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Abstract. Due to the high approximation power and simplicity of computation of smooth radial basis
functions (RBFs), in recent decades they have received much attention for function approximation. These
RBFs contain a shape parameter that regulates their approximation power and stability but its optimal
selection is challenging. To avoid this difficulty, this paper follows a novel and computationally efficient
strategy to propose a space of radial polynomials with even degree that well approximates flat RBFs. The
proposed space, Hn, is the shifted radial polynomials of degree 2n. By obtaining the dimension of Hn

and introducing a basis set, it is shown that Hn is considerably smaller than P2n while the distances from
RBFs to both Hn and P2n are nearly equal. For computation, by introducing new basis functions, two
computationally efficient approaches are proposed. Finally, the presented theoretical studies are verified
by the numerical results.
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1 Introduction

Radial basis functions (RBFs) have gained the attention of researchers as they can solve partial differ-
ential equations (PDEs) and boundary value problems (BVPs) defined on computational domains with
complicated geometries, easily [4, 13]. Also, RBFs are successfully applied for the classification of big
data in high-dimensional domains [1,19,22]. Infinitely smooth RBFs may yield very accurate numerical
results when the unknown function is sufficiently smooth [17, 20]. The accuracy of infinitely smooth
RBFs mainly depends on two factors: kernel function, φ , and shape parameter, ε . In RBF approxima-
tion, the shape parameter should be determined by the user, and the highest accuracy is often obtained at
small shape parameters, which may yield unstable results [16,17]. So a significant number of researchers
have focused on the enhancement of stability of flat RBFs, theoretically [5–8, 21]. In [2], Driscoll and
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Fornberg showed that the interpolation function converges to a polynomial function that interpolates
the same data when ε tends to zero. After that, some researchers have focused on clearing the relation
between the polynomials and RBFs and some studies found that the interpolating function obtained by
infinitely smooth RBFs converges to polynomial functions when ε tends to zero [9, 11, 14, 18]. The fact
that Taylor’s expansion of infinitely smooth RBFs contains only even degree of radius, r, motivated us to
search for a space of polynomials with even degree for function approximation. Previously, Driscoll and
Schaback [2, 18] have used even degree polynomials and introduced the notation of limit interpolating
polynomials.

This paper follows a new strategy to introduce a space of radial polynomials and gives some results
on the relation between this space and RBFs. For this purpose, we denote the linear space of shifted radial
polynomials of degree 2n by Hn. Dimension of Hn is determined analytically and its basis functions are
extracted. One can see that by increasing the size of the base, the distance from the RBFs to Hn vanishes
exponentially. Numerical results show that although Hn ⊆P2n, the distances from the RBFs to both
linear spaces are nearly equal. So, by our information, Hn is the smallest subspace of P2n that smooth
RBFs tend to it as fast as possible.

For computation, the usual basis functions of Hn may lead to unstable numerical results. There-
fore, by introducing new basis functions two computationally efficient approaches are proposed which
enhance the stability and accuracy of the numerical results significantly. The remaining part of this paper
is organized as follows:

The RBFs and their implementation for data approximation are presented in Section 2. Then, in Sec-
tion 3 the new linear space of radial polynomials, Hn, is introduced and its dimension and basis functions
are obtained. To obtain more stable numerical results and enhance the robustness of the numerical ap-
proximation, new basis functions are proposed in Section 4. Some numerical results are presented in
Section 5 to verify analytical theories. Finally, the paper is completed by Section 6 including some
conclusions and directions for future research.

2 Radial basis functions interpolation

Using RBFs in scattered data approximation was proposed by Hardy [12]. From a point of view, RBFs
can be divided into three groups, infinitely smooth, piecewise smooth, and compact support RBFs. Some
well-known RBFs are listed in Table 1. Suppose given data of the form (xi,ui) for i = 1,2, . . . ,N where
xi ∈Ω⊆ Rd and ui ∈ R. We seek for an interpolant ū(x) which satisfies

ū(xi) = ui, i = 1,2, . . . ,N. (1)

In RBF interpolation approach, ū(x) is a linear function of RBFs φ(r1(x)), φ(r2(x)), ...,φ(rN(x)) as

ū(x) =
N

∑
i=1

λiφ(ri(x)), (2)

such that λi are constants and ri(x) = ‖x−xi‖. In fact, interpolant ū belongs to the linear space S spanned
by RBFs φ(r1(x)),φ(r2(x)), . . . ,φ(rN(x)). It means

