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Abstract. The main aim of the current paper is to apply the compact local integrated RBFs technique
to the numerical solution of the fourth-order time-fractional diffusion-wave system. A finite difference
formula is employed to obtain a time-discrete scheme. The stability and convergence rate of the semi-
discrete plan are proved by the energy method. A new unknown variable is defined to obtain a second-
order system of PDEs. Then, the compact local integrated radial basis functions (RBFs) is used to
approximate the spatial derivative. The utilized numerical method is a truly meshless technique. The
numerical approach put forth is genuinely meshless, allowing for the utilization of irregular physical
domains in obtaining numerical solutions.
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1 Introduction

In recent years, there has been a growing interest in fractional calculus, as evidenced by numerous stud-
ies [31, 32]. The field of fractional differential equations has garnered increasing attention due to its
diverse applications in various scientific and engineering domains [9]. Phenomena in fluid mechan-
ics, viscoelasticity, chemistry, physics, finance, and other disciplines find successful description through
models employing mathematical tools from fractional calculusspecifically, the theory of derivatives and
integrals of fractional order. Notable applications are highlighted in works such as Oldham and Spanier’s
book [30], Podlubny’s book [32], Bagley and Trovik [6]. Despite numerous theoretical analyses [11,40],
obtaining explicit analytic solutions for most fractional differential equations remains a challenge. Con-
sequently, many authors have turned to numerical solution strategies, emphasizing convergence and sta-
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bility analysis [7–9,20,35,36,41,43]. Liu has contributed significantly to the finite difference method for
solving fractional differential equations [21–23]. There are various definitions for a fractional derivative
of order α > 0 [30, 31], with the Riemann-Liouville and Caputo being the two most commonly used.
The key distinction between these definitions lies in the order of evaluation [29].

Definition 1. The left fractional integral of function f ∈ H1([a,b]) with order α > 0 is defined as

aD
−α
t f (x) =

1
Γ(α)

∫ t

a
(t− s)α−1 f (s)ds.

Definition 2. The left and right Caputo fractional derivative of function f ∈H1([a,b]) with order α > 0
are defined, respectively, as

C
a Dα

t f (x)=aD−(m−α)
t

[
f (m)(x)

]
=

1
Γ(m−α)

∫ x

a
(x− s)m−α−1 f (m)(s)ds,

C
x Dα

b f (x) =
(−1)m

Γ(m−α)

∫ b

x
(s− x)m−α−1 f (m)(s)ds.

In this paper, we consider the multi-dimensional time-fractional fourth-order diffusion-wave equation

C
a Dα

t u(x,y, t)+∆(∆u(x,y, t)) = f (x,y, t), x,y ∈Ω, 0≤ t ≤ T, 1 < α < 2, (1)

with initial and boundary conditions

u(x,y,0) = ψ(x,y),
∂u(x,y,0)

∂ t
= φ(x,y), x,y ∈Ω, (2)

u(x,y, t) = ϕ1(x,y, t), ∆u(x,y, t) = ϕ2(x,y, t), x,y ∈ ∂Ω, 0≤ t ≤ T. (3)

Fractional partial differential equations (PDEs) have been a subject of investigation through both
analytical and numerical techniques. In [16], the authors proposed a finite difference method for solving
the fourth-order fractional diffusion-wave system. Meanwhile, the primary focus of [4,5] was to propose
a general solution for a fourth-order fractional diffusionwave equation within a bounded spatial domain.

Various researchers have explored the application of non-uniform meshes to solve time-fractional
PDEs. Examples include finite difference methods [3, 19], spectral Galerkin methods [17], Galerkin-
Legendre spectral approximation [18], and Jacobi Spectral Galerkin methods [15]. In [28], a binary
fractional reproducing kernel collocation method based on the Caputo-Fabrizio derivative was proposed
for solving the time-fractional Cattaneo equation. Additionally, [42] employed a computationally effec-
tive implicit difference approximation to solve the time fractional diffusion equation.

Combining finite difference techniques with spectral collocation methods, [27] presented a numerical
solution for semilinear time fractional convection-reaction-diffusion equations with time delay. The ob-
jective of [34] was to propose a numerical solution for the space-time variable fractional order advection-
dispersion equation using radial basis functions. In [26], the authors studied the combination of the Sinc
and Gaussian radial basis functions (GRBF) to develop numerical methods for time-space fractional
diffusion equations with the Riesz fractional derivative.

