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Abstract. In this paper, we consider a nonautonomous viscoelastic wave equation with linear damping
and delayed terms. Under some appropriate assumptions, we prove the global existence using the semi-
group theory. Furthermore, for a small enough coefficient of delay, we obtained a stability result via a
suitable Lyapunov function where the kernel function decays exponentially.
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1 Introduction
We take into consideration the following linear viscoelastic wave equation, which has a constant internal
feedback delay and linear damping:

utt(x, t)−a(t)∆u(x, t)+
∫

∞

0
g(s)b(t)∆u(x, t− s) ds+µ1ut(x, t)+µ2ut(x, t− τ) = 0, x ∈Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,
u(x,−t) = u0(x, t), ut(x,0) = u1(x), x ∈Ω, t ≥ 0,
ut(x, t− τ) = f0(x, t− τ), x ∈Ω, t ∈ (0,τ),

(1)

where Ω be a regular domain of Rn, a,b are given functions of class C1(R+,R∗+) and ∆ design the Lapla-
cian operator. The decreasing function g : R+→ R+ and the positive constant τ represent, respectively,
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the kernel of the viscoelastic term and time delay, µ1 is a positive constant and µ2 is a real number, such
that

|µ2| ≤ µ1. (2)

The initial datum (u0,u1, f0) belongs to a suitable space.
In recent years, delayed equations have been addressed by several of authors in the literature, and

it was proved that the delay may destabilize the system (see [1, 4, 30, 33–36, 41]). Also, viscoelastic
equations got a great part of research [3, 8, 9, 14, 26, 27, 39, 44]. For instance, the viscoelastic wave
equation of the form

utt −∆u+ f (x, t,u)+
∫ t

0
g(t− s)∆u(x,s)ds+a(x)ut = 0,

where a : Ω→ R is a non-negative and bounded function, f : Ω̄× [0,∞)×R→ R is a function of class
C1 and g : R+→ R+, has been considered by Cavalcanti et al. in [8]. Under some restrictions on a and
g, they showed that the solution decays exponentially. Later, under weaker condition, the previous result
was improved by Berrimi and Messaoudi in [6]. For the case µ1 = µ2 = 0, in [21], Guesmia proved
two general decay estimates of solution (polynomial and logarithmic) under a general assumption on the
kernel function g, see [25,29,45,46] for other related works. To stabilize the system even in the presence
of delay, there are different decay results for equations equipped with both viscoelastic damping term
and time delay feedback, see [7, 19, 28, 38] and the references therein. In this context, it was proved
in [17, 22, 30, 31] that additional conditions or control terms are enough to ensure the stabilization of the
solution in the presence of delay.

In [23], Kirane et al. studied the following equation

utt(x, t)−∆u(x, t)+
∫ t

0
g(t− s)∆u(x,s) ds+µ1ut(x, t)+µ2ut(x, t− τ) = 0, x ∈Ω, t > 0.

They obtained the exponential stability of solutions under a suitable condition between the weight of
the delay term in the feedback and the weight of the term without delay. The same equation has been
considered in [15] by Dai and Yang where the authors obtained the exponential decay result for energy
without any restrictions on µ1 and µ2. This work was later extended by involving the constant delay in
the nonlinear non-external feedback in [5] by Benaissa et al., where they studied

utt(x, t)−∆xu(x, t)+
∫ t

0
g(t− s)∆x(x,s)ds+µ1a1(ut(x, t))+µ2a2(ut(x, t− τ)) = 0,

where a1 is a non-decreasing function of class C(R) and a2 : R→ R be a function of class C1 such that
it is odd and non-decreasing function. The writers obtained the global existence result using the energy
method combined with the Faedo-Galerkin argument. Furthermore, they studied the asymptotic behavior
of solutions using a perturbed energy method. After that, Remil and Hakem [43] treated the case when
µ1 and µ2 were real functions. Precisely, they investigated the viscoelastic wave equation below

utt − k0∆u+α

∫ t

0
g(t− s)∆u(s)ds+µ1(t)ut(x, t)+µ2(t)ut(x, t− τ) = 0,

where k0 and α are positive real numbers. They used a multiplier method to establish a decay estimate
for the energy, which is depends on the behavior of α and g. Many authors proved that the solution
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is asymptotic stable for µ1 = 0 [10, 20, 42]. For time-dependent delay, Baowei in [18] established the
general decay of energy of the problem by using the energy perturbation method; for related work, we
refer to [12, 32].

A large part of the literature addresses the autonomous abstract evolution equation. In [11], for the
abstract problem with past history and constant delay, Chellaoua and Boukhatem [11] considered the
following abstract viscoelastic equation

utt(t)+Au(t)−
∫

∞

0
g(s)Bu(t− s)ds+µ1ut(t)+µ2ut(t− τ) = 0,

where A : D(A)→ H and B : D(B)→ H are self-adjoint linear positive operators. They proved the well-
posedness result by using semi-group theory. They established explicit and general decay results of the
energy solution for a larger class of kernel functions where the exponential and polynomial are particular
cases. The previous authors established the same results for the above problem with source term and
time-varying delay, see [12, 13].