ū ∈ S = 〈φ(r1(x)),φ(r2(x)), . . . ,φ(rN(x))〉. (3)
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Table 1: Some important RBFs presented in the literature.
RBF name function
infinitely smooth Gaussian (GA) exp(−ε2r2)

Multiquadric (MQ)
√

1+ ε2r2

Inverse Multiquadric (IMQ) 1/
√

1+ ε2r2

Inverse Quadric (IQ) 1/(1+ ε2r2)

piecewise smooth Thin plate spline (TPS) r2n ln(r)
Poly-harmonic Spline (PHS) r2n+1

compactly support Wendland C0 (1− r)2
+

Wendland C2 (1− r)4
+(1+4r)

The value of RBF φ(ri(x)) depends on the kind of RBFs that are used, the distance from the input data
x to the collocation point xi and the shape parameter, ε . Eq. (2) can be stated as a system of linear
equations

Φλ= b, (4)

where Φ[i, j] = φ(ri(x j)), λ = [λ1,λ2, . . . ,λN ]
T , and b = [ū(x1), ū(x2), . . . , ū(xN)]

T . This system is non
singular when positive definite RBFs (such as GA RBF) with constant shape parameters are used [3,20].
It has been shown that the interpolant function admits spectral convergence when infinitely smooth RBFs
are applied [20]. However, the accuracy and the stability of these RBFs depend on the number of data
points and the value of ε [15, 17, 20]. It is well-known that interpolation function ū converges expo-
nentially to a polynomial function when the shape parameter, ε , is sufficiently small or N is sufficiently
large [2, 10].

3 Linear space of radial polynomials

This section introduces the new linear space of radial polynomials to be used as an alternative for linear
space S introduced in Eq. (3). The new linear space is free of the shape parameter.

3.1 Motivation and the proposed linear space

As mentioned in Eqs. (2) and (3) the interpolant ū belongs to linear space S. Considering Taylor’s
expansion of a smooth RBF, φ(ri), we have

φ(ri)' fni(ri) = 1+ c1ε
2r2

i + c2ε
4r4

i + · · ·+ cniε
2nir2ni

i . (5)

It is worth to mention that in machine computation this expansion is truncated when its terms become
smaller than machine precision. So, the Taylor’s expansion ends at machine precision, and in practice, it
does not go to infinity. By this motivation, instead of S, we consider the space generated by polynomials
fni(ri), as follows

H = 〈 fn1(r1), fn2(r2), . . . , fnN (rN)〉. (6)
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To avoid the complexity of computation in (6), the space Hn is proposed as follows which contains
shifted radial polynomials of degree 2n:

Hn = 〈r2n
1 ,r2n

2 , . . . ,r2n
N 〉; n = max{n1, . . . ,nN}. (7)

Using Hn for approximation has less computational cost than H , and in the following, it is proved that
in the case where Hn is full rank then H ⊆Hn.

3.2 Relation between Hn and H

From Eqs. (5) and (7) we find that H and Hn both include polynomials of degree less than or equal to
2n. In this subsection, it is proved by a theorem that, H is embedded in Hn if Hn is full rank. Note that
Hn is full rank if r2n

0 ∈Hn for all x0 ∈Ω.

Lemma 1. If Hn is full rank then Hn−1 is also full rank for n≥ 1.

Proof. Suppose Hn is full rank, so for any computational point x0 ∈ Rd there are coefficients λ1, . . . ,λN

in R such that

r2n
0 =

N

∑
i=1

λi r2n
i . (8)

Now imposing Laplace operator, ∇2, on both sides of Eq. (8) results in

r2n−2
0 =

N

∑
i=1

λi r2n−2
i , (9)

which shows that Hn−1 is also full rank.

Corollary 1. If Hn is full rank then H j also is full rank for each j ≤ n.

Proof. It can be proved by Lemma 1 and induction on j when j decreases from n to 1 step by step.

Lemma 2. If Hn is full rank then Hn−1 ⊆Hn for n≥ 1.

Proof. Let x0 be a computational point in Rd . Therefore

r2n−2
0 =

1
4n2 ∇

2r2n
0 =

1
4n2 lim

h→0

1
h2

(
∑

j=0:2d
λ j r2n

0 (x+hv j)

)
, (10)

where λ j and v j are appropriate finite difference coefficients and vectors, respectively for j = 0,1,2, ..,2d.
Since polynomials r2n

0 (x0+hv j) belong to Hn and Hn is a closed space (because it has finite dimension),
the limit presented on the right-hand side of Eq. (10) also belongs to Hn and consequently r2n−2

0 ∈Hn.
So, Hn−1 ⊆Hn.