On the numerical side, the global Integrated Radial Basis Function (IRBF) technique was explored
in [33]. Experiments in [24,25,33] indicated that the results of IRBFs methods were more accurate than
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classic RBFs collocation approaches. [38,39] introduced a compact local IRBFs approach based on three
points in each stencil to solve differential equations. The convection-diffusion equation was addressed
in [37] through a combination of the Alternating Direction Implicit (ADI) method and Compact Local
IRBF (CLIRBF) approximations. Other applications of the IRBF method for solving various PDEs can
be found in [1, 2, 10, 12–14].

The rest of this article is structured as follows: The time-discrete scheme is introduced in Section 2.
In Section 3, the numerical methodology, including spatial discretization by IRBF method is proposed.
Section 4 is devoted to the results of numerical simulations. Finally, this article is ended with a brief
conclusion in Section 5.

2 Time-discrete formulation

Now, let tn = ndt for n = 0,1,2, . . . ,NT and dt = T/NT

un− 1
2 =

1
2
(
un +un−1) , δtun− 1

2 =
1
dt

(
un−un−1) ,

where un = u(x,y, tn). In this paper, the capital and small letters denote the approximate and exact
solutions, respectively. The following lemma is needed to discrete the fractional derivative.

Lemma 1. [35] If f (t) ∈C2[0, tn] and 1 < α < 2, then∣∣∣∣∣∣
tn∫

0

(tn− s)1−α f ′(s)dt− 1
dt

[
a0 f (tn)−

n−1

∑
k=1

(an−k−1−an−k) f (tk)−an−1 f (t0)

]∣∣∣∣∣∣≤Cdt3−α ,

where

C =
1

2−α

[
2−α

12
+

23−α

3−α
− (1+21−α)

]
max

∣∣ f ′′(t)∣∣
0≤t≤tn

,

ak =
dt2−α

2−α

[
(k+1)2−α − k2−α

]
.

Let

w(x,y, t) =
1

Γ(2−α)

t∫
0

∂v(x,y,s)
∂ s

ds

(t− s)α−1 , (4)

where

v(x,y, t) =
∂u(x,y, t)

∂ t
, (5)

From Eq. (1) at the point (x,y, tn), we have

C
a Dα

t u(x, tn− 1
2
)+∆(∆u(x, tn− 1

2
)) = f (x, tn− 1

2
), (6)

Now, according the above relation, the following estimations can be written

vn− 1
2 = δtun− 1

2 +(R1)
n− 1

2 , (7)
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wn− 1
2 = ∆(∆un+ 1

2 )+ f n− 1
2 +(R2)

n− 1
2 , (8)

in which for a positive constant c1∣∣∣∣(R1)
n−1

2

∣∣∣∣≤ c1dt2 ,

∣∣∣∣(R2)
n−1

2

∣∣∣∣≤ c1
(
dt2) . (9)

Assume

F
(

un− 1
2 ,q
)
= a0un− 1

2 −
n−1

∑
k=1

(an−k−1−an−k)uk− 1
2 −an−1q,

thus

wn =
1

Γ(2−α)

tn∫
0

∂v(x, t)
∂ t

dt

(tn− t)α−1 =
1

Γ(2−α)

1
dt

F (vn,φ)+O(dt3−α).

Now, Lemma 1 results in

wn− 1
2 =

1
Γ(2−α)dt

F
(

vn− 1
2 ,φ
)
+(R3)

n− 1
2 , (10)

and
∃ c2 > 0,

∣∣∣(R3)
n− 1

2

∣∣∣≤ c2dt3−α . (11)

Substituting (7) into (10), gives

wn− 1
2 =

1
Γ(2−α)dt

F
(

δtun− 1
2 ,φ
)
+

1
Γ(2−α)dt

F
(
(R1)

n− 1
2 ,0
)
+(R3)

n− 1
2 .

Inserting the obtained relations into (8), yields

1
Γ(2−α)dt

F
(

δtun− 1
2 ,φ
)
+∆(∆un− 1

2 ) = f n− 1
2 +Rn− 1

2
α , n≥ 1, (12)

where according to Lemma 1 there exists a positive constant C such that

|Rn− 1
2

α | ≤ C dt3−α . (13)

Omitting the small term Rn− 1
2

α results the following semi-discrete scheme

1
Γ(2−α)dt

F
(

δtUn− 1
2 (x,y),φ(x,y)

)
+∆(∆Un− 1

2 (x,y)) = 0, n≥ 1,

U0(x,y) = ψ(x,y), x,y ∈Ω,

Un(x,y) = ϕ1(x,y, tn), ∆U(x,y, tn) = ϕ2(x,y, tn), x,y ∈ ∂Ω.

