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Abstract. In this study, we develop a precise and effective numerical approach to solve the time–
fractional Black–Scholes equation, which is used to calculate European options. The method employs
cubic B-spline collocation for spatial discretization and a finite difference method for time discretization.
An analysis of the method’s stability is conducted. Finally, two numerical examples are included to show
the effectiveness and applicability of the suggested method.
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1 Introduction

The Black-Scholes equation is a mathematical model for pricing options in financial markets. It was
developed by Fischer Black and Myron Scholes in 1973 and is based on the assumption that the price
of the underlying asset follows a geometric Brownian motion with constant volatility and a risk-free
rate [10].

However, some empirical studies have shown that real market data does not always follow the as-
sumptions of the Black-Scholes model. For example, the volatility and a risk-free rate may vary over
time, and the asset returns may exhibit long-range dependence or persistence [5]. To overcome these
limitations, some researchers have proposed using fractional derivatives to model the dynamics of the
asset price. Fractional derivatives are generalizations of ordinary derivatives that can capture the mem-
ory and non-local effects of complex systems [9]. The fractional Black-Scholes equations can capture
the non-Markovian and non-Gaussian features of asset price dynamics and provide more realistic and
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flexible models for option pricing. However, they also introduce some challenges, such as the existence
and uniqueness of solutions, stability and convergence of the numerical schemes, the calibration of the
fractional parameters, etc [5]. Therefore, extensive research is needed to explore the properties and
applications of these equations in financial mathematics.

There are various numerical methods for solving the Black-Scholes equation with fractional deriva-
tives, which is a generalization of the classical Black-Scholes model for option pricing that can capture
the non-Markovian and non-Gaussian features of the asset price dynamics. Some of the main types of
numerical methods are:

Transform methods: These methods use analytical techniques such as Laplace transform, Fourier
transform, or Mellin transform to transform the fractional Black-Scholes equation into an ordinary differ-
ential equation or an algebraic equation, which can be solved more easily. Then, the inverse transform is
applied to obtain the solution of the original equation. For example, Ampun and Sawangtong [3] used the
generalized Laplace homotopy perturbation method to solve the time-fractional Black-Scholes equation,
and An et al. [3] used Fourier transform to solve the space-fractional Black-Scholes equation.

Series methods: These methods use analytical techniques such as the homotopy analysis method,
homotopy perturbation method, or Adomian decomposition method to construct a series solution of the
fractional Black-Scholes equation. The series solution can be truncated to obtain an approximate solution
with a desired accuracy. For example, Saratha et al. [10] used the fractional generalized homotopy
analysis method to solve the Black-Scholes equation with fractional time and space derivatives, and Guo
et al. [11] used the Adomian decomposition method to solve Black-Scholes equation driven by fractional
G–Brownian motion.

Finite difference methods: These methods use numerical techniques such as finite difference schemes,
weighted finite difference schemes, or finite element schemes to discretize the fractional Black-Scholes
equation in space and time domains, and obtain a system of linear or nonlinear equations that can be
solved by iterative or direct methods. For example, Eslahchi et al. [7] used the weighted finite dif-
ference method to solve the two-dimensional fractional Black-Scholes equation, and Taghipour and
Aminikhah [12] used a spectral collocation method based on fractional Pell functions for solving the
time–fractional Black–Scholes option pricing model. Also, Kazmi [6] presented a second order numeri-
cal method for the time–fractional Black–Scholes European option pricing model.

Splines are piecewise polynomial functions that can approximate smooth curves or surfaces with
high accuracy and flexibility. They have many applications in computer graphics, computer-aided de-
sign, data interpolation, and numerical analysis. Splines can provide high-order approximations of the
unknown solution and its fractional derivatives and can handle singularities, discontinuities, and bound-
ary layers more effectively than other methods. Also, splines can adapt to the shape and smoothness
of the unknown solution and can be easily modified to incorporate different boundary conditions, initial
conditions, or source terms. Furthermore, splines can reduce the computational cost and storage require-
ments of solving fractional differential equations, as they can use sparse matrices, fast algorithms, and
local refinements [4, 8].

