by SNA iteratively and Assumption 1 is satisfied. Then,
the sequence {ωk} converges to the unique solution of the AVE (1) quadratically.

Proof. The proof is obtained similar to the proof of Theorem 4.1 in [45] and Theorem 3.7 in [7].

Remark 1. According to Theorems 6,7 and 8, under the Assumption 1, it is seen that the smoothing
Newton method is well defined and the generated sequence {ωk} globally and quadratically converges
to the unique solution of the AVE (1).

3 Numerical Examples

In this section, we consider several numerical examples in order to show the effectiveness of our methods.
The proposed algorithm is programmed in MATLAB 2016A and has been implemented on Intel Core
i5-3337U 1.8GHz with 8 Gb RAM. The proposed algorithm applied to the following problems:

Problem 1 ([33]). Consider AVE of the form Ax+B|x|= c, where

A =


10 1 2 0
1 11 3 1
0 2 12 1
1 7 0 13

 , c =


12
15
14
20

 ,

and B =−I. The exact solution for this problem is x∗ = (1,1,1,1).

Problem 2 ([33]). Consider the AVE of the form Ax+B|x|= c, where

A =


2 −3 6 −12
0 2 −3 6
0 0 2 −3
0 0 0 2

 , c =


24
−12

6
−3

 ,

and B =−I. The exact solution for this problem is x∗ = (−3,3,3,−1).
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Problem 3 ([33]). Consider the AVE of the form Ax+B|x|= c, where

A =


−1 8 −2 8
0 −1 0 −2
2 −8 1 −8
0 2 0 1

 , c =


−24

8
22
−10

 ,

and B =−I. The exact solution for this problem is x∗ = (−1,−1,−8,−4).

Problem 4 ([16]). Consider the AVE of the form Ax+B|x|= c, where the matrix A is chosen

A=round(100*(eye(n,n)-0.002*(2*rand(n,n)-1)))

and B = −I. The exact solution x∗ ∈ Rn for this problem is chosen randomly and c = Ax∗−|x∗| and 5
different problems are generated with dimensions from 10 to 6000.

Problem 5 ([36]). Consider the AVE of the form Ax+B|x|= c, where the matrices A and B are generated
by the following MATLAB procedure:

function [A,B,mat] = createmat(n)

D = diag(randperm(n)’);

U = orth(rand(n));

A = U’*D*U;

A = 5*round(A,2);

B = diag(rand(n,1));

B = 5*round(B,2);

mat = A’*A - norm(abs(B)’) * norm(abs(B)) * eye(n);

end

function [A,B,positivemat] = createpositivemat(n);

[AA,BB,mata] = createmat(n);

while 1 == 1

if eig(mata)>0

A=AA; B=BB; positivemat=mata;

break;

else

[AA,BB,mata] = createmat(n);

end

end

The exact solution x∗ ∈Rn for this problem is chosen randomly by x∗= 2∗rand(n,1)−2∗rand(n,1)
and c = Ax∗−B|x∗|. Using the code above, 5 different problems are generated with dimensions from 10
to 6000.

The obtained results from application SNA to Problems 1− 5 are reported in Tables 1 and 2. The
following list of symbols is used for abbreviations:
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Table 1: The numerical results.
Prob. No n Function Fiter Feval ErF Fval Time

1 4
ϕ1 8 9 3.3396e−08 2.7541e−07 0.0048
ϕ2 7 8 2.4825e−16 3.5527e−15 0.0132
ϕ3 4 5 2.5629e−07 2.5629e−07 0.0077

2 4
ϕ1 21 23 6.8065e−06 5.6947e−07 0.0146
ϕ2 8 9 5.0856e−06 1.986e−15 0.0174
ϕ3 7 12 3.3483e−11 3.3483e−11 0.0122

3 4
ϕ1 31 37 1.0719e−07 7.5075e−07 0.0209
ϕ2 6 8 2.7363e−08 3.5527e−15 0.0292
ϕ3 3 4 1e−08 1e−08 0.0053

4

10
ϕ1 3 4 8.2182e−10 8.3307e−08 0.0042
ϕ2 3 4 7.9897e−10 7.976e−08 0.0066
ϕ3 4 5 3.8466e−16 6.5538e−12 0.0431