Corollary 2. If Hn is full rank, then H j ⊆Hn for j ≤ n.

Proof. It can be proved by Lemma 2 and induction on j when it decreases from n to 1, step by step.
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Now the important theorem can be achieved from the last corollary.

Theorem 1. If Hn is full rank, then H ⊆Hn.

Proof. From Corollary 2 we have H0 ⊆H1 ⊆ ·· · ⊆Hn−1 ⊆Hn where it leads

H0 +H1 + · · ·+Hn = Hn,

and consequently fn(ri) ∈Hn for i = 1,2, . . . ,N, and H ⊆Hn.

3.3 A base for Hn

Now we are going to introduce a base for Hn. From Theorem 1 we have H ⊆Hn when Hn is full
rank and consequently a base of Hn is also a base of H , when dimension of H and Hn are equal.
Note that elements of Hn are radial polynomials of degree 2n and the dimension of Hn is bounded by
the dimension of polynomials of degree less than or equal to 2n, denoted by P2n. We will see that the
dimension of Hn is significantly smaller than the dimension of P2n for d ≥ 2.

Lemma 3. If r2 = ‖x‖2 and m ≤ n, then the dimension of the linear space spanned by elements of set
{r2Pm−1−Pm}, i.e. 〈r2Pm−1−Pm〉, is equal to(

m+d−2
m−1

)
=

(m+d−2)!
(m−1)!(d−1)!

. (11)

Proof. Since r2 ∈P2, r2Pm−1 is a set of polynomials of degree less than or equal to m+1 which have
factor r2 in their components. Subtracting Pm from this set, only polynomials of degree m− 1 remain
which are multiplied by r2, i.e.

〈r2Pm−1−Pm〉= r2〈Pm−1−Pm−2〉.

Polynomial basis functions of 〈Pm−1−Pm−2〉 satisfy condition

∏
k=1:d

xαk
k s.t. ∑

k=1:d
αk = m−1,

where xk is k−th component of x for k = 1,2, . . . ,d. The number of these basis functions can be calculated
via Eq. (11).

Theorem 2. Dimension of Hn is less than or equal to

h(n) = 2 ∑
i=0:n−1

(
i+d−1

i

)
+

(
n+d−1

n

)
,

for n≥ 2.

Proof. The proof can be done via induction. For n = 0, we have H0 = {1} and dim(H0) = 1. For n = 1,
if x0 is a computational point in Rd and x = (x1,x2, . . . ,xd) then

r2
0 = ‖x−x0‖2 = (x−x0)(x−x0)

T = ‖x0‖2−2x0xT +‖x‖2 = c0 + ∑
k=1:d

ckxk + r2, (12)
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where c0,c1, . . . ,cd are constant numbers depending on x0. Then, H1 has one base of degree zero, d
basis of degree one, and one base of degree two.

For n≥ 2, by Eq. (12) we have

r2n
0 = (r2

0)
n = (c0 + ∑

k=1:d
ckxk + r2)n = ∑

∑αk+β≤n
c(α1,α2, . . . ,αd ,β ) ∏

k=1:d
xαk

k r2β ,

where c(α1,α2, . . . ,αd ,β ) are constant numbers depending on α1,α2, . . . ,αd and β . The last equality
shows the basis functions of Hn are in the form

∏
k=1:d

xαk
k r2β s.t. ∑αk +β ≤ n.

To count basis functions of Hn, we split Hn into disjoint subsets and count their basis functions sepa-
rately by using Lemma 3. These disjoint subsets are Pn,〈Pn−1r2−Pn〉,〈Pn−2r4−Pn−1r2〉, . . . ,〈P0r2n−
P1r2n−1〉 which they lead to

Hn =
n

∑
i=0

Pn−ir2i = Pn + ∑
i=1:n
〈Pn−ir2i−Pn−i−1r2(i−1)〉

= Pn + ∑
i=1:n
〈Pn−ir2−Pn−i−1〉r2(i−1), (13)

and by Lemma 3 we have

dim(Hn) = dim(Pn)+ ∑
i=1:n

dim(〈Pn−i−Pn−i−1〉)

= ∑
i=0:n

(
i+d−1

i

)
+ ∑

i=1:n

(
n− i+d−1

n− i

)
= 2 ∑

i=0:n−1

(
i+d−1

i

)
+

(
n+d−1

n

)
. (14)

Theorem 2 presents a constrictive algorithm to obtain the basis functions of Hn. Figure 1 shows
these basis functions for d = 1,2 and 3 where in this figure r2 = ‖x‖2.