For time-dependent operators A and B, there has been an increasing interest in studying evolution
equations with nonautonomous feedback. The reader is referred to [16, 24]. It has been noted that the
existence of a solution to this type of equation is related to the existence of an evolution family, which
is not fully direct because the domain of the operators may depend on the time variable. Very recently,
on the other hand, there are few recent works that have been dedicated to the study of abstract equations
with nonautonomous feedback, that is, the operators are time-dependent. It has been noted that existing
results in the case of nonautonomous are only partially direct for these reasons. First, the domain of
operators may depend on the time variable. Second, the existence of a solution is related to the existence
of an evolution family. However, only some evolution families solve such a problem. Here, we mention
the work of Al-Khulaifi et al. in [2], who studied a class of nonautonomous second-order evolution
equations without delay and obtained the well-posedness and stability of the solution.

Our main goal of this work is to establish the well-posedness result and exponential decay of energy
of the problem (1) in the nonautonomous case, where we are considering the varying-time operators
a(t)∆ and b(t)∆ with a constant delay. According to our knowledge, there are no decay results for
problems involving time-dependent operators with delay and infinite memory. Moreover, our problem
generalizes the advance results unescorted by delay to those with delay and the nonautonomous case of
evolution equation.

The plan of this paper is as follows: in Section 2, we state some assumptions on the considered
datum. Then, we prove the global existence by using the semi-group arguments. Section 3 presents
some technical lemmas needed to get the main results. Section 4 is devoted to establishing the decay
results of the solution based on the energy method by choosing a suitable Lyapunov functional.

2 Well-posedness

In this section, we will present the well-posedness result of system using semi-group approach. Through-
out this paper, we use standard functional space L2(Ω) endowed with the inner product
〈u,v〉=

∫
Ω

u(x)v(x)dx and the induced norm ‖u‖=
√
〈u,v〉, and we denote c0 the Poincary’s constant.

Now, we make the following assumptions:
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(H1) The non-increasing C1 kernel function g : R+→ R+ satisfies

g0 =
∫

∞

0
g(s)ds < min

{
a(t)
b(t)

,
a′(t)
b′(t)

}
, (3)

and there exist positives constants θ1 and θ2 such that

− 1
θ1

g′(s)≤ g(s)≤− 1
θ2

g′(s). (4)

(H2) There exists a positive constant θ3 such that

b′(t)≤−θ3b(t), (5)

and
‖a′(t)−g0b′(t)‖L∞(R+) is small enough. (6)

Following a method developed in [14] (see also [39]) and the idea of Nicaise and Pignotti in [30] (see
also [36, 37]) by producing the new auxiliary variables η and z, system (1) can be reformulated as the
following abstract linear first order evolution{

Ut(t) = A (t)U(t),
U(0) =U0,

(7)

where U = (u,ut ,η ,z)T , U0 = (u0,u1,η0, f0(−τρ))T are elements on the space H (t), which given by

H (t) =V ×L2(Ω)×Lg(t)×L2(0,1), V = H2(Ω)∩H1
0 (Ω),

and {
η(t,s) = u(t)−u(t− s), t,s≥ 0,
z(ρ, t) = ut(t−ρτ), ρ ∈ (0,1), t ≥ 0,

(8)

with {
η0(s) = η(0,s) = u0(0)−u0(s), s≥ 0,
z0(ρ) = z(ρ,0) = f0(−τρ), ρ ∈ (0,1).

(9)

The spaces Lg(t) and L2(0,1), respectively, are defined by

Lg(t) =
{

φ : R+→V,
∫

∞

0
g(s)b(t)‖∇φ‖2 ds < ∞

}
,

and

L2(0,1) =
{

φ :]0,1[→ L2(Ω) :
∫ 1

0
‖φ‖2 dρ < ∞

}
,

endowed with the inner products

〈φ1,φ2〉Lg(t) =
∫

∞

0
g(s)b(t)〈∇φ1(s),∇φ2(s)〉 ds,

and

〈φ1,φ2〉L2(0,1) =
∫ 1

0
〈φ1,φ2〉dρ. (10)
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We define the operator A (t) by

A (t)


φ1
φ2
φ3
φ4

=



φ2

(a(t)−g0b(t))∆φ1 +
∫

∞

0 g(s)b(t)∆φ3(s)ds−µ1φ2−µ2φ4(1)

φ2−
∂φ3

∂ s

−1
τ

∂φ4

∂ρ


, (11)

with domain

D(A (t)) =


(φ1,φ2,φ3,φ4) ∈V ×L2(Ω)×Lg(t)×L2(0,1),

(a(t)−g0b(t))φ1 +
∫

∞

0 g(s)b(t)φ3(s)ds in V,

∂φ3

∂ s
∈ Lg(t), φ3(0) = 0,φ4(0) = φ2

 . (12)

By the definitions of η and z, we have{
ηt(t,s)+ηs(t,s) = ut(t), t,s≥ 0,
η(t,0) = 0, t ≥ 0,

(13)

and {
τzt(ρ, t)+ zρ(ρ, t) = 0, ρ ∈ (0,1), t ≥ 0,
z(0, t) = ut(t), t ≥ 0.