(14)

Now, we use the following change of variable to obtain a full-discrete scheme

Qn− 1
2 = ∆Un− 1

2 (x,y),
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then, the following system of equations will be obtained
Qn− 1

2 = ∆Un− 1
2 (x,y),

1
Γ(2−α)dt

F
(

δtUn− 1
2 (x,y),φ(x,y)

)
+∆Qn− 1

2 = 0, n≥ 1,

with the initial and boundary conditions
U0(x,y) = ψ(x,y), Q0(x,y) = ∆ψ(x,y) x,y ∈Ω,

Un(x,y) = ϕ1(x,y, tn), Qn(x,y) = ϕ2(x,y, tn), x,y ∈ ∂Ω.

2.1 Error estimate of the semi-discrete scheme

To analyse the time-discrete scheme, the following lemma is needed.

Lemma 2. [35] For any D = {D1,D2, . . .} and q, we obtain

N

∑
n=1

[
a0Dn−

n−1

∑
k=1

(an−k−1−an−k)Dk−an−1q

]
Dn ≥

t1−α

N
2

dt
N

∑
n=1

D2
n−

t2−α

N
2(2−α)

q2, , N = 1,2, . . . ,

where al are defined in Lemma 1.

To analyse the stability of the proposed numerical scheme, we examine the homogeneous version of
Eq. (14) as follows:

1
Γ(2−α)dt

F
(

δtUn− 1
2 (x,y),φ(x,y)

)
+∆(∆Un− 1

2 (x,y)) = 0, n≥ 1,

U0(x,y) = ψ(x,y), x,y ∈Ω,

Un(x,y) = 0, ∆U(x,y, tn) = 0, x,y ∈ ∂Ω.

(15)

Thus, the variational weak form of problem (15) is to find Un− 1
2

h ∈ H2
0 (Ω) such that

1
Γ(2−α)dt

〈
F
(

δtUn− 1
2 ,φ
)
,ξ
〉
+
〈

∆Un− 1
2 ,∆ξ

〉
= 0, ∀ ξ ∈ H2

0 (Ω). (16)

Theorem 1. The finite difference scheme (15) is stable.

Proof. Let Un be the approximate value of Un. Then, we introduce

1
Γ(2−α)dt

〈
F
(

δtΘ
n− 1

2 ,0
)
,ξ
〉
=−

〈
∆Θ

n− 1
2 ,∆ξ

〉
, ∀ ξ ∈ H2

0 (Ω). (17)

where Θn =Un−Ūn. Assume ξ = δtΘ
n− 1

2 gives

1
Γ(2−α)dt

〈
F
(

δtΘ
n− 1

2 ,0
)
,δtΘ

n− 1
2

〉
=−

〈
∆Θ

n− 1
2 ,∆δtΘ

n− 1
2

〉
, ∀ ξ ∈ H2

0 (Ω). (18)
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Multiply (17) by dt and summing it from n = 1 to m, arrive at

1
Γ(2−α)

m

∑
n=1

〈
F
(

δtΘ
n− 1

2 ,0
)
,δtΘ

n− 1
2

〉
=−dt

m

∑
n=1

〈
∆Θ

n− 1
2 ,∆δtΘ

n− 1
2

〉
. (19)

The Schwarz inequality and Lemma 2, yield

1
Γ(2−α)

m

∑
n=1

〈
F
(

δtΘ
n− 1

2 ,0
)
,δtΘ

n− 1
2

〉
=

1
Γ(2−α)

m

∑
n=1

{
a0

∥∥∥δtΘ
n− 1

2

∥∥∥2

L2(Ω)
−

n−1

∑
k=1

(an−k−1−an−k)
(

δtΘ
k− 1

2 ,δtΘ
n− 1

2

)}

≥ 1
Γ(2−α)

m

∑
n=1

{
a0

∥∥∥δtΘ
n− 1

2

∥∥∥2

L2(Ω)
−

n−1

∑
k=1

(an−k−1−an−k)
∥∥∥δtΘ

k− 1
2

∥∥∥
L2(Ω)

∥∥∥δtΘ
n− 1

2

∥∥∥
L2(Ω)

}

=
1

Γ(2−α)

m

∑
n=1

{
a0

∥∥∥δtΘ
n− 1

2

∥∥∥
L2(Ω)

−
n−1

∑
k=1

(an−k−1−an−k)
∥∥∥δtΘ

k− 1
2

∥∥∥
L2(Ω)