50
ϕ1 4 5 5.0466e−11 5.0604e−09 0.0109
ϕ2 4 5 9.3494e−11 9.3281e−09 0.0111
ϕ3 4 5 2.0977e−12 2.0606e−10 0.0436

250
ϕ1 4 5 1.5013e−11 1.4748e−09 0.0617
ϕ2 4 5 1.5635e−10 1.5248e−08 0.0308
ϕ3 4 5 3.659e−09 3.6054e−07 0.0998

1250
ϕ1 4 5 1.614e−09 1.4025e−07 1.0950
ϕ2 5 6 1.735e−13 1.6061e−11 1.1125
ϕ3 5 6 1.3584e−13 1.2763e−11 1.2142

6000
ϕ1 5 6 2.6528e−12 9.8384e−11 104.23
ϕ2 5 6 3.1828e−12 1.0515e−10 94.474
ϕ3 5 6 2.5422e−12 9.7223e−11 93.315

5

10
ϕ1 4 5 5.1271e−07 1.4043e−10 0.0827
ϕ2 4 5 3.2870e−08 6.5536e−12 0.0363
ϕ3 4 5 1.5904e−08 6.5536e−12 0.0439

50
ϕ1 4 5 1.1897e−08 5.0684e−10 0.0709
ϕ2 4 5 5.8989e−08 6.5570e−12 0.1141
ϕ3 4 5 0.7215e−08 6.5577e−12 0.0556

250
ϕ1 4 5 8.8776e−08 1.3806e−08 0.0898
ϕ2 4 5 7.8995e−08 8.2866e−12 0.2264
ϕ3 4 5 0.4878e−08 8.0337e−12 0.0801

1250
ϕ1 4 5 1.0112e−05 3.5343e−08 1.4628
ϕ2 5 6 6.5107e−06 1.8393e−10 1.4344
ϕ3 4 5 0.5266e−07 1.8404e−10 0.9649

6000
ϕ1 5 6 1.4116e−05 4.0788e−09 102.22
ϕ2 4 5 6.0965e−06 3.9206e−09 92.946
ϕ3 4 5 0.5180e−07 3.8684e−09 67.426

ϕ j : The smoothing function,
Fiter : The number of iterations,
Feval : The number of function evaluations,
ErF : The value of ‖x̄− x∗‖,
Fval : The value of ‖F(x̄)‖.
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Table 2: Comparison of the methods.

SNA Algorithm 1 in [17] Algorithm 3.1 in [36]
No n Func Fiter Feval Time Fiter Feval Time Fiter Feval Time

1 4
ϕ1 8 9 0.0048 9 10 0.0566 10 22 0.0332
ϕ2 7 8 0.0132 8 9 0.0313 5 11 0.0340
ϕ3 4 5 0.0077 4 5 0.0510 5 11 0.0446

2 4
ϕ1 21 23 0.0146 22 24 0.0455 22 43 0.0466
ϕ2 8 9 0.0174 22 23 0.0314 22 45 0.0412
ϕ3 7 12 0.0122 9 18 0.0540 8 19 0.0514

3 4
ϕ1 31 37 0.0209 35 48 0.0557 8 20 0.0360
ϕ2 6 8 0.0292 31 37 0.0631 32 68 0.0792
ϕ3 3 4 0.0053 7 11 0.0429 8 20 0.0544

4

10
ϕ1 3 4 0.0042 4 5 0.0497 6 8 0.0435
ϕ2 3 4 0.0066 3 4 0.0273 4 5 0.0395
ϕ3 4 5 0.0431 3 4 0.0435 4 5 0.0818

50
ϕ1 4 5 0.0109 4 5 0.0587 28 169 0.1470
ϕ2 4 5 0.0111 4 5 0.2905 4 5 0.0407
ϕ3 4 5 0.0436 3 4 0.0376 4 5 0.0427

250
ϕ1 4 5 0.0617 5 6 0.3598 27 1018 1.7268
ϕ2 4 5 0.0308 4 5 0.0726 4 9 0.0798
ϕ3 4 5 0.0998 4 5 0.0731 4 5 0.1233