We consider the following time-fractional Black-Scholes equation [6]

CDα
0,tu =

1
2

σ
2 ∂ 2u

∂x2 +

(
r− 1

2
σ

2
)

∂u
∂x
− ru+ f (x, t), (x, t) ∈Ω, (1)
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with boundary conditions

u(−a, t) = p(t), u(a, t) = q(t), t ∈ [0,T ], (2)

and initial condition

u(x,0) = h(x), x ∈ (−a,a) , (3)

where Ω = (−a,a)× (0,T ] and

CDα
0,tu(x, t) =

1
Γ(1−α)

∫ t

0
(t− s)−α ∂u(x,s)

∂ s
ds, (4)

is the Caputo fractional derivative.
For European call options we put p(t) = 0, q(t) = K(eX −e−rt) and h(x) = max(0,K(ex−1)). Also,

for European put option we have p(t) = Ke−rt , q(t) = 0 and h(x) = max(0,K(1− ex)).
The rest of this article is as follows: In the Section 2, a new numerical method based on B-spline

foundations is presented for the numerical solution of problem (1)–(3). In Section 3, the stability and
convergence of the presented method are investigated. In the Section 4, numerical experiments confirm
the effectiveness of the presented method. At the end, some conclusions are expressed.

2 Numerical method

In this section we assume that tk = k∆t,k = 0,1, . . . ,N be a partition of interval [0,T ] where ∆t = T
N .

Also, we assume that 0≤ θ ≤ 1, and tk+θ = tk +θ∆t.

Theorem 1 ([1]). Assume that k ≥ 1, u(x, t) ∈C4[−a,a]×C2[0,∞], then

CDα
0,tu(x, tk+θ ) =

1
(∆t)α

Γ(2−α)

k−1

∑
j=0

(u(x, t j+1)−u(x, t j))dk, j

+
θ 1−α

(∆t)α
Γ(2−α)

(u(x, tk+1)−u(x, tk))+ εk, (5)

where dk, j = (k− j+θ)1−α − (k− j+θ −1)1−α and εk ≤ 2
Γ(3−α) max

0≤s≤tk+1
|utt(x,s)|(∆t)2−α .

Lemma 1. Suppose g is a sufficiently smooth function, then

g(tn+θ ) = (1−θ)g(tn)+θg(tn+1)− (1−θ)θ(∆t)2g′′(tn+θ )−θ
(
2θ

2−3θ +1
)
(∆t)3g′′′(tn+θ )+ · · · .

Proof. We know that tn− tn+θ = −θ∆t and tn+1− tn+θ = (1−θ)∆t. Then using Taylor expansion we
have

g(tn) = g(tn+θ )−θ∆tg′(tn+θ )+(θ∆t)2g′′(tn+θ )− (θ∆t)3g′′′(tn+θ )+ · · · , (6)

g(tn+1) = g(tn+θ )+(1−θ)∆tg′(tn+θ )+((1−θ)∆t)2g′′(tn+θ )+((1−θ)∆t)3g′′′(tn+θ )+ · · · . (7)

By multiplying (6) in (1− θ) and (7) in θ and obtaining the sum of the results will give the desired
result.
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Theorem 2. Assume that k ≥ 1, u(x, t) ∈C4[−a,a]×C2[0,∞], and u(x, t) satisfy (1), then

(λ +θr)u(x, tk+1)−θγux(x, tk+1)−θβuxx(x, tk+1) = rk− εk, (8)

where β = 1
2 σ2, γ = r−β ,η = 1

(∆t)α
Γ(2−α)

, λ = ηθ 1−α , and

rk = (1−θ)(βuxx(x, tk)+ γux(x, tk)− ru(x, tk))+λu(x, tk)

−η

k−1

∑
j=0

(u(x, t j+1)−u(x, t j))dk, j + f (x, tk+θ ) (9)

Proof. Using Lemma 1, we get

CDα
0,tu(x, tk+θ ) = (1−θ)CDα

0,tu(x, tk)+θCDα
0,tu(x, tk+1)

− (1−θ)θ(∆t)2
CDα+2

0,t u(x, tk+θ )+O
(
(∆t)3

)
(10)

By applying (1), we obtain

CDα
0,tu(x, tk+θ ) = (1−θ)

(
β

∂ 2u(x, tk)
∂x2 + γ

∂u(x, tk)
∂x

− ru(x, tk)
)

+θ

(
β

∂ 2u(x, tk+1)

∂x2 + γ
∂u(x, tk+1)

∂x
− ru(x, tk+1)

)
+ f (x, tk+θ )

− (1−θ)θ(∆t)2
CDα+2

0,t u(x, tk+θ )+O
(
(∆t)3

)
. (11)

Now, by substituting (5) in (11) the result will be achieved.