}∥∥∥δtΘ
n− 1

2

∥∥∥
L2(Ω)

≥ t1−α
m dt

2Γ(2−α)

m

∑
n=1

∥∥∥δtΘ
n− 1

2

∥∥∥2

L2(Ω)
. (20)

Now, for another term, we have

−dt
m

∑
n=1

∫
Ω

(∆Θ
n− 1

2 )(δt∆Θ
n− 1

2 )dx = −dt
m

∑
n=1

∫
Ω

(
∆Θn +∆Θn−1

2

)(
∆Θn−∆Θn−1

dt

)
dx

= −1
2

m

∑
n=1


∫
Ω

[
(∆Θ

n)2−
(
∆Θ

n−1)2
]
dx


= −1

2

m

∑
n=1

{
‖∆Θ

n‖2
L2(Ω)−

∥∥∆Θ
n−1∥∥2

L2(Ω)

}
(21)

The use of relations (20)-(21) in Eq. (19), yields

t1−α
m dt

2Γ(2−α)

m

∑
n=1

∥∥∥δtΘ
n− 1

2

∥∥∥2

L2(Ω)
≤ 1

Γ(2−α)

m
∑

n=1

〈
F
(

δtΘ
n− 1

2 ,0
)
,δtΘ

n− 1
2

〉

=−dt
m

∑
n=1

〈
∆Θ

n− 1
2 ,∆δtΘ

n− 1
2

〉

=−1
2

m
∑

n=1

{
‖∆Θn‖2

L2(Ω)−
∥∥∆Θn−1

∥∥2
L2(Ω)

}
.

Now, we can get

t1−α
m dt

Γ(2−α)

m

∑
n=1

∥∥∥δtΘ
n− 1

2

∥∥∥2

L2(Ω)
+‖∆Θ

m‖2
L2(Ω) ≤

∥∥∆Θ
0∥∥2

L2(Ω)
. (22)
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Changing index m to n, results in ‖∆Θn‖L2(Ω) ≤
∥∥∆Θ0

∥∥
L2(Ω)

, which it completes the proof.

Theorem 2. Let un and Un be solutions of Eqs. (12) and (14), respectively. Thus, numerical scheme (14)
is convergent with convergence order 3−α .

Proof. The proof is similar to Theorem 1.

3 Compact local IRBF method

In the compact local IRBF method, we assume

∂ 2u(x,y)
∂x2 =

N

∑
j=1

ϒ
[x]
j Ψ

[x]
j (x,y), (23)

where {ϒ[x]
j }N

j=1 are unknown coefficients and {Ψ[x]
j }N

j=1 are the radial basis functions (RBFs). Now, to
approximate the first-order derivative, we have

∂u(x,y)
∂x

=
N

∑
j=1

ϒ
[x]
j Φ

[x]
j (x,y)+w[x]

1 (y), (24)

u[x](x,y) =
N

∑
j=1

ϒ
[x]
j Φ

[x]
(x,y)+ xw[x]

1 (y)+w[x]
2 (y), (25)

where

Φ
[x]
(x,y) =

∫
Φ

[x]
j (x,y)dx, Φ

[x]
j (x,y) =

∫
Ψ

[x]
j (x,y)dx,

and also w[x]
1 (y) and w[x]

2 (y) are the constant of integration. Similarly, we can compute

∂ 2u(x,y)
∂y2 =

N

∑
j=1

ϒ
[y]
j Ψ

[y]
j (x,y), (26)

∂u(x,y)
∂y

=
N

∑
j=1

ϒ
[y]
j Φ

[y]
j (x,y)+w[y]

1 (y), (27)

u[y](x,y) =
N

∑
j=1

ϒ
[y]
j Φ

[y]
(x,y)+ yw[y]

1 (y)+w[y]
2 (y), (28)

where

Φ
[y]
(x,y) =

∫
Φ

[y]
j (x,y)dy, Φ

[y]
j (x,y) =

∫
Ψ

[y]
j (x,y)dy.

