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Abstract. In this article, a multiscale nonlinear system of singularly perturbed differential equations of
convection-diffusion type is considered. A numerical technique combined with the continuation method
is constructed to obtain the numerical computations. The newly developed numerical method is shown
to be first order convergent uniformly with respect to the perturbation parameter.
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1 Introduction

Due to the rapid changes in the solutions of Singular Perturbation Problems (SPPs), classical numerical
methods are not suitable for them [11]. As mentioned in [5] and [10], even the non-classical numerical
methods for SPPs render their uselessness whenever conditions are imposed on the magnitude of the
perturbation parameters or artificial conditions are imposed on the problems.

System of singularly perturbed nonlinear differential equations arise in various fields, for instance,
in catalytic reaction theory [2] and control systems [7, 14]. For a nonlinear system of Singularly Per-
turbed Differential Equations (SPDEs) of Reaction-Diffusion (RD) type, various numerical methods are
constructed in [4, 8, 9, 12].

The Navier-Stokes equations, a system of four nonlinear partial differential equations of Convection-
Diffusion (CD) type, describes the dynamics of fluid and gas. This system exhibits the singularly per-
turbed nature when the magnitude of the convective terms is much larger than that of the diffusion
terms [11].
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In the Navier-Stokes equations not all the leading term in each equation is multiplied by a parameter.
Thus all the singular perturbation parameters associated with a system of DEs need not have small
magnitudes. In [9], a higher order numerical method is developed for a second order nonlinear system of
two SPDEs of RD type in which the highest order derivative term in the first equation alone is multiplied
by a small parameter ε. Article [1] deals with the construction of a numerical method for a nonlinear
system of two SPDEs such that in the system, along with the nonlinear terms, the first equation has only
the first derivative of the first component and the second equation has only the second derivative of the
second component.

Construction of robust, layer-resolving and parameter-uniform numerical method for a nonlinear
system of SPDEs of CD type is quite complicated. Recently, in the article [10], a parameter-uniform
and robust numerical method is developed for a nonlinear system of SPDEs of CD type with two dif-
ferent perturbation parameters. It should be noted that for a nonlinear system of SPDEs of CD type no
parameter-uniform, layer-resolving and robust numerical method is available in the literature except [10].

It is important to observe that the nonlinear system considered in the present article cannot be re-
solved by using the numerical method reported in [10] where the condition 0 < ε1 < ε2 < 1 is assumed.
Thus it is not possible to include the choice ε2 = 1 in [10]. Moreover the solution pattern for the nonlin-
ear system considered in the present article and that of the system in [10] are totally different. Hence a
new technique is required to resolve the nonlinear system considered in the present article.

Induced by the Navier-Stokes equations as mentioned in [1, 9–11], in the present article, a nonlinear
system of SPDEs of CD type in which the highest order derivative term in the first equation alone is
multiplied by a small parameter is considered.

It is worth observing that no condition is imposed on the magnitude of the perturbation parameter
occurring in the nonlinear system considered in the present article and also no artificial condition is im-
posed on the problem either for theoretical or for computational purposes. Hence the numerical method
developed in this article is robust, layer-resolving and parameter-uniform.

The following norms for any vector function −→ψ on [0,1] are introduced: ‖ −→ψ (t) ‖= maxi |ψi(t)| and
‖ −→ψ ‖= supt∈[0,1] ‖

−→
ψ (t) ‖ . For any mesh function

−→
Ψ on Ω

N
= {t j}N

j=0 the following discrete norms are

introduced: ‖ −→Ψ(t j) ‖= maxi |Ψi(t j)| and ‖ −→Ψ ‖= max
t j∈Ω

N ‖
−→
Ψ(t j) ‖ .

In this article C denotes a positive constant which is free from t, ε and N.

2 The nonlinear system

Consider the following nonlinear system of SPDEs of CD type

ε1 u ′′1 (t)+a1(t)u ′1(t)− f1(t, u1(t), u2(t)) = 0,

ε2 u ′′2 (t)+a2(t)u ′2(t)− f2(t, u1(t), u2(t)) = 0 on Ω = (0,1),
(1)

with u1(0) = u01, u2(0) = u02, u1(1) = u11 and u2(1) = u12. (2)

Here u01, u02, u11 and u12 are known constants and 0 < ε1 ≤ ε2 ≤ 1. For all t ∈Ω = [0,1] and for i = 1,2,
fi(t, u1(t), u2(t)) ∈ C3(Ω×R2) and ai(t) ∈ C3(Ω). It is assumed that for i = 1,2 and for all t ∈ Ω,



A multiscale nonlinear system of singularly perturbed differential equations 357

ai(t)≥ α > 0 and for all (t, u1(t), u2(t)) ∈Ω×R2,

∂ fi(t, u1(t), u2(t))
∂u j

≤ 0, i, j = 1,2, i 6= j (3)

and

min
t∈Ω

i=1,2

(
∂ fi(t, u1(t), u2(t))

∂u1
+

∂ fi(t, u1(t), u2(t))
∂u2

)
≥ β > 0. (4)

With the above conditions, a unique solution (u1(t), u2(t)) of (1)-(2) such that ui(t) ∈C3(Ω), i = 1,2,
can be ensured by the implicit function theorem.