From Theorem 2 dimension of Hn is equal to

h(n) =


2n+1, if d = 1,
(n+1)2, if d = 2,
(n+1)(n+2)(2n+3)/6, if d = 3,

(15)

when it is full rank. Also from Theorem 1 dimension of linear space H is less than or equal to h(n). It
is notable that dimension of Hn already is calculated experimentally in [2]. The experiment results pre-
sented in [2] confirm Theorem 2. From the above statements, some important relations can be extracted
between polynomial linear spaces Hn and Pn which are summarized in the following corollary.

Corollary 3. Let Hn be the linear space of radial polynomials of degree 2n and Pn be the linear space
of polynomials of degree less than or equal to n. If Hn is full rank then the following items hold.
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Figure 1: Diagram of basis functions of Hn for d = 1 (left), d = 2 (middle), and d = 3 (right).

• Pn ⊂Hn ⊆P2n ,

• dim(Hn) = dim(Pn)+ dim(Pn−1) ,

• Hn = P2n for d = 1 ,

• Pn+1 6⊆Hn ⊂P2n for d ≥ 2.

4 Computationally efficient basis functions for Hn

Basis functions pi = r2n
i , presented in Eq. (6), have a simple form but they are not computationally

efficient, i.e. despite their simplicity, they are not numerically stable. Generally, to enhance the stability,
the basis functions can be normalized by mapping the distance function ri to [0,1] as

ri = ri/max
x∈Ω

{ri}.

By this normalization, the basis functions are mapped to [0,1] and this enhances the stability. Note that
the normalized basis functions, pi, vanish close to the center point, xi, and increase rapidly close to some
boundary points far from the center point, specially when n is large. For instance, pi ≤ 10−12 for ri < 0.5
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Figure 2: Contour lines of elements of matrix A =ΦTΦ for polynomial basis functions pi.

and pi = 1 at ri = 1 when n≥ 20. In this situation, two basis functions pi and p j are strongly dependent
when there is a point y ∈Ω satisfying

argmax
x∈Ω

{‖xi−x‖}= y = argmax
x∈Ω

{‖x j−x‖}.

Since the contour lines of a matrix visually represent the values of its elements, to check the dependency
of the basis functions, contour lines of elements of matrix A =ΦTΦ are shown in Figure 2 when xi =
(i−1)/2n for i = 1,2, . . . ,2n+1 and n = 15. Since

A[i, j] = (Φ[:, i]).(Φ[:, j]) = ∑
k=1:N

φ(ri(xk))φ(r j(xk)),

matrix A contains dot products of columns of matrix Φ. Here, Φ[:, i] is i−th column of matrix Φ.
Therefore A[i, j] shows a dependency (or similarity) between pi and p j. When the bases are orthonormal,
the main diagonal entries of A, will be one, and other elements will be zero. According to Figure 2, one
can see A[i, j]' 1 for 1≤ i, j ≤ n and n+2≤ i, j ≤ 2n+1 for one-dimensional domains. This shows a
high dependency between the basis functions. This dependency results in unstable numerical results and
a large value of condition number, defined as

cond(Φ) = ‖Φ‖‖Φ−1‖.

In the following subsections, two approaches are proposed to reduce the dependency and enrich the
stability of numerical results by introducing some new basis functions for Hn.

4.1 Semi-cardinal basis functions

To find more stable basis functions, we focus on basis functions that are similar to the cardinal functions,
taking 1 at a center point and 0 at the other nodes. This property enhances the stability by resulting in a
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i − tτ

k ) for τ = 0,1,2,2.1, where the center point
is 0 and n = 30. pi,τ takes 1 at the center point and vanishes at points far from the center for τ ≤ 2.

diagonal-like coefficient matrix Φ. For this goal, we introduce basis functions

pi,α = ∏
k=1:n

(r2
i −α

2
k ),

for i = 1,2, . . . ,h(n) and some positive vector α= [α2
1 ,α

2
2 , . . . ,α

2
n ]. According to Theorem 2, these basis

functions are applicable in each dimension. Basis functions, pi,α are polynomial functions with roots
α1,α2, . . . ,αn. Note that, pi = pi,0 where 0 is the zero vector. A cross-section of the basis function is
plotted in Figure 3 where the center point is 0 and α2

k = tτ
k for τ = 0,1,2,2.1 and tk is the kth positive

root of Chebyshev polynomial of the first kind of degree 2n+1, i.e.

tk = cos
(2k−1

4n+2
π
)
.