Let  x,y3 x,y6 x,y9
x,y2 x,y5 x,y8
x,y1 x,y4 x,y7

 ,
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be a computational stencil with center x,y5 = x,yc. Using the collocation idea for (23)-(25), yields

̂∂ 2u(x,y)
∂x2 = Ψ[x]Ξ[x],

∂̂u(x,y)
∂x

= Φ[x]Ξ[x],

̂u[x](x,y) = Φ
[x]

Ξ[x],

(29)

where

Ξ
[x] =

(
ϒ
[x]
1 , . . . ,ϒ

[x]
9 ,w[x]

1 (y1),w
[x]
1 (y2),w

[x]
1 (y3),w

[x]
2 (y1),w

[x]
2 (y2),w

[x]
2 (y3)

)T
,

Ψ
[x] =



ψ
[x]
1 (x,y1) ψ

[x]
2 (x,y1) . . . ψ

[x]
9 (x,y1) 0 0 0 0 0 0

ψ
[x]
1 (x,y2) ψ

[x]
2 (x,y2) . . . ψ

[x]
9 (x,y2) 0 0 0 0 0 0

ψ
[x]
1 (x,y3) ψ

[x]
2 (x,y3) . . . ψ

[x]
9 (x,y3) 0 0 0 0 0 0

... . . .
... . . .

... . . .
...

... . . .
...

ψ
[x]
1 (x,y8) ψ

[x]
2 (x,y8) . . . ψ

[x]
9 (x,y8) 0 0 0 0 0 0

ψ
[x]
1 (x,y9) ψ

[x]
2 (x,y9) . . . ψ

[x]
9 (x,y9) 0 0 0 0 0 0


9×15

,

Φ
[x] =



φ
[x]
1 (x,y1) φ

[x]
2 (x,y1) . . . φ

[x]
9 (x,y1) 1 0 0 0 0 0

φ
[x]
1 (x,y2) φ

[x]
2 (x,y2) . . . φ

[x]
9 (x,y2) 0 1 0 0 0 0

φ
[x]
1 (x,y3) φ

[x]
2 (x,y3) . . . φ

[x]
9 (x,y3) 0 0 1 0 0 0

... . . .
... . . .

...
... . . .

...
...

...
φ
[x]
1 (x,y8) φ

[x]
2 (x,y8) . . . φ

[x]
9 (x,y8) 0 1 0 0 0 0

φ
[x]
1 (x,y9) φ

[x]
2 (x,y9) . . . φ

[x]
9 (x,y9) 0 0 1 0 0 0


9×15

,

Φ
[x]
=



φ
[x]
1 (x,y1) φ

[x]
2 (x,y1) . . . φ

[x]
9 (x,y1) x1 0 0 1 0 0

φ
[x]
1 (x,y2) φ

[x]
2 (x,y2) . . . φ

[x]
9 (x,y2) 0 x2 0 0 1 0

φ
[x]
1 (x,y3) φ

[x]
2 (x,y3) . . . φ

[x]
9 (x,y3) 0 0 x3 0 0 1

... . . .
... . . .

...
... . . .

...
...

...

φ
[x]
1 (x,y8) φ

[x]
2 (x,y8) . . . φ

[x]
9 (x,y8) 0 x8 0 0 1 0

φ
[x]
1 (x,y9) φ

[x]
2 (x,y9) . . . φ

[x]
9 (x,y9) 0 0 x9 0 0 1


9×15

.
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Furthermore, for variable y, we can get

̂∂ 2u(x,y)
∂y2 = Ψ[y]Ξ[y],

∂̂u(x,y)
∂y

= Φ[y]Ξ[y],

̂u[y](x,y) = Φ
[y]

Ξ[y],

(30)

where
Ξ
[y] =

(
ϒ
[y]
1 , . . . ,ϒ

[y]
9 ,w[y]

1 (x1),w
[y]
1 (x4),w

[y]
1 (x7),w

[y]
2 (x1),w

[y]
2 (x4),w

[y]
2 (x7)

)T
,

Ψ
[y] =



ψ
[y]
1 (x,y1) ψ

[y]
2 (x,y1) . . . ψ

[y]
9 (x,y1) 0 0 0 0 0 0

ψ
[y]
1 (x,y2) ψ

[y]
2 (x,y2) . . . ψ

[y]
9 (x,y2) 0 0 0 0 0 0

ψ
[y]
1 (x,y3) ψ

[y]
2 (x,y3) . . . ψ

[y]
9 (x,y3) 0 0 0 0 0 0

... . . .
... . . .

... . . .
...

... . . .
...