As explained in [9], there are four possible cases based on the magnitudes of ε1 and ε2. One of the
cases is discussed in [10] and the other unique case 0 < ε1 < ε2 = 1 is considered in the present article
elaborately. Based on the assumption 0 < ε1 < ε2 = 1 problem (1)-(2) is rewritten as

ε u ′′1 (t)+a1(t)u ′1(t)− f1(t, u1(t), u2(t)) = 0,

u ′′2 (t)+a2(t)u ′2(t)− f2(t, u1(t), u2(t)) = 0 on Ω,
(5)

with u1(0) = u01, u2(0) = u02, u1(1) = u11 and u2(1) = u12. (6)

In operator form, problem (5)-(6) can be written as

−→
T−→u (t) = E −→u ′′(t)+A(t)−→u ′(t)−−→f (t,−→u ) =

−→
0 on Ω, (7)

with −→u (0) =−→u 0 and−→u (1) =−→u 1, (8)

where −→u 0 = (u01, u02)
T and −→u 1 = (u11, u12)

T . For all t ∈ Ω, −→u (t) = (u1(t), u2(t))T ,
−→
f (t,−→u ) =

( f1(t, u1, u2 ), f2(t, u1, u2 ))
T , E =

[
ε 0
0 1

]
and A(t) =

[
a1(t) 0

0 a2(t)

]
.

A reduced problem (obtained by putting ε = 0) of (7)-(8) is as follows:

−→
T 0
−→v 0(t) = E0

−→v ′′0 (t)+A(t)−→v ′0(t)−
−→
f (t,−→v 0 ) =

−→
0 on Ω, (9)

with v02(0) = u02 and−→v 0(1) =−→u 1, (10)

where E0 =

[
0 0
0 1

]
. As above, the implicit function theorem ensures a unique solution−→v 0(t) to (9)-(10).

Moreover,

|v(k)0i (t)| ≤C for i = 1,2, k = 0,1,2,3 and t ∈Ω. (11)
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3 Theoretical results

Let
−→
T ′ be a linear operator such that

−→
T ′
−→
φ (t) = E

−→
φ
′′(t)+A(t)

−→
φ
′(t)−P(t)

−→
φ (t),

where P(t) =
[

p11(t) p12(t)
p21(t) p22(t)

]
with pi j(t)≤ 0, for i, j = 1,2, i 6= j and

min
t∈Ω

(p11(t)+ p12(t), p21(t)+ p22(t))> 0.

Theorem 1. Let −→ψ be any vector function such that −→ψ (0)≥−→0 , −→ψ (1)≥−→0 and
−→
T ′−→ψ ≤−→0 on Ω, then

−→
ψ ≥−→0 on Ω.

Proof. Let i∗ and t∗ be such that ψi∗(t∗) = min
i, t

ψi(t) and suppose ψi∗(t∗)< 0. Then t∗ /∈ {0,1}. Further,

−→
T ′−→ψ (t∗) =

[
ε ψ ′′1 (t

∗)+a1(t∗)ψ ′1(t
∗)− p11(t∗)ψ1(t∗)− p12(t∗)ψ2(t∗)

ψ ′′2 (t
∗)+a2(t∗)ψ ′2(t

∗)− p21(t∗)ψ1(t∗)− p22(t∗)ψ2(t∗)

]
.

Thus,

(
−→
T ′−→ψ )i∗(t∗)≥


ε ψ ′′1 (t

∗)+a1(t∗)ψ ′1(t
∗)− (p11(t∗)+ p12(t∗))ψ1(t∗), if i∗ = 1,

ψ ′′2 (t
∗)+a2(t∗)ψ ′2(t

∗)− (p21(t∗)+ p22(t∗))ψ2(t∗), if i∗ = 2.

Using the properties of A(t) and P(t), (
−→
T ′−→ψ )i∗(t∗) > 0, which is a contradiction. Hence −→ψ ≥ −→0 on

Ω.