(14)

Owing to (13) and (14), we conclude that systems (1) and (7) are equivalent.
Hence, from (3), H (t) is a Hilbert space endowed with the inner product〈

(φ1,φ2,φ3,φ4)
T ,(φ̃1, φ̃2, φ̃3, φ̃4)

T〉
H (t) = (a(t)−g0b(t))〈∇φ1,∇φ̃1〉+ 〈φ2, φ̃2〉L2(Ω)

+ 〈φ3, φ̃3〉Lg(t)+ τξ 〈φ4, φ̃4〉L2(0,1),

while ξ be a constant satisfies ξ ≥ 0 and

|µ2|< ξ < 2µ1−|µ2|. (15)

From (19), we observe that ξ exists.
The global existence results of (7) is given by the following.

Theorem 1. Assuming that

1) ∀t > 0, D(A (t)) = D(A (0)).

2) ∀t ∈ [0,T ], A (t) is the infinitesimal generator of a C0−semi-group on H (t) and A = {A (t), t ∈ [0,T ]}
is a stable family.

3) ∂tA belongs to L∞([0,T ],B(D(A (0)),H (t)), which is the space of equivalent classes of es-
sentially bounded, strongly measurable functions from [0,T ] into the set B(D(A (0)),H (t)) of
bounded operators from D(A (0)) into H (t).
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Under the assumptions (H1) − (H2), for any U0 ∈ H (t), system (7) has a unique solution
U ∈C(R+,H (t)). Moreover, if U0 ∈ D(A (0)), then U ∈C1(R+,H (t))∩C(R+,D(A (0)).

Proof. We will prove that the linear operator A (t) generates a linear C0−semi-group on H (t).
Firstly, A (t) is dissipative. Let Φ = (φ1,φ2,φ3,φ4)

T be element of D(A (t)), then

〈A (t)Φ,Φ〉=(a(t)−g0b(t))〈∇φ2,∇φ1〉+(a(t)−g0b(t))〈∆φ1,φ2〉+
〈∫

∞

0
g(s)b(t)∆φ3(s)ds,φ2

〉
−µ1〈φ2,φ2〉−µ2〈φ4(1),φ2〉+ 〈φ2,φ3〉Lg(t)−

〈
∂φ3

∂ s
,φ3

〉
Lg(t)
−ξ

〈
∂φ4

∂ρ
,φ4

〉
L2(0,1)

.

(16)

We have by the Green’s formula
〈∆φ1,φ2〉=−〈∇φ1,∇φ2〉 . (17)

Definition (12) together with the Green’s formula lead to

〈φ2,φ3〉Lg(t) =

〈
φ2,
∫

∞

0
g(s)b(t)∆φ3(s)ds

〉
=−

∫
∞

0
g(s)b(t)〈∇φ2,∇φ3〉ds. (18)

The Cauchy-Schwartz’s and Young’s inequalities imply that

−µ2〈φ4(1),φ2〉 ≤
|µ2|

2
(
‖φ4(1)‖2 +‖φ2‖2) . (19)

Let integrate by parts and using the condition φ3(0) = 0, we obtain

−〈∂φ3

∂ s
,φ3〉Lg(t) =

1
2

∫
∞

0
g′(s)b(t)‖∇φ3(s)‖2 ds. (20)

Recalling (10), we may write

−ξ 〈∂φ4

∂ρ
,φ4〉=−ξ

∫ 1

0
〈∂φ4

∂ρ
,φ4〉dρ =

ξ

2
(
‖φ4(0)‖2−‖φ4(1)‖2)= ξ

2
(
‖φ2‖2−‖φ4(1)‖2) . (21)

Inserting (17), (18), (19), (20) and (21) in (16), we arrive at

〈A (t)Φ,Φ〉≤ b(t)
2

∫
∞

0
g′(s)‖∇φ3(s)‖2 ds+

(
−µ1 +

|µ2|
2

+
ξ

2

)
‖φ2‖2+

(
|µ2|

2
− ξ

2

)
‖φ4(1)‖2. (22)

As g is non-increasing function and by the inequality (15), we conclude that A (t) is dissipative operator.
Secondly, let show that I−A (t) is surjective

∀F = ( f1, f2, f3, f4) ∈H (t), ∃Φ = (φ1,φ2,φ3,φ4) ∈ D(A (t), such that

(I−A (t))W = F, (23)

which is equivalent to

φ1−φ2 = f1,

φ2− (a(t)−g0b(t))∆φ1−
∫

∞

0
g(s)b(t)∆φ3(s)ds+µ1w2 +µ2φ4(1) = f2,

φ3−φ2 +
∂φ3

∂ s
= f3,

φ4 +
1
τ

∂φ4

∂ρ
= f4.