It is easy to find from Figure 3 that τ > 2 does not yield flat functions for the points far from the center,
so, τ should be restricted with τ ≤ 2. Therefore, we propose the following functions as the semi-cardinal
basis of Hn:

pi,τ = ∏
k=1:n

(r2
i − tτ

k ); τ ∈ [0,2]. (16)

To test the stability of the proposed basis functions, the condition number of the coefficient matrix, Φ,
is presented in Figure 4 for one-dimensional domains and τ = 0,1 and 2. In Figure 4 center points are
chosen as xi = (i−1)/2n for i = 1,2, . . . ,2n+1 where n = 15. From Figure 4, the condition number of
the coefficient matrix for pi,2 is smaller than the others, especially GA RBF with shape parameter ε = 1.
So, this result suggests the use of basis functions pi,2 to enhance the numerical stability in interpolation.
To check the dependency of basis functions pi,2 and p j,2 for i, j = 1,2, . . . ,h(n), contour lines of elements
of matrix A = ΦTΦ are shown in Figure 5. From this figure, large elements of the matrix are located
close to its diagonal, and small elements are far away. Therefore, the basis functions pi,2 and p j,2 are
nearly independent when the distance between their center points is sufficiently large. This property of
the semi-cardinal basis functions enhances the stability of numerical results, especially for large n.
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4.2 Regularized basis functions

Although the new basis functions pi,2 enhance the stability, they all are polynomials of degree 2n. This
fact reduces the accuracy of approximation (2) for large values of n because polynomials with lower
degrees do not appear in the set of basis functions. To overcome this drawback, basis functions with
lower degrees should be replaced with some basis functions of degree 2n. Therefore, a set of regularized
basis functions containing polynomials of degree 0,2,4, . . . ,2n are proposed as follows

q1,2 = 1 , qi,2 = ∏
k=1: j

(r2
i − t2

k ), (17)

for i = h( j− 1)+ 1,h( j− 1)+ 2, . . . ,h( j) where j = 1,2, . . . ,n and tk = cos((2k− 1)π/(4 j+ 2)). The
proposed regularized basis functions can be presented in expanded form below

q1,2 = 1 ,

qi,2 = (r2
i − t2

1) , i = 2,3, · · · ,h(1), t1 = cos(
1
6

π),

qi,2 = ∏
k=1:2

(r2
i − t2

k ) , i = h(1)+1,h(1)+2, · · · ,h(2), tk = cos(
2k−1

10
π),

...

qi,2 = ∏
k=1:n

(r2
i − t2

k ) , i = h(n−1)+1,h(n−1)+2, · · · ,h(n), tk = cos(
2k−1
4n+2

π),

where the function in the first row is the base of H0, functions in the second row are the basis of H1,
and so on. Note that the same strategy can be used for the other basis functions to obtain regularized
basis functions. For instance, regularized monomial basis functions can be obtained from pi for i =
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Figure 5: Contour lines of elements of matrix A for basis functions pi,2.

h( j−1)+1,h( j−1)+2, . . . ,h( j) and j = 1,2, . . . ,n as

q1 = 1 , qi = r2 j
i . (18)

Numerical experiments presented in Subsection 5.2 show the ability and efficiency of the new regularized
polynomial basis functions for approximation.

5 Numerical verification

This section contains some numerical results to verify and confirm our theoretical study presented in the
previous sections. At first, the ability of the proposed new linear space, Hn, is analyzed numerically. For
this purpose, the distance from some smooth RBFs to linear spaces Hn, P2n−1 and P2n are presented in
Subsection 5.1. In Subsection 5.2 the performance of the proposed basis functions are investigated and
the approximation power and stability of the proposed basis functions are compared with GA RBFs and
polynomials. The results on irregular domains are also presented and both two and three-dimensional
problems are considered.

5.1 The distance from smooth RBFs to Hn

The distance from RBF φ0(x) = φ(x−x0) to Hn for a fixed point x0 ∈Ω is defined as

dis(φ0,Hn) = min
p∈Hn
‖φ0− p‖2 = ‖φ0− p0‖2, (19)

where p0 ∈ Hn satisfies
∫

Ω
(φ0(x)− p0(x))p(x)dx = 0 for all p ∈ Hn. If p0 is expanded by poly-

nomial basis functions p1, p2, . . . , ph(n) of Hn as p0 = ∑k=1:h(n)αk pk, then the unknown coefficients
α1,α2, . . . ,αh(n) are determined by solving system of linear equations Bα= b, where

B[i, j] =
∫

Ω

pi(x)p j(x)dx , α[i] = αi , b[i] =
∫

Ω

pi(x)φ0(x)dx , (20)
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Table 2: The distance from smooth RBF φ(x− x0) to linear spaces Hn, P2n−1 and P2n where x0 =
(0,0), ε = 1/2 and x ∈ [−1,1]2.