ψ
[y]
1 (x,y8) ψ

[y]
2 (x,y8) . . . ψ

[y]
9 (x,y8) 0 0 0 0 0 0

ψ
[y]
1 (x,y9) ψ

[y]
2 (x,y9) . . . ψ

[y]
9 (x,y9) 0 0 0 0 0 0


9×15

,

Φ
[y] =



φ
[y]
1 (x,y1) φ

[y]
2 (x,y1) . . . φ

[y]
9 (x,y1) 1 0 0 0 0 0

φ
[y]
1 (x,y2) φ

[y]
2 (x,y2) . . . φ

[y]
9 (x,y2) 1 0 0 0 0 0

φ
[y]
1 (x,y3) φ

[y]
2 (x,y3) . . . φ

[y]
9 (x,y3) 1 0 0 0 0 0

... . . .
... . . .

...
... . . .

...
...

...
φ
[y]
1 (x,y8) φ

[y]
2 (x,y8) . . . φ

[y]
9 (x,y8) 0 0 1 0 0 0

φ
[y]
1 (x,y9) φ

[y]
2 (x,y9) . . . φ

[y]
9 (x,y9) 0 0 1 0 0 0


9×15

,

Φ
[y]
=



φ
[y]
1 (x,y1) φ

[y]
2 (x,y1) . . . φ

[y]
9 (x,y1) y1 0 0 1 0 0

φ
[y]
1 (x,y2) φ

[y]
2 (x,y2) . . . φ

[y]
9 (x,y2) y2 0 0 1 0 0

φ
[y]
1 (x,y3) φ

[y]
2 (x,y3) . . . φ

[y]
9 (x,y3) 1 0 0 1 0 0

... . . .
... . . .

...
... . . .

...
...

...

φ
[y]
1 (x,y8) φ

[y]
2 (x,y8) . . . φ

[y]
9 (x,y8) 0 0 y8 0 0 1

φ
[y]
1 (x,y9) φ

[y]
2 (x,y9) . . . φ

[y]
9 (x,y9) 0 0 y9 0 0 1


9×15

.

Now, form the above relation we can conclude(
û
ô

)
=

[
Φ

[x]
O

Φ
[x] −Φ

[y]

]
︸ ︷︷ ︸

N

(
Ξ[x]

Ξ[y]

)
, (31)
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where ô = zeros(9) (command of MATLAB software). Solving Eq. (31), results

(
Ξ[x]

Ξ[y]

)
= N −1

(
û
ô

)
,

or

Ξ
[x] = N −1

[x] (û, ô)T , (32)

Ξ
[y] = N −1

[y] (û, ô)T . (33)

Substituting x,y = x,yc in Eqs. (32), (33), (29) and (30), gives

∂ 2u(x,yc)

∂x2 =
[
Ψ

[x]
1 (x,yc),Ψ

[x]
2 (x,yc), . . . ,Ψ

[x]
8 (x,yc),Ψ

[x]
9 (x,yc),0,0,0,0,0,0

]
N −1

[x] (û, ô)T ,

∂u(x,yc)

∂x
=
[
Φ

[x]
1 (x,yc),Φ

[x]
2 (x,yc), . . . ,Φ

[x]
8 (x,yc),Φ

[x]
9 (x,yc),0,1,0,0,0,0

]
N −1

[x] (û, ô)T ,

∂ 2u(x,yc)

∂y2 =
[
Ψ

[y]
1 (x,yc),Ψ

[y]
2 (x,yc), . . . ,Ψ

[y]
8 (x,yc),Ψ

[y]
9 (x,yc),0,0,0,0,0,0

]
N −1

[y] (û, ô)T ,

∂u(x,yc)

∂y
=
[
Φ

[y]
1 (x,yc),Φ

[y]
2 (x,yc), . . . ,Φ

[y]
8 (x,yc),Φ

[y]
9 (x,yc),0,1,0,0,0,0

]
N −1

[y] (û, ô)T .

Assembling the local matrices, results in

∂ 2u(x,y)
∂x2 =



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 . . . 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 . . . 0
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 . . . 0
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
...

0 . . . 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
0 . . . 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 . . . 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


︸ ︷︷ ︸

Dxx



u1
u2
u3
. . .
uN−2
uN−1
uN


,

∂u(x,y)
∂x

=



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 . . . 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 . . . 0
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 . . . 0
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
...

0 . . . 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
0 . . . 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 . . . 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


︸ ︷︷ ︸

Dx



u1
u2
u3
. . .
uN−2
uN−1
uN


,
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∂ 2u(x,y)
∂y2 =



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 . . . 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 . . . 0
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 . . . 0
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
...

0 . . . 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
0 . . . 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 . . . 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


︸ ︷︷ ︸

Dyy



u1
u2
u3
. . .
uN−2
uN−1
uN


,

∂u(x,y)
∂y

=



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 . . . 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 . . . 0
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 . . . 0
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
...