(24)
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From the first equation of (24), we have
φ2 = φ1− f1. (25)

The third equation of (24) with φ3(0) = 0 has a unique solution given by

φ3(s) = (1− e−s)φ1 + e−s
∫ s

0
ey ( f3(y)− f1) dy, (26)

and the fourth equation of (24) with φ4(0) = φ2 = φ1− f1 has a unique solution

φ4(ρ) =

(
φ1− f1 + τ

∫
ρ

0
f4(y)eτy dy

)
e−τρ , ρ ∈ (0,1). (27)

For ρ = 1,

φ4(1) =
(

φ1− f1 + τ

∫ 1

0
f4(y)eτy dy

)
e−τ .

We insert (25) and (26) in the second equation of (24), we get

− (a(t)−g1b(t))∆φ1 +
(
I +µ1I +µ2e−τ I

)
φ1 = f̃ , (28)

while
g1 =

∫
∞

0
e−sg(s)ds,

and

f̃ = f2 +
(
µ1 +µ2e−τ −1

)
f1−µ2τe−τ

∫ 1

0
f4(y)eτy dy

−
∫

∞

0
g(s)b(t)e−s

∫ s

0
ey

∆( f3(y)− f1) dyds.

Let now prove that (28) has a solution φ1 ∈V then, we find Φ ∈D(A (t)) satisfies (24). Indeed, we have
g1 < g0 then −(a(t)− g1b(t))∆ is positive definite operator. So, we take the duality brackets 〈·, ·〉V ′,V ,
with ϕ ∈V : 〈

−(a(t)−g1b(t))∆φ1 +(1+µ1 +µ2e−τ)Iφ1,ϕ
〉

V ′,V =
〈

f̃ ,ϕ
〉

V ′,V .

Using Green’s formula, we get

〈(a(t)−g1b(t))∇φ1,∇ϕ〉V ′,V +
〈
(1+µ1 +µ2e−τ)Iφ1,ϕ

〉
V ′,V =

〈
f̃ ,ϕ
〉

V ′,V . (29)

The left hand of (29) is bilinear, coercive and continuous form, then∣∣∣〈−(a(t)−g1b(t))∆φ1 +(1+µ1 +µ2e−τ)Iφ1,ϕ
〉

V ′,V

∣∣∣≤C‖φ1‖‖ϕ‖.

For ϕ = φ1 ∈V∣∣∣〈(a(t)−g1b(t))∆φ1 +(1+µ1 +µ2e−τ)Iφ1,φ1
〉

V ′,V

∣∣∣
= (a(t)−g1b(t))‖∇φ1‖2 +(1+µ1 +µ2e−τ)‖φ1‖2 ≥C‖φ1‖2.
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Applying the Lax-Milgram’s theorem, we conclude that (24) has a unique solution w1 ∈ V , by (26),
satisfies

−(a(t)−g0b(t))∆φ1 +b(t)
∫

∞

0
g(s)∆φ3(s)ds+µ1φ2 ∈ L2(Ω).

Thus, I−A (t) is surjective.
Finally, (22) and (23) mean that A (t) is maximal monotone operator. Then, using Lummer-Phillips’s

theorem [40, Theorem I.4.6], we deduce that A (t) is the infinitesimal generator of a C0−semi-group of
contraction on H (t).

Lastly, let Φ = (φ1,φ2,φ3,φ4)
T ∈ D(A (0)), then

d
dt

A (t)Φ =


0

(a′(t)−g0b′(t))∆φ1 +b′(t)
∫

∞

0 g(s)∆φ3 ds
0
0

 . (30)

As φ3 ∈ Lg(t), and by (6). Then

d
dt

A (t)Φ ∈ L∞([0,T ],B(D(A (0)),H (t)).

Thus, the assumptions of Theorem 1 are hold, so system (1) has a unique solution that achieved the proof
of Theorem 1.

3 Technical lemmas

This section is devoted to state some technical lemmas. To begin with, let define the energy functional E
associated with problem (7) by

E(t) =
1
2
‖U(t)‖2

H (t) =
(a(t)−g0b(t))

2
‖∇u(t)‖2 +‖ut(t)‖2 +

b(t)
2

∫
∞

0
g(s)‖∇η(t,s)‖2 ds

+
τξ

2

∫ 1

0
‖z(ρ, t)‖2 dρ, ∀t ∈ R+.

(31)

Lemma 1. For all t ≥ 0, we have

E ′(t)≤ a′(t)−g0b′(t)
2

‖∇u(t)‖2− θ2 +θ3

2

∫
∞

0
g(s)b(t)‖∇η(t,s)‖2 ds. (32)

Proof. Multiplying the first equation of (1) by ut , we get

1
2

d
dt
‖ut(t)‖2−a(t)〈∆u(t),ut(t)〉+

〈∫
∞

0
g(s)b(t)∆u(t− s)ds,ut(t)

〉
+µ1‖ut(t)‖2 +µ2 〈ut(t− τ),ut(t)〉= 0.