RBF Linear space n
2 3 4 5 6 7

Hn 4.28e−4 1.32e−5 3.26e−7 6.71e−9 1.19e−10 2.01e−12
GA P2n−1 1.06e−2 4.20e−4 1.25e−5 3.00e−7 6.02e−9 1.04e−10

P2n 4.20e−4 1.25e−5 3.00e−7 6.01e−9 1.04e−10 2.00e−12
Hn 5.18e−4 4.57e−5 4.12e−6 3.79e−7 3.54e−8 3.33e−9

IMQ P2n−1 6.21e−3 5.06e−4 4.31e−5 3.78e−6 3.38e−7 3.08e−8
P2n 5.06e−4 4.31e−5 3.78e−6 3.38e−7 3.08e−8 2.84e−9
Hn 1.24e−4 7.86e−6 5.53e−7 4.16e−8 3.30e−9 2.70e−10

MQ P2n−1 2.46e−3 1.21e−4 7.41e−6 5.07e−7 3.72e−8 2.87e−9
P2n 1.21e−4 7.42e−6 5.07e−7 3.72e−8 2.87e−9 2.30e−10
Hn 1.52e−3 1.53e−4 1.53e−5 1.53e−6 1.54e−7 1.55e−8

IQ P2n−1 1.52e−2 1.48e−3 1.43e−4 1.40e−5 1.37e−6 1.34e−7
P2n 1.48e−3 1.43e−4 1.40e−5 1.37e−6 1.34e−7 1.31e−8

for i, j = 1,2, . . . ,h(n). The distance between φ0 and Hn is calculated for some RBFs and are reported
in Table 2 where ε = 1/2, x0 = (0,0), Ω = [−1,1]2 and n≤ 7. The studied RBFs in this subsection are

• GA RBF, φ(r) = exp(−ε2r2),

• IMQ RBF, φ(r) = (1+ ε2r2)−1/2,

• MQ RBF, φ(r) = (1+ ε2r2)1/2,

• IQ RBF, φ(r) = (1+ ε2r2)−1.

From this table, the distance vanishes exponentially when n increases and it is smaller than 10−8 for
n > 7. Also, results of Table 2 reveal that the GA RBF is closer to the new linear space than the other
RBFs. Moreover, the distance from the RBFs to linear spaces P2n−1 and P2n is also calculated and
presented in Table 2. From numerical results of Table 2, we have

dis(φ0,P2n)' dis(φ0,Hn)< dis(φ0,P2n−1),

while Hn ⊂P2n and the dimension of Hn is significantly smaller than the dimensions of P2n−1 and
P2n for large values of n. This fact reveals that Hn is the smallest subspace of P2n which the distance
from the smooth RBFs to it tends to zero as fast as possible when n increases.

5.2 Investigating the efficiency of Hn

In this subsection, to investigate the approximation power the Hn, the interpolation problem is solved
with the different proposed base of Hn (pi, pi,2, qi and qi,2) and is compared with GA RBFs and common
polynomials in 2D (xiy j; i, j = 0,1, . . . ,2n) and 3D (xiy jzk; i, j,k = 0,1, . . . ,2n). The ε varies from 10−2 to
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Figure 6: Left: Uniform grid points (UGP) in the square computational domain. Right: Halton points
(HP) in the square computational domain.

102. The domain of study in 2D is regular (the square) and irregular (the star-shape) and the distribution
of points are the uniform grid points (UGP) and Halton points (HP). Especially in the 3D, the domain is
cubic [−1,1]3, and the distribution of points is HP. It is important to mention that results for MQ, IMQ,
and IQ RBFs are the same as GA RBF, so we just report the result of GA RBF.

5.2.1 2D regular and irregular domains

Consider the following functions for interpolation on Ω = [−1,1]2:

u1(x) = sin(x+ y) and u2(x) = tanh(x+ y).