Decompose the solution −→u of (7)-(8) into a smooth component −→v and a singular component −→w such
that −→u =−→v +−→w where −→v and −→w are the solutions of the following problems

E−→v ′′(t)+A(t)−→v ′(t)−−→f (t,−→v ) =
−→
0 on Ω, (12)

with−→v (0) being suitably chosen and −→v (1) =−→u 1 (13)

and
E−→w ′′(t)+A(t)−→w ′(t)−−→f (t,−→v +−→w )+

−→
f (t,−→v ) =

−→
0 on Ω, (14)

with−→w (0) =−→u 0−−→v (0) and−→w (1) =
−→
0 . (15)

3.1 Bounds on vecv(t) and its derivatives

Theorem 2. For all t ∈Ω, |v(k)1 (t)| ≤C, k = 0,1,2, |v(3)1 (t)| ≤Cε−1, |v(l)2 (t)| ≤C, l = 0,1,2,3.
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Proof. From (12) and (9),

ε v ′′1 (t)+a1(t)
(
v ′1− v ′01

)
(t)−b11(t)(v1− v01)(t)−b12(t)(v2− v02)(t) = 0 (16)

and
v ′′2 (t)+a2(t)

(
v ′2− v ′02

)
(t)−b21(t)(v1− v01)(t)−b22(t)(v2− v02)(t) = 0, (17)

where bi j(t) =
∂ fi(t,

−→
µ (t))

∂u j
are intermediate values.

Equations (16) and (17) can be written together as
−→
T ′−→v (t) = E−→v ′′(t)+A(t)−→v ′(t)−B(t)−→v (t) = A(t)−→v ′0(t)−B(t)−→v 0(t) =−→g (t), (18)

where B(t) =
[

b11(t) b12(t)
b21(t) b22(t)

]
. For convenience, −→v (t) is decomposed as

−→v (t) =−→y 0(t)+ ε
−→y 1(t)+ ε

2−→y 2(t), (19)

where −→y 0(t) is the solution of

a1(t)y′01(t)−b11(t)y01(t)−b12(t)y02(t) = g1(t),
y′′02(t)+a2(t)y′02(t)−b21(t)y01(t)−b22(t)y02(t) = g2(t),

y02(0) = u02, y01(1) = u11, y02(1) = u12,
(20)

−→y 1(t) is the solution of

a1(t)y′11(t)−b11(t)y11(t)−b12(t)y12(t) = −y′′01(t),
y′′12(t)+a2(t)y′12(t)−b21(t)y11(t)−b22(t)y12(t) = 0,

y12(0) = 0, y11(1) = 0, y12(1) = 0
(21)

and −→y 2(t) is the solution of

ε y′′21(t)+a1(t)y′21(t)−b11(t)y21(t)−b12(t)y22(t) = −y′′11(t),
y′′22(t)+a2(t)y′22(t)−b21(t)y21(t)−b22(t)y22(t) = 0,

y21(0) = q, y22(0) = 0, y21(1) = 0, y22(1) = 0,
(22)

where q is chosen such that |q| ≤C. From (20) and (21), for 0≤ k ≤ 3 and for all t ∈Ω,

||−→y (k)
0 (t)|| ≤C and ||−→y (k)

1 (t)|| ≤C. (23)

Using Theorem 1 and the bound on y′′11, for all t ∈Ω,

||−→y 2(t)|| ≤C and |y(k)22 (t)| ≤C, k = 1,2.

Using the mean value theorem, for all t ∈Ω, |y′21(t)| ≤C ε−1.
Differentiating the second equation of (22) with respect to t once and using the bound of y′21,

|y(3)22 (t)| ≤ C ε−1. From the first equation of (22), for all t ∈ Ω, |y′′21(t)| ≤ C ε−2. Differentiating the
first equation of (22) with respect to t once and using the bounds of other components, for all t ∈ Ω,

|y(3)22 (t)| ≤C ε−3. Finally the required bounds on v1(t),v2(t) and their derivatives follow from the above
established bounds of −→y 0(t), −→y 1(t), −→y 2(t) and their derivatives.
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3.2 Bounds on vecw(t) and its derivatives

For all t ∈Ω, let B(t) = e−αt/ε .

Theorem 3. For all t ∈Ω,

|w1(t)| ≤C ε +CB(t)+C ε
2(1−B(t)), |w2(t)| ≤C ε +C ε

2(1−B(t)),

|w(k)
1 (t)| ≤C ε

−kB(t), k = 1,2,3, |w′2(t)| ≤C ε,

|w′′2(t)| ≤C ε +CB(t), |w(3)
2 (t)| ≤C ε

−1B(t).