Using the Green’s formula, we obtain

1
2

d
dt
‖ut(t)‖2 +a(t)〈∇u(t),∇ut(t)〉−

〈∫
∞

0
g(s)b(t)∇u(t− s)ds,∇ut(t)

〉
+µ1‖ut(t)‖2 +µ2 〈ut(t− τ),ut(t)〉= 0.

(33)
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From the definitions of η and z, we find

1
2

d
dt
‖ut(t)‖2 +(a(t)−g0b(t))〈∇u(t),∇ut(t)〉+

〈∫
∞

0
g(s)b(t)∇η(t,s)ds,∇ut(t)

〉
+µ1‖ut(t)‖2 +µ2 〈z(1),ut(t)〉= 0.

As ηt(t,s)+ηs(t,s) = ut(t), we have〈∫
∞

0
g(s)b(t)∇η(t,s)ds,∇ut(t)

〉
=

〈∫
∞

0
g(s)b(t)∇η(t,s)ds,∇(ηt(t,s)+ηs(t,s))

〉
. (34)

A simple calculation leads to

(a(t)−g0b(t))〈∇u(t),∇ut(t)〉=
1
2

d
dt

[
(a(t)−g0b(t))‖∇u(t)‖2]− 1

2
(a′(t)−g0b′(t))‖∇u(t)‖2, (35)

and 〈∫
∞

0
g(s)b(t)∇η(t,s)ds,∇ηt(t,s)

〉
=

1
2

d
dt

[∫
∞

0
g(s)b(t)‖∇η(t,s)‖2 ds

]
− 1

2

∫
∞

0
g(s)b′(t)‖∇η(t,s)‖2 ds.

(36)

By integration by parts and using the condition lim
s→∞

g(s) = 0 and η(t,0) = 0, we arrive at

〈
∫

∞

0
g(s)b(t)∇η(t,s)ds,∇ηs(t,s)〉=−

1
2

∫
∞

0
g′(s)b(t)‖∇η(t,s)‖2 ds. (37)

Thus, combining (34), (36) and (37), we get〈∫
∞

0
g(s)b(t)∇η(t,s)ds,∇ut(t)

〉
=

1
2

d
dt

[∫
∞

0
g(s)b(t)‖∇η(t,s)‖2 ds

]
− 1

2

∫
∞

0
g(s)b′(t)‖∇η(t,s)‖2 ds

− 1
2

∫
∞

0
g′(s)b(t)‖∇η(t,s)‖2 ds.

(38)

Applying Cauchy-Schwartz’s and Young’s inequalities, we obtain

µ2〈z(1),ut(t)〉 ≤
|µ2|

2
(
‖z(1)‖2 +‖ut(t)‖2) . (39)

Inserting (35), (38) and (39) in (33), we find

1
2

d
dt

[
‖ut(t)‖2 +(a(t)−g0b(t))‖∇u(t)‖2 +b(t)

∫
∞

0
g(s)‖∇η(t,s)‖2 ds

]
≤ a′(t)−g0b′(t)

2
‖∇u(t)‖2 +

b(t)
2

∫
∞

0
g′(s)‖∇η(t,s)‖2 ds

+
b′(t)

2

∫
∞

0
g(s)‖∇η(t,s)‖2 ds +

(
|µ2|

2
−µ1

)
‖ut(t)‖2 +

|µ2|
2
‖z(1)‖2.
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From the inequality (15), we get

1
2

d
dt

[
‖ut(t)‖2 +(a(t)−g0b(t))‖∇u(t)‖2 +b(t)

∫
∞

0
g(s)‖∇η(t,s)‖2 ds

]
≤ a′(t)−g0b′(t)

2
‖∇u(t)‖2 +

b(t)
2

∫
∞

0
g′(s)‖∇η(t,s)‖2 ds

+
b′(t)

2

∫
∞

0
g(s)‖∇η(t,s)‖2 ds+

ξ

2
(
‖z(1)‖2−‖ut(t)‖2) .

On the other hand, we have

1
2

d
dt

[∫ 1

0
‖z(ρ, t)‖2 dρ

]
=
∫ 1

0
〈z(ρ, t),zt(ρ, t)〉dρ

=−1
τ

∫ 1

0
〈z(ρ, t),zρ(ρ, t)〉dρ

=
1

2τ

[
‖ut(t)‖2−‖z(1)‖2] .

(40)

Then, the last identity (40) leads to

1
2

d
dt

[
‖ut(t)‖2 +(a(t)−g0b(t))‖∇u(t)‖2 +b(t)

∫
∞

0
g(s)‖∇η(t,s)‖2 ds

]
≤a′(t)−g0b′(t)

2
‖∇u(t)‖2 +

b(t)
2

∫
∞

0
g′(s)‖∇η(t,s)‖2 ds

+
b′(t)

2

∫
∞

0
g(s)‖∇η(t,s)‖2 ds− τξ

2
d
dt

[∫ 1

0
‖z(ρ, t)‖2 dρ

]
.