Center points are considered in both UGP and HP forms in Ω as is shown in Figure 6. The root mean
square error (RMSE) of interpolation is calculated as

error =
1√
N

√
∑

i=1:N
(u(yi)− ū(yi))2, (21)

where u and ū are analytical and numerical solutions, respectively and yi is selected in [−1,1]2 randomly,
for i = 1,2, . . . ,N. The errors of interpolation are reported in Figure 7 and Figure 8 for u1 and u2,
respectively. In these figures, N = 441 HP (left) and UGP (right) are considered for interpolation. From
these figures, the accuracy of the polynomial basis functions pi,2 and qi,2 are almost independent of the
distribution of center points, while common polynomial basis functions are very sensitive to it. On the
other hand, from the condition number of the coefficient matrix Φ, plotted in Figure 9, it is clear that
the new proposed polynomial basis functions are more stable than conventional ones, specially for UGP
center points.

From Figures 7 and 8 one can see, that the accuracy of the proposed polynomial basis functions is
more than the common ones. It is notable that, from these figures, the proposed polynomials are more
accurate than GA RBFs in approximating u1 for each value of ε , while they are less accurate than the
RBFs for interpolating u2 when ε = 1.5. This is valid because u1 is smoother than u2 and polynomials can
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Figure 7: The RMSE for interpolating u1 by polynomial basis functions pi, pi,2, qi, qi,2, common poly-
nomials (poly) and GA RBF (φi(GA)) versus shape parameter ε . The interpolation points are considered
HP and UGP for the left and right pictures, respectively. Also, the number of interpolation points is
N = 441.
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Figure 8: The RMSE for interpolating u2 by polynomial basis functions pi, pi,2, qi, qi,2, common poly-
nomials (poly) and GA RBF (φi(GA)) versus shape parameter ε . The interpolation points are HP and
UGP for the left and right pictures, respectively. Also, the number of points is N = 441.

approximate it more accurately. Figures 7 and 8 verify this claim, as the error of polynomial interpolation
reported in these figures is less than 10−10 and 10−5 for u1 and u2, respectively. These figures show
polynomial basis functions qi,2 are appropriate alternatives for the RBFs to approximate scattered data
when the unknown function is smooth. The same investigation is done for the irregular domain (star-
shaped domain) illustrated in Figure 10.

Functions u1 and u2 again are interpolated by the polynomials and GA RBF, that are introduced
previously, at N = 121 scattered points, and RMSE (21) is calculated for them. The errors of u1 and u2
are reported in Figure 11 left and right, respectively. This figure reveals that the accuracy of regularized
polynomial basis functions qi and qi,2 is significantly higher than the GA RBF.
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Figure 9: The condition number of the coefficient matrices, that are made by pi, pi,2, qi, qi,2, and common
polynomials (poly) versus the number of center points. The left and right figures concerning HP and UGP
center points.
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Figure 10: HP considered on the irregular domain.

5.2.2 3D domain

The polynomial basis functions also are applied to interpolate three-dimensional data points demon-
strated in Figure 12 (left).

In this case study, N = 1331 HP are selected in [−1,1]3 as interpolation points, and the error of
interpolation is calculated by RMSE formulation (21) when the exact solution is

u(x,y,z) = sin(x+ y+ z).

The error is shown in Figure 12 (right) and it reveals that regularized basis functions qi and qi,2 are
significantly more accurate than that of the other polynomial and GA RBF.
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Figure 11: The RMSE for interpolating u1 (left) and u2 (right) by polynomial basis functions pi, pi,2, qi,
qi,2, common polynomials ( poly) and GA RBF ( φi(GA)) versus shape parameter ε for the stare shape.
The number of points is N = 121.
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Figure 12: The interpolation points for the cube domain (left) and the RMSE of the interpolation (right)
for the polynomial and radial basis functions versus shape parameter ε .

6 Conclusion and final remarks

Motivated by Taylor’s expansion of infinitely smooth RBFs, a new linear space of shifted radial polyno-
mials of degree 2n, denoted by Hn, was proposed. For analysis, a set of basis functions was obtained for
Hn and its dimension was specified. Then, some important relations between Hn and the linear space
of polynomials of degree 2n, P2n were found. It was shown that the distance between RBFs to both
Hn and P2n are numerically equal. Therefore, since for d ≥ 2, Hn is considerably smaller than P2n,
it can be used for efficiently approximating RBFs. Two more appropriate basis functions were proposed
for Hn to enhance its numerical efficiency. The fast convergence of the proposed polynomial space to
RBFs suggests it is an alternative to smooth RBFs for scattered data interpolation. In future works, the
authors suggest finding new orthogonal or compact support polynomial basis functions for Hn. Also, the
properties of the proposed polynomial space can be used to find an optimal value for shape parameters
in smooth RBFs.