By eliminating the error term εk in (8), we get

δ1Uk+1 +δ2Uk+1
x +δ3Uk+1

xx = Rk, (12)

where δ1 = λ +θr, δ2 = −θγ , δ3 = −θβ , Uk+1 =U(x, tk+1), Uk+1
x =Ux(x, tk+1), Uk+1

xx =Uxx(x, tk+1),
and

Rk = (1−θ)
(

βUk
xx + γUk

x − rUk
)
+λUk−η

k−1

∑
j=0

(
U j+1−U j)dk, j + f (x, tk+θ ). (13)

Let xi =−a+ i∆x, i = 0,1, . . . ,M, ∆x = 2a
M . By putting x = xi in (12), we get

δ1Uk+1
i +δ2 (Ux)

k+1
i +δ3 (Uxx)

k+1
i = Rk

i , (14)

where Uk+1
i = U(xi, tk+1), (Ux)

k+1
i = Ux(xi, tk+1), (Uxx)

k+1
i = Uxx(xi, tk+1), and for k = 0 from equation

(9), we get

Rk
i = (1−θ)

(
βh′′(xi)+ γh′(xi)− rh(xi)

)
+λh(xi)+ f (xi, tk+θ ), (15)
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and for k > 0

Rk
i = (1−θ)

(
β (Uxx)

k
i + γ (Ux)

k
i − rUk

i

)
+λUk

i

−η

k−1

∑
j=1

(
U j+1

i −U j
i

)
dk, j−η

(
U1

i −h(xi)
)

dk,0 + f (xi, tk+θ ). (16)

For approximation Uk
i , (Ux)

k
i , and (Uxx)

k
i we use cubic B-spline approximation as follows

Uk+1(xi) =
M+1

∑
k=−1

ck+1
k Bk(xi), Uk+1

x (xi) =
M+1

∑
k=−1

ck+1
k B′k(xi), Uk+1

xx (xi) =
M+1

∑
k=−1

ck+1
k B′′k(xi), (17)

where Bk(x) = B j+2(x) and B j(x), j =−3,−2, . . . ,M−1, is the jth cubic B-spline function with bellow
define [2]

B j(x) =



(x− x j)
3

(x j+1− x j)(x j+2− x j)(x j+3− x j)
, x ∈ [x j,x j+1),

(x− x j)
2(x j+2− x)

(x j+2− x j)(x j+2− x j+1)(x j+3− x j)
+

(x− x j)(x j+3− x)(x− x j+1)

(x j+3− x j)(x j+3− x j+1)(x j+2− x j+1)

+
(x− x j+1)

2(x j+4− x)
(x j+2− x j+1)(x j+3− x j+1)(x j+4− x j+1)

, x ∈ [x j+1,x j+2)

(x− x j)(x j+3− x)2

(x j+3− x j)(x j+3− x j+1)(x j+3− x j+2)
+

(x− x j+1)(x j+3− x)(x j+4− x)
(x j+3− x j+1)(x j+3− x j+2)(x j+4− x j+1)

+
(x− x j+2)(x j+4− x)2

(x j+4− x j+1)(x j+4− x j+2)(x j+3− x j+2)
, x ∈ [x j+2,x j+3)

(x j+4− x)3

(x j+4− x j+1)(x j+4− x j+2)(x j+4− x j+3)
, x ∈ [x j+3,x j+4)

(18)

where {B−1,B0, . . . ,BM+1} is a basis for the space of cubic splines on ∆ = {x0,x1, . . . ,xM} with extra knots
x−3 = x−2 = x−1 = x0 and xN = xN+1 = xN+2 = xN+3.