Proof. Using (14), we have

ε w ′′1 (t)+a1(t)w ′1(t)− c11(t)w1(t)− c12(t)w2(t) = 0 (24)

and
w ′′2 (t)+a2(t)w ′2(t)− c21(t)w1(t)− c22(t)w2(t) = 0, (25)

where ci j(t) =
∂ fi(t,

−→
γ (t))

∂u j
are intermediate values. Equations (24) and (25) can be written together as

−→
T ′−→w (t) = E−→w ′′(t)+A(t)−→w ′(t)−C(t)−→w (t) =

−→
0 , (26)

where C(t) =
[

c11(t) c12(t)
c21(t) c22(t)

]
.

Let
−→
Γ (t) =

[
C1ε(1− t)+C2B(t)+C3ε2(1−B(t))

C1ε(1− t)+C3ε2(1−B(t))

]
and
−→
Λ±(t) =

−→
Γ (t)±−→w (t). Choosing C1,C2

and C3 suitably,
−→
Λ±(0)≥−→0 ,

−→
Λ±(1)≥−→0 and

−→
T ′
−→
Λ (t)≤−→0 on Ω. Using Theorem 1,

−→
Λ±(t)≥−→0 on

Ω. Hence the bounds on w1(t) and w2(t) hold. The bounds on the derivatives of w1 and w2 follow by
using similar arguments in [6].

4 Mesh generation and the discrete problem

On Ω, a Shishkin mesh with N mesh-intervals is constructed as follows. Let ΩN = {t j}N−1
j=1 then Ω

N
=

{t j}N
j=0. Domain Ω is divided into 2 sub -intervals [0,λ ] and (λ ,1] such that Ω = [0,λ ]∪ (λ ,1]. The

parameter λ is defined to be

λ = min
{

1
2
,

ε

α
lnN

}
.

From the total N mesh points, N
2 mesh points are placed uniformly on each of the sub-domains [0,λ ]

and [λ ,1]. Let H1 and H2 denote the step size in [0,λ ] and [λ ,1], respectively. Then H1 =
2λ

N
and

H2 =
2(1−λ )

N
. Thus,

t j =


jH1, for 0≤ j ≤ N

2
,

λ +

(
j− N

2

)
H2, for

N
2
+1≤ j ≤ N.
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The discrete problem corresponding to (7)-(8) is defined to be
−→
T N−→U (t j) = E δ

2−→U (t j)+A(t j)D+−→U (t j)−
−→
f (t j,

−→
U (t j)) =

−→
0 , for t j ∈Ω

N , (27)

−→
U (t0) =−→u (t0) and

−→
U (tN) =−→u (tN). (28)

Here

δ
2Z(t j) =

(D+−D−)Z(t j)

h j
, D+Z(t j) =

Z(t j+1)−Z(t j)

h j+1
, D−Z(t j) =

Z(t j)−Z(t j−1)

h j
,

h j = t j− t j−1, h j =
h j+1 +h j

2
, h0 =

h1

2
and hN =

hN

2
.

5 Error in the numerical method

Let
−→
ϒ 1 and

−→
ϒ 2 be any two vector mesh functions such that

−→
ϒ 1(t0) =

−→
ϒ 2(t0) and

−→
ϒ 1(tN) =

−→
ϒ 2(tN).

For t j ∈ΩN ,

(
−→
T N−→ϒ 1−

−→
T N−→ϒ 2)(t j)

= E δ 2(
−→
ϒ 1−

−→
ϒ 2)(t j)+A(t j)D+(

−→
ϒ 1−

−→
ϒ 2)(t j)−

−→
f (t j,

−→
ϒ 1(t j))+

−→
f (t j,

−→
ϒ 2(t j))

= E δ 2(
−→
ϒ 1−

−→
ϒ 2)(t j)+A(t j)D+(

−→
ϒ 1−

−→
ϒ 2)(t j)−D(t j)(

−→
ϒ 1−

−→
ϒ 2)(t j)

= (
−→
T N) ′(

−→
ϒ 1−

−→
ϒ 2)(t j),

(29)

where D(t j) = (dik(t j))2×2, dik(t j) =
∂ fi(t j,

−→
ζ (t j))

∂uk
are intermediate values and (

−→
T N) ′ is the Frechet

derivative of
−→
T N .

Theorem 4. For any vector mesh function
−→
Ψ , the inequalities

−→
Ψ(t0)≥

−→
0 ,
−→
Ψ(tN)≥

−→
0 and (

−→
T N)′

−→
Ψ ≤

−→
0 on ΩN imply that

−→
Ψ ≥−→0 on Ω

N
.