According to (3), (4) and (5), we conclude (32), this completes the proof.

Lemma 2. Let u be the solution of (7). Then, the functional I1

I1(t) = 〈ut(t),u(t)〉, (41)

satisfies, for all t ≥ 0

I′1(t)≤
(

1+
µ1

2

)
‖ut(t)‖2−

(
a(t)−g0b(t)− 1+µ1c0

2

)
‖∇u(t)‖2

+
g0b(t)

2

∫
∞

0
g(s)b(t)‖∇η(t,s)‖2 ds−µ2〈z(1),u(t)〉.

(42)

Proof. By differentiating (41) with respect to t, we obtain

I′1(t) = ‖ut(t)‖2 + 〈utt(t),u(t)〉. (43)

We multiply the first equation of (1) by u and use the Green’s formula with the definitions (8), we obtain

〈utt(t),u(t)〉+(a(t)−g0b(t))‖∇u(t)‖2 +

〈∫
∞

0
g(s)b(t)∇η(t,s)ds,∇u(t)

〉
+µ1 〈ut(t),u(t)〉+µ2 〈z(1),u(t)〉= 0.

(44)
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Exploiting (43) and (44), we deduce

I′1(t) =‖ut(t)‖2− (a(t)−g0b(t)))‖∇u(t)‖2−µ1 〈ut(t),u(t)〉

−
〈∫

∞

0
g(s)b(t)∇η(t,s)ds,∇u(t)

〉
−µ2 〈z(1),u(t)〉 .

(45)

Using the Cauchy-Schwartz’s, Young’s and Poincary’s inequalities on the two last terms give

−µ1 〈ut(t),u(t)〉 ≤
µ1

2
‖ut(t)‖2 +

µ1c0

2
‖∇u(t)‖2, (46)

and

−〈
∫

∞

0
g(s)b(t)∇η(t,s)ds,∇u(t)〉 ≤ 1

2
‖∇u(t)‖2 +

1
2

∥∥∥∥∫ ∞

0
g(s)b(t)∇η(t,s)ds

∥∥∥∥2

. (47)

The last term of (47) can be written as∥∥∥∥∫ ∞

0
g(s)b(t)∇η(t,s)ds

∥∥∥∥2

≤
(∫

∞

0
g(s)b(t)‖∇η(t,s)‖ds

)2

≤
(∫

∞

0

√
g(s)b(t)

√
g(s)b(t)‖∇η(t,s)‖ds

)2

≤
(∫

∞

0
g(s)b(t)ds

)(∫
∞

0
g(s)b(t)‖∇η(t,s)‖2 ds

)
= g0b(t)

∫
∞

0
g(s)b(t)‖∇η(t,s)‖2 ds.

Therefore

−〈
∫

∞

0
g(s)b(t)∇η(t,s)ds,∇u(t)〉 ≤ 1

2
‖∇u(t)‖2 +

g0b(t)
2

∫
∞

0
g(s)b(t)‖∇η(t,s)‖2 ds. (48)

We substitute (46) and (48) in (45), we conclude (42).

Lemma 3. The function defined by

I2(t) =−〈ut(t),
∫

∞

0
g(s)η(t,s)ds〉, (49)

satisfies the following inequality

I′2(t)≤
(

µ1 +1
2
−g0

)
‖ut(t)‖2 +

(
a(t)−g0b(t)

2

)
‖∇u(t)‖2 +µ2

〈
z(1),

∫
∞

0
g(s)η(t,s)ds

〉
+g0

(
a(t)−g0b(t)

2b(t)
+ c0

µ1 +θ1

2b(t)
+1
)∫

∞

0
g(s)b(t)‖∇η(t,s)‖2ds, for all t ≥ 0.

(50)

Proof. Let multiply the first equation of (1) by
∫

∞

0 g(s)η(t,s)ds, we get〈
utt(t),

∫
∞

0
g(s)η(t,s)ds

〉
+(a(t)−g0b(t))

〈
∇u(t),

∫
∞

0
g(s)∇η(t,s)ds

〉
+b(t)

∥∥∥∥∫ ∞

0
g(s)∇η(t,s)ds

∥∥∥∥2

+µ1

〈
ut(t),

∫
∞

0
g(s)η(t,s)ds

〉
+µ2

〈
z(1),

∫
∞

0
g(s)η(t,s)ds

〉
= 0.

(51)
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As ut(t) = ηt(t,s)+ηs(t,s), then

〈utt(t),
∫

∞

0
g(s)η(t,s)ds〉= d

dt

〈
ut(t),

∫
∞

0
g(s)η(t,s)ds

〉
−
〈

ut(t),
∫

∞

0
g(s)ηt(t,s)ds

〉
=−I′2(t)−g0‖ut(t)‖2 +

〈
ut(t),

∫
∞

0
g(s)ηs(t,s)ds

〉
.