Remark 1. Assume that B = [Bi, j], Bi, j = Bi(x j), B′ = [B′i, j], B′i, j = B′i(x j), B′′ = [B′′i, j], B′′i, j = B′′i (x j), for i =
−1,2, . . . ,M+1, j = 0,1, . . . ,M. Regarding to the definition of bks, we gain

B =
1

12



12
3
7 2
2 8 2

. . .
. . .

. . .
2 8 2

2 7
3

12


,
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B′ =
1

4∆x



−12
13 −3

1 −2
2 0 −2

. . .
. . .

. . .
2 0 −2

2 −1
3 −12

12


,

B′′ =
1

2(∆x)2



12
−18 3

6 −5 2
2 −4 2

. . .
. . .

. . .
2 −4 2

2 −5 6
3 −18

12


.

Now let Ck+1
M =

(
ck+1
−1 ,ck+1

0 , . . . ,ck+1
M+1

)T
, B = (B0,B1, . . . ,BM), B′ = (B′0,B′1, . . . ,B′M), and

B′′ = (B′′0,B′′1, . . . ,B′′M), then from (17), we have

Uk+1(xi) =
(

Ck+1
M

)T
Bi, Uk+1

x (xi) =
(

Ck+1
M

)T
B′i, Uk+1

xx (xi) =
(

Ck+1
M

)T
B′′i. (19)

Regarding to (14) and (19), we get (
Ck+1

M

)T
Φi = Rk

i , i = 0,1, . . . ,M, (20)

where Φi = δ1Bi +δ2B′i +δ3B′′i. Also, from (2), we have(
Ck+1

M

)T B0 = p(tk+1),(
Ck+1

M

)T BM = q(tk+1),
(21)

From (20) and (21), we have

Λ
TCk+1

M = Rk, (22)

where Rk =
(

p(tk+1),Rk
0,R

k
1, . . . ,R

k
M,q(tk+1)

)T and Λ = (B0,Φ0,Φ1, . . . ,ΦM,BM).

3 Error analysis
In this section, we first examine the stability and then the convergence of the presented numerical method.

3.1 Stability analysis
In this subsection, we examine the stability of the presented numerical method. From (22), we have∥∥∥Ck+1

M

∥∥∥
∞

≤
∥∥Λ
−T∥∥

∞

∥∥∥Rk
∥∥∥

∞

. (23)
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On other hand, from (15) and (16) and considering max
0≤ j≤k−1

∣∣dk, j
∣∣≤ 1, we get

∥∥R0∥∥
∞
≤ R1, (24)∥∥R1∥∥

∞
≤ [P+η ]

∥∥∥(C1
M)

T
∥∥∥

∞

+M2, (25)∥∥∥Rk
∥∥∥

∞

≤ P
∥∥∥(Ck

M)
T
∥∥∥

∞

+η

k−1

∑
j=1

(∥∥∥(C j+1
M )

T
∥∥∥

∞

+
∥∥∥(C j

M)
T
∥∥∥

∞

)
+η

∥∥∥(C1
M)

T
∥∥∥

∞

+M2, k > 1, (26)

where

R1 = max
0≤i≤M

{
(1−θ)

(
β
∣∣h′′(xi)

∣∣+ γ
∣∣h′(xi)

∣∣+ r |h(xi)|
)
+λ |h(xi)|+ | f (xi, tk+θ )|

}
,

M2 = max
0≤i≤M

{η |h(xi)|+ | f (xi, tk+θ )|} ,

P = (1−θ)

(
β

9(∆x)2 +
3γ

∆x
+ r

)
+λ .