Proof. Let i∗ and j∗ be such that Ψi∗(t j∗) = min
i, j

Ψi(t j) and assume Ψi∗(t j∗) < 0. Then j∗ 6= 0, N. Let

t j∗ ∈ΩN . Consider

(
−→
T N)′

−→
Ψ(t j∗) =

ε δ 2Ψ1(t j∗)+a1(t j∗)D+Ψ1(t j∗)−d11(t j∗)Ψ1(t j∗)−d12(t j∗)Ψ2(t j∗)

δ 2Ψ2(t j∗)+a2(t j∗)D+Ψ2(t j∗)−d21(t j∗)Ψ1(t j∗)−d22(t j∗)Ψ2(t j∗)

 .
Thus,

((
−→
T N)′

−→
Ψ)i∗(t j∗)≥


ε δ 2Ψ1(t j∗)+a1(t j∗)D+Ψ1(t j∗)− (d11(t j∗)+d12(t j∗))Ψ1(t j∗), if i∗ = 1,

δ 2Ψ2(t j∗)+a2(t j∗)D+Ψ2(t j∗)− (d21(t j∗)+d22(t j∗))Ψ2(t j∗), if i∗ = 2.

Using the properties of A(t j) and D(t j), ((
−→
T N)′

−→
Ψ)i∗(t j∗)> 0, a contradiction. Hence

−→
Ψ ≥−→0 on Ω

N
.
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Theorem 5. If
−→
Ψ is any vector mesh function on Ω

N
, then for any t j ∈Ω

N

||
−→
Ψ(t j)|| ≤max

{
||
−→
Ψ(t0)||, ||

−→
Ψ(tN)||,

1
α
||(
−→
T N)′

−→
Ψ(t j)||ΩN

}
.

Proof. Let t j ∈Ω
N
. Consider

−→
Φ
±(t j) = max

{
||
−→
Ψ(t0)||, ||

−→
Ψ(tN)||,

1
α
||(
−→
T N)′

−→
Ψ(t j)||ΩN

}
±
−→
Ψ(t j).

Then
−→
Φ±(t j)≥

−→
0 for j = 0,N. Using the properties of A(t j) and D(t j), (

−→
T N)′

−→
Φ± ≤−→0 on ΩN . Hence

by Theorem 4,
−→
Φ± ≥−→0 on Ω

N
.

Using Theorem 5 with (
−→
ϒ 1−

−→
ϒ 2)(t j),

||(
−→
ϒ 1−

−→
ϒ 2)(t j)|| ≤ max{||(

−→
ϒ 1−

−→
ϒ 2)(t0)||, ||(

−→
ϒ 1−

−→
ϒ 2)(tN)||, 1

α
||(
−→
T N)′(

−→
ϒ 1−

−→
ϒ 2)(t j)||ΩN}.

(30)
Since (

−→
ϒ 1−

−→
ϒ 2)(t0) =

−→
0 and (

−→
ϒ 1−

−→
ϒ 2)(tN) =

−→
0 , (30) becomes,

||(
−→
ϒ 1−

−→
ϒ 2)(t j)|| ≤ C ||(

−→
T N)′(

−→
ϒ 1−

−→
ϒ 2)(t j)||ΩN . (31)

Now from (29) and (31),

||(
−→
ϒ 1−

−→
ϒ 2)(t j)|| ≤ C ||(

−→
T N) ′(

−→
ϒ 1−

−→
ϒ 2)(t j)||ΩN =C ||

−→
T N−→

ϒ 1(t j)−
−→
T N−→

ϒ 2(t j)||ΩN . (32)

Theorem 6. Let −→u be the solution of (7)-(8) and
−→
U be the solution of (27)-(28). Then for t j ∈Ω

N
,

||(−→U −−→u )(t j)|| ≤ C N−1 lnN. (33)

Proof. Let t j ∈ΩN . From (32),

||(−→U −−→u )(t j)|| ≤ C ||(
−→
T N−→U −

−→
T N−→u )(t j)||.

Consider

||(
−→
T N−→u −

−→
T N−→U )(t j)|| = ||

−→
T N−→u (t j)||= ||(

−→
T N−→u −

−→
T−→u )(t j)||

≤ E ||(δ 2−→u −−→u ′′)(t j)||+ ||A(t j)|| ||(D+−→u −−→u ′)(t j)||

≤ E
(
||(δ 2−→v −−→v ′′)(t j)||+ ||(δ 2−→w −−→w ′′)(t j)||

)
+||A(t j)||(||(D+−→v −−→v ′)(t j)||+ ||(D+−→w −−→w ′)(t j)||) .