We integrate by part relating to s, so, we get〈
utt(t),

∫
∞

0
g(s)η(t,s)ds

〉
=−I′2(t)−g0‖ut(t)‖2−

〈
ut(t),

∫
∞

0
g′(s)η(t,s)ds

〉
. (52)

Inserting (52) in (51), we obtain

I′2(t) =−g0‖ut(t)‖2 +b(t)
∥∥∥∥∫ ∞

0
g(s)∇η(t,s)ds

∥∥∥∥2

+(a(t)−g0b(t))
〈

∇u(t),
∫

∞

0
g(s)∇η(t,s)ds

〉
+µ1

〈
ut(t),

∫
∞

0
g(s)η(t,s)ds

〉
−
〈

ut(t),
∫

∞

0
g′(s)η(t,s)ds

〉
+µ2

〈
z(1),

∫
∞

0
g(s)η(t,s)ds

〉
.

(53)

Using Cauchy-Schwartz’s, and Young’s inequalities, we get∥∥∥∥∫ ∞

0
g(s)∇η(t,s)ds

∥∥∥∥2

≤
(∫

∞

0
g(s)‖∇η(t,s)‖ds

)2

≤
(∫

∞

0

√
g(s)

√
g(s)‖∇η(t,s)‖ds

)2

≤g0

∫
∞

0
g(s)‖∇η(t,s)‖2 ds,

(54)

and 〈
∇u(t),

∫
∞

0
g(s)∇η(t,s)ds

〉
≤1

2
‖∇u(t)‖2 +

1
2
‖
∫

∞

0
g(s)∇η(t,s)ds‖2

≤1
2
‖∇u(t)‖2 +

g0

2b(t)

∫
∞

0
g(s)b(t)‖∇η(t,s)‖2 ds.

(55)

Poincary’s inequality leads to〈
ut(t),

∫
∞

0
g(s)η(t,s)ds

〉
≤ 1

2
‖ut(t)‖2 +

g0c0

2b(t)

∫
∞

0
g(s)b(t)‖∇η(t,s)‖2 ds, (56)

and according to (4), we get

−
〈

ut(t),
∫

∞

0
g′(s)η(t,s)ds

〉
≤θ1

〈
ut(t),

∫
∞

0
g(s)η(t,s)ds

〉
≤1

2
‖ut(t)‖2 +g0

c0θ1

2b(t)

∫
∞

0
g(s)b(t)‖∇η(t,s)‖2 ds.

(57)

Then, we substitute (54), (55), (56) and (57) in (53) to hold (50).
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Lemma 4 ([10]). The function

I3(t) = τe2τ

∫ 1

0
e−2τρ‖z(ρ, t)‖2 dρ, (58)

satisfies, for all t ≥ 0

I′3(t)≤−2τ

∫ 1

0
‖z(ρ, t)‖2 dρ + e2τ‖ut(t)‖2−‖z(1)‖2. (59)

4 Asymptotic behavior

This section is dedicated to investigate the asymptotic behavior of the solution. To state our main results,
we introduce a suitable Lyapunov functional which constructed as below:

L (t) = M(t)E(t)+M1I1(t)+M2I2(t)+ I3(t), (60)

where M1,M2 ∈ R+ and M is a differentiable function from R+ to itself.

Proposition 1. There exist differentiable functions λ1,λ2 : R+→ R∗+, such that

λ1(t)E(t)≤L (t)≤ λ2(t)E(t). (61)

Proof. By Cauchy-Schwartz’s, Young’s and Poincary’s inequalities, we have

|I1(t)| ≤
1
2
‖ut(t)‖2 +

c0

2
‖∇u(t)‖2 ≤max

{
1,

c0

a(t)−g0b(t)

}
E(t), (62)

and

|I2(t)| ≤
1
2
‖ut(t)‖2 +

g0c0

2b(t)

∫
∞

0
g(s)b(t)‖∇η(t,s)‖2 ds≤max

{
1,

g0c0

b(t)

}
E(t). (63)

Also, we have

|I3(t)| ≤ τe2τ

∫ 1

0
‖z(ρ, t)‖2 dρ ≤ e2τ

ξ
E(t). (64)

From (62), (63) and (64), we obtain

|L (t)−M(t)E(t)| ≤C(t)E(t),

where

C(t) = M1 max
{

1,
c0

a(t)−g0b(t)

}
+M2 max

{
1,

g0c0

b(t)

}
+

e2τ

ξ
. (65)

Consequently, by choosing M(t), for all t ≥ 0 so large, we conclude L ∼ E.

In the following theorem, we state the stability result of the solution.
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Theorem 2. Assume that the assumptions (H1)− (H2) hold. For any U0 ∈H (0) there exists a positive
constant δ such that under a very small choice of µ2, the solution of (7) satisfies

‖U(t)‖H (t) ≤
δeε̃(t)

λ1(t)
, (66)

where δ and ε̃ are defined later.