Now, equations (23), (24), (25) and (26) results in∥∥C1
M
∥∥

∞
≤ R1

∥∥Λ
−T∥∥

∞
, (27)∥∥C2

M
∥∥

∞
≤
∥∥Λ
−T∥∥

∞

(
[P+η ]

∥∥∥(C1
M)

T
∥∥∥

∞

+M2

)
, (28)∥∥∥Ck+1

M

∥∥∥
∞

≤
∥∥Λ
−T∥∥

∞

(
P
∥∥∥(Ck

M)
T
∥∥∥

∞

+η

k−1

∑
j=1

(∥∥∥(C j+1
M )

T
∥∥∥

∞

+
∥∥∥(C j

M)
T
∥∥∥

∞

)
+η

∥∥∥(C1
M)

T
∥∥∥

∞

+M2

)
, k > 1. (29)

According to Archimedean property in R there exists a real number K1, such that M2 ≤ K1

∥∥∥(C1
M)

T
∥∥∥

∞

, then using

(27) and (28), we get
∥∥C2

M

∥∥
∞
≤ R2

(∥∥Λ−T
∥∥

∞

)2, where R2 = M1 (P+η +K1). Let
∥∥Cl

M

∥∥
∞
≤ Rl

(∥∥Λ−T
∥∥

∞

)l for
l = 1,2,3, . . . ,k. Now using (29), we have

∥∥∥Ck+1
M

∥∥∥
∞

≤
(∥∥Λ

−T∥∥
∞

)2
(
(P+η)Rk

(∥∥Λ
−T∥∥

∞

)k−1
+(2η +K1)M1 +η

k−1

∑
j=2

R j
(∥∥Λ

−T∥∥
∞

) j−1
)
. (30)

According to Archimedean property in R there exists a real number K3, such that (2η +K1)M1 ≤K3
∥∥Λ−T

∥∥
∞

, then
it follows from relation (30) that

∥∥∥Ck+1
M

∥∥∥
∞

≤
(∥∥Λ

−T∥∥
∞

)3
(
(P+η)Rk

(∥∥Λ
−T∥∥

∞

)k−2
+K3 +ηR2 +η

k−1

∑
j=3

R j
(∥∥Λ

−T∥∥
∞

) j−2
)
.

By repeating this process, we can conclude that there exists a real number Rk+1, such that∥∥∥Ck+1
M

∥∥∥
∞

≤ Rk+1
(∥∥Λ

−T∥∥
∞

)k+1
. (31)

Now we discuss the eigenvalues of matrix Λ−T . Since the eigenvalues of Λ−T are the inverse of the eigenvalues
of ΛT , we will examine the limits of the eigenvalues of matrix ΛT and show that they tend to infinity when M tends
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to infinity. We know that

Λ
T =



1
a b c

d e f
d e f

. . . . . . . . .
d e f

g h k
1


,

where

a =
3δ1

12
+
−3δ2

4∆x
+

3δ3

2(∆x)2 , b =
7δ1

12
+

δ2

4∆x
+
−5δ3

2(∆x)2 , c =
2δ1

12
+

2δ2

4∆x
+
−2δ3

2(∆x)2 ,

d =
2δ1

12
+
−2δ2

4∆x
+

2δ3

2(∆x)2 , e =
8δ1

12
+
−4δ3

2(∆x)2 , f =
2δ1

12
+

2δ2

4∆x
+

2δ3

2(∆x)2 ,

g =
2δ1

12
+
−2δ2

4∆x
+

2δ3

2(∆x)2 , h =
7δ1

12
+
−δ2

4∆x
+
−5δ3

2(∆x)2 , k =
3δ1

12
+

3δ2

4∆x
+

3δ3

2(∆x)2 .

Using the famous Gershgorin circles theorem, we have

z = 1,

2δ1(∆x)2 +15δ2∆x+6δ3

12(∆x)2 ≤ z≤ 12δ1(∆x)2−15δ2∆x−54δ3

12(∆x)2 ,

4δ1(∆x)2 +12δ2∆x

12(∆x)2 ≤ z≤ 12δ1(∆x)2−12∆xδ2−48δ3

12(∆x)2 , (32)

2δ1(∆x)2 +12δ2∆x

12(∆x)2 ≤ z≤ 12δ1(∆x)2−18∆xδ2−60δ3

12(∆x)2 ,

where z is the eigenvalue of matrix ΛT . We assume that r > 1
2 σ2. Since δ1 =

θ 1−α

(∆t)α
Γ(2−α)

+θr > 0, δ2 =−θ(r−
1
2 σ2)< 0, δ3 =− 1

2 θσ2 < 0, from (32) we have

z ∈ {1}∪

{
x

∣∣∣∣∣2δ1(∆x)2 +15δ2∆x+6δ3

12(∆x)2 ≤ x≤ 12δ1(∆x)2−18∆xδ2−60δ3

12(∆x)2

}
. (33)

Therefore, Eq. (33) implies that when ∆x tends to zeros then 1
|z| → 0.