As the bounds for −→v and −→w are similar to the corresponding components in [13], (33) follows by using
similar procedure adopted in [13].
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6 The continuation method

The nonlinear system of ordinary differential equations in (7)-(8) is modified to an artificial nonlinear
system of partial differential equations as given below. For (t,x) ∈ (0,1)× (0,X ],

−∂u1(t,x)
∂x

+ ε
∂ 2u1(t,x)

∂ t2 +a1(t)
∂u1(t,x)

∂ t
− f1(t,−→u (t,x)) = 0,

−∂u2(t,x)
∂x

+
∂ 2u2(t,x)

∂ t2 +a2(t)
∂u2(t,x)

∂ t
− f2(t,−→u (t,x)) = 0,

(34)

with −→u (0,x) =−→u 0,
−→u (1,x) =−→u 1, x≥ 0 and −→u (t,0) =−→u init(t), 0 < t < 1.

The above system of equations can be written together in vector form as

−∂
−→u (t,x)

∂x
+E

∂ 2−→u (t,x)
∂ t2 +A(t)

∂
−→u (t,x)

∂ t
−−→f (t,−→u (t,x)) =

−→
0 ,

−→u (0,x) =−→u 0,
−→u (1,x) =−→u 1, x≥ 0 and −→u (t,0) =−→u init(t), 0 < t < 1,

(35)

where E and A are diagonal matrices as in (7). The continuation method developed for a scalar nonlinear
DE of RD type in [3] is modified appropriately for a nonlinear system of DEs of CD type as given below
which is used to solve (35). For j = 1, . . . ,N and k = 1, . . .K,

−D−x
−→
U (t j,xk)+E δ 2

t
−→
U (t j,xk)+A(t j)D+

t
−→
U (t j,xk)−

−→
f (t j,

−→
U (t j,xk−1)) =

−→
0 , (36)

−→
U (t0,xk) = −→u (t0),

−→
U (tN ,xk) =

−→u (tN) for all k and
−→
U (t j,x0) = −→u init(t j) for all t j ∈Ω

N
,

(37)

where

δ
2
t Z(t j,xk) =

(D+
t −D−t )Z(t j,xk)

h j
, D+

t Z(t j,xk) =
Z(t j+1,xk)−Z(t j,xk)

h j+1
,

D−t Z(t j,xk) =
Z(t j,xk)−Z(t j−1,xk)

h j
, D−x Z(t j,xk) =

Z(t j,xk)−Z(t j,xk−1)
hx

.

Here
−→u init(t) =−→u (0)+ t(−→u (1)−−→u (0)),

hx = xk− xk−1 and K is determined as below. Define,

Err(k) = max
1≤ j≤N

(
||−→U (t j,xk)−

−→
U (t j,xk−1)||

hx

)
for k = 1, . . . ,K. (38)

The hx is chosen such that Err(k) decreases with increasing k; precisely,

Err(k)≤ Err(k−1) for all k,1 < k ≤ K. (39)

and K such that
Err(K)≤ tol, (40)
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where tol denotes error tolerance.

Algorithm :

Step 1: Begin from x0 with hx = 1.
Step 2: Suppose (39) is not satisfied for some k, then quit the current step and begin from xk−1 with hx

as hx/2. Continue halving hx until finding a hx for which (39) is satisfied.
Step 3: If (39) is satisfied at each hx, then continue the procedure until either (40) is satisfied or K = 100.
Step 4: If (40) is not satisfied, then it is assumed that the stepping process is stalled due to the choice of

a large hx. In such a case, the entire process is repeated from x0 with hx/2 instead of hx.

Step 5: If (40) is satisfied, then
−→
U (t j,xK) are taken as the numerical approximations to the solution of

(35).

7 Illustrations

Three different problems are analyzed here. Aforesaid continuation technique is used to solve all the
problems. Tolerance ′tol′ is chosen to be 0.00001. Notations DN , CN

p and pN denote the parameter-
uniform maximum pointwise error, parameter-uniform error constant and parameter-uniform rate of
convergence, respectively and given by

DN = max
ε

DN
ε where DN

ε =‖ −→U N−−→U 2N ‖,

pN = log2
DN

D2N , CN
p =

DNN p?

1−2−p? where p? = min
N

pN .