Proof. Suppose that (H1) and (H2) hold, then all the estimates are explained. Let start the demonstration
by estimating the derivative of Lyapunov functional. From (32), (42), (50), and (59), we get

L ′(t)≤ M′(t)E(t)−
[

M2
(
g0−

µ1 +1
2

)
−M1(1+

µ1

2
)− e2τ

]
‖ut(t)‖2

−
[

M1
(
a(t)−g0b(t)− 1+µ1c0

2
)
− a′(t)−g0b′(t)

2
M(t)−M2

a(t)−g0b(t)
2

]
‖∇u(t)‖2

−
[

θ2 +θ3

2
M(t)−M1

g0b(t)
2
−M2g0

(a(t)−g0b(t)
2b(t)

+ c0
µ1 +θ1

2b(t)
+1
)]∫ ∞

0
g(s)b(t)‖∇η(t,s)‖2 ds

−2τ

∫ 1

0
‖z(ρ, t)‖2 dρ +µ2

〈
z(1),M2

∫
∞

0
g(s)η(t,s)ds−M1u(t)

〉
−‖z(1)‖2.

(67)

Using Cauchy-Schwartz’s, Young’s and the Poincary’s inequalities, we have

µ2

〈
z(1),M2

∫
∞

0
g(s)η(t,s)ds−M1u(t)

〉
≤ ‖z(1)‖2 +M2

2 c0
g0µ2

2
2b(t)

∫
∞

0
g(s)b(t)‖∇η(t,s)‖2 ds

+M2
1

c0µ2
2

2
‖∇u(t)‖2.

(68)

Combining (67) and (68) lead to

L ′(t)≤ M′(t)E(t)−
[

M2

(
g0−

µ1 +1
2

)
−M1

(
1+

µ1

2

)
− e2τ

]
‖ut(t)‖2

−

[
M1

(
a(t)−g0b(t)−

1+µ1c0 +µ2
2 M1c0

2

)
−M2

a(t)−g0b(t)
2

−M(t)
a′(t)−g0b′(t)

2

]
‖∇u(t)‖2

−

[
θ2 +θ3

2
M(t)−M1

g0b(t)
2
−M2g0

(
a(t)−g0b(t)

2b(t)
+ c0

µ1 +θ1 +µ2
2 M2

2b(t)
+1

)]∫
∞

0
g(s)b(t)‖∇η(t,s)‖2 ds

−2τ

∫ 1

0
‖z(ρ, t)‖2 dρ.

(69)

Now, let fix M1 = M2 = 1, such that

g0−µ1− e2τ >
5
2
, (70)

and, let choose M(t), as follow

M(t)>
2

θ2 +θ3
M3(t),

while

M3(t) =
g0b(t)

2
+g0

(
a(t)−g0b(t)

2b(t)
+ c0

µ1 +θ1 +µ2
2

2b(t)
+1
)
+

a(t)−g0b(t)
4

. (71)
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From (6) and using the fact M3 does not depend on a′ and b′, we can suppose that(
a′(t)−g0b′(t)

)
M(t)≤ (a(t)−g0b(t))

2
. (72)

So, we arrive at

L ′(t)≤M′(t)E(t)−‖ut(t)‖2−
(

a(t)−g0b(t)
4

− 1+µ1c0 + c0µ2
2

2

)
‖∇u(t)‖2

− a(t)−g0b(t)
4

∫
∞

0
g(s)b(t)‖∇η(t,s)‖2ds−2τ

∫ 1

0
‖z(ρ, t)‖2dρ.

Also, let choose µ1 and µ2 be very small, such that (70) is satisfied and 1+µ1c0 +µ2
2 c0 is small enough.

Using (31), we get
L ′(t)≤

(
M′(t)−G(t)

)
E(t),

where G(t) = max
{

1,
a(t)−g0b(t)

4

}
. Then, by (61), we obtain

L ′(t)≤ ε(t)L (t), (73)

where ε(t) =
M′(t)−G(t)

λ1(t)
. We integrate (73), so, we deduce

L (t)≤L (0)eε̃(t),

where ε̃(t) =
∫ t

0 ε(s)ds. Exploiting (61) results

E(t)≤ L (0)
λ1(t)

eε̃(t).

Therefore, we conclude (66), with δ = 2L (0). Thus the proof of Theorem 2 is completed.

Remark 1. If the functions C and M3 are bounded, hence we can choose M as a constant, such that

M >
2

θ2 +θ3
‖M3(t)‖L∞(R+).

Then, we get

ε(t) =− G(t)
M−‖C(t)‖L∞(R+)

. (74)

Therefore, (66) implies that

∃ c1,c2, such that ‖U(t)‖2
H (0) ≤ c2e−c1

∫ t
0 (a(s)−g0b(s))ds. (75)

Thanks to (65) and (71) , we notice that C and M3 are bounded functions if and only if

‖b‖L∞(R+) < ∞, g0 <
‖a‖L∞(R+)

‖b‖L∞(R+)
. (76)

So, we obtain the exponential stability estimate

‖U(t)‖2
H (0) ≤ c2e−c3t , (77)

where c3 = c1(‖a‖L∞(R+)−g0‖b‖L∞(R+)).
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