3.2 Convergence analysis

Let Ek = u(x, tk+1)−U(x, tk+1), Ek
x = ux(x, tk+1)−Ux(x, tk+1), Ek

xx = uxx(x, tk+1)−Uxx(x, tk+1), denote the errors
at time tk+1. By subtracting (8) from (12), we have

δ1Ek+1 +δ2Ek+1
x +δ3Ek+1

xx = (1−θ)
(

βEk
xx + γEk

x − rEk
)
+λEk−η

k−1

∑
j=0

(
E j+1−E j)dk, j− εk. (34)
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Now we put Ek+1(xi) =
(
Dk+1

M

)T Bi, Ek+1
x (xi) =

(
Dk+1

M

)T B′i, Ek+1
xx (xi) =

(
Dk+1

M

)T B′′i, and use the numerical

method on (34). First of all, according to the initial and boundary conditions we have
(
Dk+1

M

)T B0 = 0,
(
Dk+1

M

)T BM =

0 and 0 = E0(xi) =
(
D0

M
)T Bi. Also, by putting k = 0 in (34), we get(

D1
M
)T

Φi =−ε0. (35)

In addition, for k > 0 from (34) we have (
Dk+1

M

)T
Φi = yk

i , (36)

where

yk
i =

(
Dk

M

)T (
(1−θ)

(
βB′′i + γB′i− rBi

)
+λBi

)
−η

k−1

∑
j=0

((
D j+1

M

)T
−
(

D j
M

)T
)

Bidk, j− εk. (37)

Therefore

Λ
T Dk+1

M = Y k, k ≥ 0, (38)

where Y 0 = −(0,ε0,ε0, . . . ,ε0,0)
T and Y k =

(
0,yk

0,y
k
1, . . . ,y

k
M,0

)T for k > 0. Using (37) and the definition of Y 0,
it results ∥∥Y 0∥∥

∞
≤ ε0,∥∥∥Y k

∥∥∥
∞

≤ (P+η)

∥∥∥∥(Dk
M

)T
∥∥∥∥

∞

+η

k−1

∑
j=1

∥∥∥∥(D j
M

)T
∥∥∥∥

∞

+ εk, k > 0 (39)

From (38) and (39), we have ∥∥D1
M
∥∥

∞
≤
∥∥Λ
−T∥∥

∞

∥∥Y 0∥∥
∞
≤ ε0

∥∥Λ
−T∥∥

∞
. (40)

Since lim
∆t→0

εk = 0 for all k ≥ 0, (40) results that
∥∥D1

M

∥∥
∞
→ 0 as ∆t tends to 0. Also, from (38) and (39), we get∥∥D2

M
∥∥

∞
≤
∥∥Λ
−T∥∥

∞

(
(P+η)ε0

∥∥Λ
−T∥∥

∞
+ ε1

)
. (41)

Given that lim
∆t→0

εk = 0 for all k ≥ 0, from (41) we have lim
∆t→0

∥∥D2
M

∥∥
∞
= 0. Let lim

∆t→0

∥∥Dl
M

∥∥
∞
= 0 for l = 0,1, . . . ,k.

From (38) and (39), we have∥∥∥Dk+1
M

∥∥∥
∞

≤
∥∥Λ
−T∥∥

∞

∥∥∥Y k
∥∥∥

∞

≤
∥∥Λ
−T∥∥

∞

(
(P+η)

∥∥∥∥(Dk
M

)T
∥∥∥∥

∞

+η

k−1

∑
j=1

∥∥∥∥(D j
M

)T
∥∥∥∥

∞

+ εk

)
. (42)

Now, since lim
∆t→0

εk = 0 and lim
∆t→0

∥∥Dl
M

∥∥
∞
= 0, l = 0,1, . . . ,k, from (42), we get lim

∆t→0

∥∥Dk+1
M

∥∥
∞
= 0.