Example 1. Consider the nonlinear system

E−→u ′′(t)+A(t)−→u ′(t)−−→f (t,−→u (t)) =
−→
0 , t ∈ (0,1),

with −→u (0) = (sin(7),cos(π/3)), −→u (1) =

(
e−0.8,

√
3

5+
√

2

)
, where

E =

[
ε 0
0 1

]
, A(t) =

[
2− sin(t)+

t
5

0

0
√

2+ et/2

]

and

−→
f (t,−→u (t)) =

(u1(t))7 +(3+ t)u1(t)− cos(3
2)u2(t)−

1√
10

(u2(t))5 +2u2(t)−u1(t)− t2

 .
For Example 1, the values of DN ,CN

p , pN are given in Table 1 and a graph of the numerical solution
for N = 256 and ε = 2−6 is depicted in Figure 1. For N = 256 and ε = 2−1,2−4,2−8, changes in the
components of −→u (t) are depicted in Figure 2. Moreover, the Log-log plot for the error in the suggested
computational method is presented in Figure 3.
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Figure 1: Solution profile of Example 1.
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Figure 2: Changes in the components of vecu(t) in Example 1.
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Figure 3: Log-log plot for the error in Example 1.
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Table 1: .Values of DN , CN
p and pN for α = 0.9.

ε
N

64 128 256 512 1024 2048
2−1 5.4241e-03 2.7804e-03 1.4075e-03 7.0810e-04 3.5514e-04 1.7784e-04
2−3 9.4574e-03 5.0606e-03 2.6218e-03 1.3355e-03 6.7405e-04 3.3862e-04
2−5 1.5099e-02 1.0997e-02 6.8717e-03 4.1941e-03 2.5723e-03 1.4230e-03
2−7 1.5905e-02 1.1436e-02 7.0977e-03 4.3356e-03 2.4959e-03 1.4111e-03
2−9 1.6143e-02 1.1560e-02 7.1604e-03 4.3749e-03 2.5178e-03 1.4232e-03
2−11 1.6206e-02 1.1592e-02 7.1767e-03 4.3850e-03 2.5235e-03 1.4263e-03
2−13 1.6222e-02 1.1600e-02 7.1809e-03 4.3876e-03 2.5249e-03 1.4271e-03
2−15 1.6226e-02 1.1603e-02 7.1819e-03 4.3882e-03 2.5252e-03 1.4273e-03
2−17 1.6227e-02 1.1603e-02 7.1822e-03 4.3884e-03 2.5253e-03 1.4274e-03
2−19 1.6227e-02 1.1603e-02 7.1822e-03 4.3884e-03 2.5254e-03 1.4274e-03
2−21 1.6227e-02 1.1603e-02 7.1822e-03 4.3884e-03 2.5254e-03 1.4274e-03
2−23 1.6227e-02 1.1603e-02 7.1822e-03 4.3884e-03 2.5254e-03 1.4274e-03
2−25 1.6227e-02 1.1603e-02 7.1822e-03 4.3884e-03 2.5254e-03 1.4274e-03
2−27 1.6227e-02 1.1603e-02 7.1822e-03 4.3884e-03 2.5254e-03 1.4274e-03
2−29 1.6227e-02 1.1603e-02 7.1822e-03 4.3884e-03 2.5254e-03 1.4274e-03
DN 1.6227e-02 1.1603e-02 7.1822e-03 4.3884e-03 2.5723e-03 1.4274e-03
pN 4.8391e-01 6.9202e-01 7.1073e-01 7.7062e-01 8.4971e-01
CN

p 4.2608e-01 4.2608e-01 3.6885e-01 3.1519e-01 2.5838e-01 2.0051e-01

Example 2. Let E in Example 1 be
[

1 0
0 1

]
; for this problem the values of DN ,CN

p , pN are given in Table 2

and a graph of the numerical solution for N = 256 with ε = ε1 = ε2 = 1 is depicted in Figure 4. It should
be noted that in this case both the components u1(t) and u2(t) of −→u (t) changes smoothly throughout the
domain.

Example 3. Let E in Example 1 be
[

ε 0
0 ε

]
; for this problem the values of DN ,CN

p , pN are given in

Table 3 and a graph of the numerical solution for N = 256 with ε = ε1 = ε2 = 2−1,2−4,2−8 is depicted
in Figure 5. It should be noted that in this case both the components u1(t) and u2(t) of −→u (t) exhibits a
boundary layer of same width near t = 0 and they are smooth elsewhere.