0 . . . 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
0 . . . 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 . . . 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


︸ ︷︷ ︸

Dy



u1
u2
u3
. . .
uN−2
uN−1
uN


,

where ∗ is a constant number.
To approximate the first- and second-order derivatives and also the unknown function of u, we have

∂ 2u(x,y)
∂x2 =

N

∑
j=1

ϒ
[x]
j (t)Ψ

[x]
j (x,y),

∂u(x,y)
∂x

=
N

∑
j=1

ϒ
[x]
j (t)Φ

[x]
j (x,y)+ c[x]1 (t),

u[x](x,y) =
N

∑
j=1

ϒ
[x]
j (t)Φ

[x]
j (x,y)+ xc[x]1 (t)+ c[x]2 (t),

∂ 2u(x,y)
∂y2 =

N

∑
j=1

ϒ
[y]
j (t)Ψ

[y]
j (x,y),

∂u(x,y)
∂y

=
N

∑
j=1

ϒ
[y]
j (t)Φ

[y]
j (x,y)+ c[y]1 (t),

u[y](x,y) =
N

∑
j=1

ϒ
[y]
j (t)Φ

[y]
j (x,y)+ yc[y]1 (t)+ c[y]2 (t),

where

Φ
[y]
j (x,y) =

∫
Φ

[y]
j (x,y)dy, Φ

[y]
j (x,y) =

∫
Ψ

[y]
j (x,y)dy,

Φ
[x]
j (x,y) =

∫
Φ

[x]
j (x,y)dx, Φ

[x]
j (x,y) =

∫
Ψ

[x]
j (x,y)dx,
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and c1(t) and c2(t). Thus

Uxx :=
∂ 2u(x,y)

∂x2 = DxxU, Ux :=
∂u(x,y)

∂x
= DxU,

Uyy :=
∂ 2u(x,y)

∂y2 = DyyU, Uy :=
∂u(x,y)

∂y
= DyU.

According to the semi-discrete scheme
Qn− 1

2 = ∆Un− 1
2 (x,y),

1
Γ(2−α)dt

F
(

δtUn− 1
2 (x,y),φ(x,y)

)
+∆Qn− 1

2 = f n− 1
2 (x,y), n≥ 1,

(34)

the following algebraic system of equations can be obtained

AXn=BXn−1+Fn,

where

Xn =

 Un

V n

 ,

A =

 −Dxx−Dyy I

a0µI
dt
2
(Dxx+Dyy)

 ,

B =

 Dxx+Dyy −I

a0µI −dt
2
(Dxx+Dyy)

 ,

F =


0

dtfn(x)+µan−1ψ(x)+µ

n−1

∑
k=1

(an−k−1−an−k)
(
Uk−Uk−1

)
 .

4 Numerical surveys

We checked the accuracy and stability of the method presented by performing the mentioned method
for different numbers of the distributed nodes or time steps. Our computations are performed utiliz-
ing MATLAB 2020b software on an Intel Core i7 machine with 32 GB of memory. Furthermore, the
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computational order of the proposed numerical procedure will be calculated by the following relation

C1−order =
log10

(
E∞(N,τ1)
E∞(N,τ2)

)
log10

(
τ1
τ2

) ,

where E∞ is norm of error infinity.

Example 1. For the one-dimensional case, we consider the following example

C
a Dα

t u(x, t)+
∂ 4u(x, t)

∂x4 = ex
(

Γ(α +4)
t3

6
+ t3+α + t

)
, x ∈ [0,1], 0≤ t ≤ T, 1 < α < 2,

with initial and boundary conditions

u(x,0) = 0,
∂u(x,0)

∂ t
= ex, x ∈ [0,1],

u(0, t) = t3+α + t, u(1, t) = e
(
t3+α + t

)
, t ≥ 0,

∂ 2u(0, t)
∂x2 = t3+α + t,

∂ 2u(1, t)
∂x2 = e

(
t3+α + t

)
, t ≥ 0,

where the exact solution is u(x, t) = ex
(
t3+α + t

)
.

Table 1: Error computed with N = 200 on Ω = [0,1] for Example 1.