4 Numerical experiments
This section contains two numerical illustrations. We apply the time-fractional Black-Scholes equation with
smooth initial conditions to the first example. The second example deals with the valuation of a European put
option with a non-smooth payoff function based on the time-fractional Black-Scholes equation of order α .

All computations are performed by MATLAB R2019a software running on a Sony VAIO Laptop (Intel Core
i5-2410 M Processor 2.30 GHz with Turbo Boost up to 2.90 GHz, 8 GB of RAM, 64-bit).
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Figure 1: Surface plots with M = N = 20, α = 0.5 for Example 1.

Example 1. In this example, we consider the following time-fractional partial differential equation:

CDα
0,tu =

1
2

σ
2 ∂ 2u

∂x2 +

(
r− 1

2
σ

2
)

∂u
∂x
− ru+ f (x, t), (x, t) ∈ (−1,1)× (0,1],

u(−1, t) = tα + e−1, u(1, t) = tα + e+2, t ∈ (0,1],
u(x,0) = ex + x+1, x ∈ (−1,1),

where θ = 0.5, σ = 0.1, and r = 0.06. The reaction term f (x, t) is chosen such that the exact solution is u(x, t) =
tα + ex + x+ 1. The surface plots of the analytical solution and the numerical solution obtained by using the
proposed technique for α = 0.5 are depicted in Figure 1.

We measure the accuracy of the numerical solution at time t = tn by computing the discrete L2 norm of the
error

eM,N =

√√√√M−1

∑
k=1

∆x
∣∣u(xk, tn)−Un

k

∣∣2,
where UM,N denotes the numerical solution computed using the spatial discretization parameter M and the temporal
discretization parameter N. The numerical convergence rate is then computed as

RM,N = log2

(
eM,N

e2M,2N

)
.

The discrete L2 errors and the convergence rates for the numerical solution at the final time t = 1 for α = 0.5 are
given in Table 1.
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Table 1: Error eM,N and convergence rate RM,N at t = 1 with M = 50 for Example 1.

N eM,N RM,N

4 2.994995e−03 −
8 8.512802e−04 1.8148

16 2.262609e−04 1.9117
32 6.592457e−05 1.7791
64 2.024992e−05 1.7029
128 6.539345e−06 1.6307
256 2.427722e−06 1.4295

Figure 2: Surface plots with N = 50 for Example 2.

Example 2. Here, we consider the following problem

CDα
0,tu =

1
2

σ
2 ∂ 2u

∂x2 +

(
r− 1

2
σ

2
)

∂u
∂x
− ru, (x, t) ∈ (−X ,X)× (0,T ],

u(−X , t) = Ke−rt , u(X , t) = 0, t ∈ (0,T ],
u(x,0) = maxK−Kex,0, x ∈ (−X ,X),

where θ = α = 0.5, σ = 0.1, r = 0.01, K = 50, and M = 1000. The surface plots of the numerical solution for
X = 10 and N = 50 obtained by using the proposed method is depicted in Figure 2.

As the exact solution of this problem is not available, we use the error by computing the discrete LN
∞ =∥∥UM,2N−UM,N

∥∥ norm, and the spatial convergence rate is then estimated as

RN
∞ = log2

(
LN

∞

L2N
∞

)
.
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Table 2: Error LN
∞ and convergence rate RN

∞ at t = 1 with M = 50 for Example 2.

N LN
∞ RN

∞

16 1.272127e−02 −
16 6.153785e−03 1.0477
32 2.984136e−03 1.0442
64 1.491086e−03 1.0009
128 7.098834e−04 1.0707
256 3.528315e−04 1.0086
512 1.766154e−04 0.9984
1024 8.838717e−05 0.9987

Table 2 list the temporal error estimates and convergence rates of the numerical method for various values of N.

5 Conclusion
In this paper, we introduced a new numerical technique for finding the solution of the time–fractional Black–
Scholes equation, which is a mathematical model that describes the behavior of European options in financial
markets. The technique used a combination of cubic B-spline collocation and finite difference methods to discretize
the equation in both space and time dimensions. We established the stability and convergence properties of the
technique both theoretically and numerically. We also demonstrated the effectiveness and accuracy of the technique
by applying it on two different examples.
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