1250
ϕ1 4 5 1.0950 5 6 1.3424 24 1038 25
ϕ2 5 6 1.1125 4 5 0.9973 4 5 1.0826
ϕ3 5 6 1.2142 4 5 1.1077 4 5 0.9162

6000
ϕ1 5 6 104.23 5 6 110.58 18 64 318.74
ϕ2 5 6 94.474 4 5 75.796 5 6 104.96
ϕ3 5 6 93.315 4 5 86.333 5 6 100.77

5

10
ϕ1 4 5 0.0827 3 4 0.0652 6 7 0.0430
ϕ2 4 5 0.0363 4 5 0.0850 5 6 0.0515
ϕ3 4 5 0.0439 4 5 0.0850 6 7 0.0459

50
ϕ1 4 5 0.0709 5 6 0.0688 2 1010 0.4301
ϕ2 4 5 0.1141 5 6 0.0369 5 6 0.0429
ϕ3 4 5 0.0556 3 4 0.0632 5 6 0.0511

250
ϕ1 4 5 0.0898 5 6 0.2198 34 1053 1.9078
ϕ2 4 5 0.2264 6 9 0.1260 7 12 0.0996
ϕ3 4 5 0.0801 4 5 0.1263 5 6 0.0766

1250
ϕ1 4 5 1.4628 6 7 2.2826 23 1014 25.125
ϕ2 5 6 1.4344 5 6 1.1247 22 1013 24.839
ϕ3 4 5 0.9649 6 9 1.6430 6 7 1.4024

6000
ϕ1 5 6 102.22 6 7 136.74 22 1052 757.01
ϕ2 4 5 92.946 5 6 115.28 22 1048 700.23
ϕ3 4 5 67.426 5 6 94.744 24 1008 813.7

We apply SNA with three different smoothing functions to solve Problems 1− 5 and the obtained
numerical results are reported in Table 1. It can be seen from Table 1 that all problems have been
successfully solved and the solutions of all of the problems are obtained within a reasonable computation
time. If the results are compared according to different smoothing functions, the function ϕ3 is the most
effective one in most of the problems especially for large dimensions. Although the function ϕ3 has
come into prominence in terms of numerical results, the ϕ1 and ϕ2 functions are advantageous in terms
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of ease of applicability.
Table 2 is created to compare numerical results with other algorithms. For comparison, Algorithm

1 in [17] and Algorithm 3.1 in [36] are selected as these algorithms are the most efficient algorithms
among the smoothing Newton type algorithms. Numerical results are compared with SNA in terms of
“Fiter”, “Feval” and “Time” in Table 2. For Problem 1, SNA with ϕ1 presents the best results according
to Time. For Problem 2 and 3, SNA with ϕ3 presents the best results in terms of Fiter, Feval and Time.
The SNA and Algorithm 1 present similar performance on Problem 4, but Algorithm 3.1 fails for some
cases n≥ 250. In most cases, SNA with ϕ3 presents the best results according to Time. Finally, similar
performance results are obtained for both SNA and Algorithm 1 on Problem 5. The Algorithm 3.1 again
fails for some cases n≥ 250.

4 Conclusions

In this paper, solving the AVE of type (1) by using a new class of smoothing technique is studied. Three
new members of this class have been introduced and they have been successfully applied to AVE. A
smoothing Newton-type algorithm with a hybrid inexact line search technique have been developed.
This new line search technique is a combination of two different types of inexact line search techniques
and utilizes each of them in each loop. It has been proved theoretically that the algorithm is globally
convergent with quadratic convergence rate. This theoretical result is also reflected in the numerical
results, confirming the accuracy of the technique. The numerical experiments shows that SNA is effective
and promising.

The smoothing techniques and algorithm proposed in this study may be extended to the other sub-
classes of system of nonlinear equations/inequalities such as linear and nonlinear complementarity prob-
lems, variational inequality problems. The line search technique proposed in this paper may also be
adapted to gradient based unconstrained optimization algorithms. Finally, smoothing functions intro-
duced here, may be considered for solving many nonsmooth optimization problems such as l1 penalty,
image restoration and etc.
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