α = 1.2 α = 1.5 α = 1.9 CPU time(s)

τ E∞ Order E∞ Order E∞ Order

1/10 7.73×10−4 − 4.36×10−2 − 3.70×10−2 − 0.02

1/20 6.98×10−4 0.14 1.75×10−2 1.31 1.82×10−2 1.02 0.8

1/40 3.18×10−4 1.13 6.72×10−3 1.38 8.77×10−3 1.05 1.12

1/80 1.21×10−4 1.39 2.50×10−3 1.42 4.15×10−3 1.08 3.41

1/160 4.19×10−5 1.52 9.15×10−4 1.45 1.95×10−3 1.09 8.12

1/320 1.39×10−5 1.59 3.31×10−4 1.47 9.16×10−4 1.09 15.4

1/640 4.43×10−6 1.64 1.19×10−4 1.48 4.28×10−4 1.10 34.2

1/1280 1.39×10−6 1.67 4.25×10−5 1.48 2.00×10−4 1.10 89.4

1/1280 4.26×10−7 1.70 1.52×10−5 1.49 9.34×10−5 1.10 142.3

1/1280 1.30×10−7 1.71 5.39×10−6 1.49 4.36×10−5 1.10 201.7

Figure 1 demonstrates the graphs of approximate solutions (left panel) and absolute errors (right
panel) with 200 collocation points, T = 5, dt = 10−3 and different fractional order α for Example 1.
Table 1 presents numerical experiments and computational order obtained with N = 200, T = 1 and
Ω = [0,1] for Example 1. The convergence rate of the proposed technique tends to 3−α . Table 1
confirms the computational and the theoretical results are close to each other.
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α = 1.2 α = 1.2

α = 1.5 α = 1.5

α = 1.9 α = 1.9

Figure 1: Approximate solution (left panel) and absolute error (right panel) with 200 collocation points,
T = 5, dt = 10−3 and different fractional order α for Instance1.
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Example 2. Now, for the two-dimensional case, we investigate

C
a Dα

t u(x,y, t)+∆
2u(x,y, t) =

2t2−α

Γ(3−α)
x(x−1)y(y−1), (x,y) ∈Ω = [0,1]× [0,1],

with 0≤ t ≤ T , 1 < α < 2, and the initial and boundary conditions

u(x,y,0) = 0,
∂u(x,y,0)

∂ t
= 0, x ∈Ω,

u(x,y, t) = 0, (x,y) ∈ ∂Ω, t ≥ 0,

∆u(x,y, t) = 2x(x−1)+2y(y−1), (x,y) ∈ ∂Ω, t ≥ 0,

where the exact solution is u(x,y, t) = t2x(x−1)y(y−1).

The graph of the approximate solutions on non-rectangular physical domains with 800 distributed
nodes, T = 1, dt = 10−3 and α = 1.2 are illustrated for Example 2. Table 2 shows errors and computa-
tional orders obtained with N = 800, T = 1 and different regions for Example 2. The convergence order
of the present method tends to 3−α . Similar to Table 1, Table 2 acknowledges the computational and
the theoretical results are close to each other.

Table 2: Error computed with N = 800 on Ω = [0,1]× [0,1] for Example 2.

α = 1.2 α = 1.6 α = 1.85 CPU time(s)

τ E∞ Order E∞ Order E∞ Order

1/10 8.26×10−3 − 4.45×10−2 − 1.78×10−1 − 0.8

1/20 4.22×10−3 0.96 1.81×10−2 1.30 8.35×10−2 1.09 5.3

1/40 1.67×10−3 1.34 7.14×10−3 1.34 3.85×10−2 1.12 42.7

1/80 5.93×10−4 1.49 2.78×10−3 1.36 1.75×10−2 1.13 98.7

1/160 1.99×10−4 1.85 1.07×10−3 1.38 7.95×10−3 1.14 188.9

1/320 6.42×10−5 1.63 4.10×10−4 1.38 3.59×10−3 1.14 276.4

1/640 2.02×10−5 1.67 1.56×10−4 1.39 1.62×10−3 1.15 433.1

1/1280 6.24×10−6 1.69 5.95×10−5 1.39 7.32×10−4 1.15 961.3

5 Conclusion

The current paper developed an efficient and simple numerical procedure to solve the one- and two-
dimensional fourth-order time-fractional diffusion-wave system. First, a (3−α)-order finite difference
scheme is utilized to discrete the time derivative. Moreover, the energy method is used to analyze the
stability and convergence of the proposed numerical technique. Then, the compact local integrated RBFs
idea is employed to obtain differential matrices to discrete the space derivatives. The proposed numerical
algorithm is tested for one- and two-dimensional examples to check its efficiency and accuracy.
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Figure 2: Approximate solution with 800 collocation points, T = 1, dt = 10−3 and α = 1.2 for Instance2.
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