Radial polynomials as alternatives to flat radial basis functions 353

Acknowledgements

The authors are thankful to the reviewers for their valuable feedback, which greatly enhanced the quality
of the paper. Also, they appreciate Professor Ahmad Shirzadi and Elisabeth Larsson for their advice to
increase the quality of this work.

References

[1] D. Chen, Research on traffic flow prediction in the big data environment based on the improved
RBF neural network, IEEE Trans. Ind. Inform. 13 (2017) 2000–2008.

[2] T.A. Driscoll, B. Fornberg, Interpolation in the limit of increasingly flat radial basis functions,
Comput. Math. Appl. 43 (2002) 413–422.

[3] G.E. Fasshauer, Meshfree Approximation Methods with MATLAB, World Scientific, 2007.

[4] B. Fornberg, N. Flyer, A Primer on Radial basis Functions with Applications to the Geosciences,
SIAM, 2015.

[5] B. Fornberg, E. Larsson, N. Flyer, Stable computations with Gaussian radial basis functions, SIAM
J. Sci. Comput. 33 (2011) 869–892.

[6] B. Fornberg, E. Lehto, C. Powell, Stable calculation of Gaussian-based RBF-FD stencils, Comput.
Math. Appl. 65 (2013) 627–637.

[7] B. Fornberg, C. Piret, A stable algorithm for flat radial basis functions on a sphere, SIAM J. Sci.
Comput. 30 (2007) 60–80.

[8] B. Fornberg, G. Wright, Stable computation of multiquadric interpolants for all values of the shape
parameter, Comput. Math. Appl. 48 (2004) 853–867.

[9] B. Fornberg, G. Wright, E. Larsson, Some observations regarding interpolants in the limit of flat
radial basis functions, Comput. Math. Appl. 47 (2004) 37–55.

[10] B. Fornberg, J. Zuev, The Runge phenomenon and spatially variable shape parameters in RBF
interpolation, Comput. Math. Appl. 54 (2007) 379–398.

[11] P. Gonzalez-Rodriguez, M. Moscoso, M. Kindelan, Laurent expansion of the inverse of perturbed,
singular matrices, J. Comput. Phys. 299 (2015) 307–319.

[12] R. L. Hardy, Multiquadric equations of topography and other irregular surfaces, Journal of geo-
physical research, 76 (1971) 1905–1915.

[13] M.K. Esfahani, A. Neisy, S. De Marchi, An RBF approach for oil futures pricing under the jump-
diffusion model, J. Math. Model. 9 (2021) 81–92.

[14] E. Larsson, B. Fornberg. Theoretical and computational aspects of multivariate interpolation with
increasingly flat radial basis functions, Comput. Math. Appl. 49 (2005) 103–130.



354 F. Pooladi, H. Hosseinzadeh

[15] W.R. Madych, Miscellaneous error bounds for multiquadric and related interpolators, Comput.
Math. Appl. 24 (1992) 121–138.

[16] M. Mongillo, Choosing basis functions and shape parameters for radial basis function methods,
SIAM undergraduate research online, 4 (2011) 190–209.

[17] R. Schaback, Error estimates and condition numbers for radial basis function interpolation, Adv.
Comput. Math. 3 (1995) 251–264.

[18] R. Schaback, Multivariate interpolation by polynomials and radial basis functions, Constr. Approx.
21 (2005) 293–317.

[19] F. Soleymani, Sh. Zhu. Error and stability estimates of a time-fractional option pricing model under
fully spatial-temporal graded meshes, J. Comput. Appl. Math. 425 (2023) 115075.

[20] H. Wendland, Scattered Data Approximation, Cambridge University Press, 2004.

[21] G. B. Wright, B. Fornberg, Stable computations with flat radial basis functions using vector-valued
rational approximations, J. Comput. Phys. 331 (2017) 137–156.

[22] Y. Wu, X. Sun, Optimization and simulation of enterprise management resource scheduling based
on the radial basis function (RBF) neural network, Comput. Intell. Neurosci. 2021 (2021) 6025492
.


	1 Introduction
	2 Radial basis functions interpolation
	3 Linear space of radial polynomials
	3.1 Motivation and the proposed linear space
	3.2 Relation between Hn and H
	3.3 A base for Hn

	4 Computationally efficient basis functions for Hn
	4.1 Semi-cardinal basis functions
	4.2 Regularized basis functions

	5 Numerical verification
	5.1 The distance from smooth RBFs to Hn
	5.2 Investigating the efficiency of Hn 
	5.2.1 2D regular and irregular domains
	5.2.2 3D domain


	6 Conclusion and final remarks