8 Conclusion

In this article, a robust, layer-resolving and parameter-uniform numerical method is developed for a mul-
tiscale nonlinear system of SPDEs of CD type. From the tables, it is evident that the parameter-uniform
maximum pointwise error (DN) monotonically decreases when the number of mesh points (N) increases.
Further, from the tables, we also observe that the proposed method is almost first order parameter-uniform
convergent. This is in agreement with Theorem 6. From Figure 1 we observe that the component u1(t)
of the solution −→u (t) of Example 1 exhibits a boundary layer near the boundary t = 0 whereas the com-
ponent u2(t) changes smoothly throughout the domain. Moreover, from Figure 2 we perceive that the
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Table 2: Values of DN , CN
p and pN for ε1 = ε2 = 1 and α = 0.9.

N
64 128 256 512 1024 2048

5.1107e-03 2.6212e-03 1.3273e-03 6.6785e-04 3.3498e-04 1.6776e-04
5.1107e-03 2.6212e-03 1.3273e-03 6.6785e-04 3.3498e-04 1.6776e-04
5.1107e-03 2.6212e-03 1.3273e-03 6.6785e-04 3.3498e-04 1.6776e-04
5.1107e-03 2.6212e-03 1.3273e-03 6.6785e-04 3.3498e-04 1.6776e-04
5.1107e-03 2.6212e-03 1.3273e-03 6.6785e-04 3.3498e-04 1.6776e-04

DN 5.1107e-03 2.6212e-03 1.3273e-03 6.6785e-04 3.3498e-04 1.6776e-04
pN 9.6331e-01 9.8173e-01 9.9088e-01 9.9545e-01 9.9772e-01
CN

p 5.7644e-01 5.7644e-01 5.6913e-01 5.5835e-01 5.4605e-01 5.3318e-01

Table 3: Values of DN , CN
p and pN for ε1 = ε2 = ε and α = 0.9.

ε
N

64 128 256 512 1024 2048
2−1 8.9385e-03 4.6732e-03 2.3892e-03 1.2079e-03 6.0732e-04 3.0451e-04
2−4 1.8745e-02 1.5090e-02 1.0311e-02 7.1346e-03 3.4133e-03 2.3220e-03
2−6 1.9000e-02 1.5238e-02 1.0365e-02 7.1664e-03 4.0345e-03 2.1461e-03
2−8 1.9086e-02 1.5288e-02 1.0385e-02 7.1785e-03 4.0399e-03 2.1487e-03
2−10 1.9109e-02 1.5303e-02 1.0391e-02 7.1820e-03 4.0415e-03 2.1495e-03
2−12 1.9116e-02 1.5306e-02 1.0393e-02 7.1828e-03 4.0419e-03 2.1497e-03
2−14 1.9117e-02 1.5307e-02 1.0393e-02 7.1831e-03 4.0420e-03 2.1497e-03
2−16 1.9117e-02 1.5307e-02 1.0393e-02 7.1831e-03 4.0420e-03 2.1497e-03
2−18 1.9118e-02 1.5307e-02 1.0393e-02 7.1831e-03 4.0420e-03 2.1498e-03
2−20 1.9118e-02 1.5307e-02 1.0393e-02 7.1831e-03 4.0420e-03 2.1498e-03
2−22 1.9118e-02 1.5307e-02 1.0393e-02 7.1831e-03 4.0420e-03 2.1498e-03
2−24 1.9118e-02 1.5307e-02 1.0393e-02 7.1831e-03 4.0420e-03 2.1498e-03
DN 1.9118e-02 1.5307e-02 1.0393e-02 7.1831e-03 4.0420e-03 2.3220e-03
pN 3.2067e-01 5.5859e-01 5.3294e-01 8.2953e-01 7.9969e-01
CN

p 3.6401e-01 3.6401e-01 3.0867e-01 2.6644e-01 1.8724e-01 1.3434e-01

component u1(t) of the solution −→u (t) of Example 1 changes very rapidly near the boundary t = 0 when
the perturbation parameter ε tends to zero. From Figure 4 we notice that both the components u1(t) and
u2(t) of the solution −→u (t) of Example 2 changes smoothly throughout the domain. From Figure 5 we
notice that both the components u1(t) and u2(t) of the solution −→u (t) of Example 3 exhibits a boundary
layer of same width near t = 0 and they are smooth elsewhere. The Log− log plot for the error in the
suggested numerical method for Example 1 is presented in Figure 3. From this figure we perceive that
the maximum pointwise errors are bounded by O(N−1 lnN) which is proved in Theorem 6.



368 M. Mariappan

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

u

u1

u2

N = 256, ǫ
1
 = ǫ

2
 = 1 

Figure 4: Solution profile of Example 2.
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Figure 5: Solution profile of Example 3.
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