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Abstract. In this paper, we study the blow-up of solutions for hyperbolic equations involving the frac-
tional Laplacian operator with damping and source terms. We obtain the global existence results. Then,
we observe the blow-up of solutions using the concavity method. Finally, we present some numerical
simulation results.
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1 Introduction

In this work, we study the following boundary value problem related to the hyperbolic equation involving
the fractional Laplacian with nonlinear source terms:

utt +(−∆)su− (−∆)sut + |ut |q−1ut = α|u|p−1u, x ∈Ω, t > 0,
u = 0, (t,x) ∈ (0,T )×∂Ω,

u(0,x) = u0(x), ut(0,x) = u1(x), x ∈Ω,

(1)

where Ω⊂Rn is an open domain with smooth boundary ∂Ω, (−∆)s is the fractional Laplacian such that
s ∈]0,1[, α > 0 and 1≤ q < p≤ p∗ such that the exponent p∗ satisfies

p∗ ≤ 2n
n−2s

= 2∗s , n > 2s.
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The fractional Laplacian operator is a generalization of the differentiation operation. The concept of
fractional differentiation, as a generalization of derivative to non-integer values, emerged almost simul-
taneously with the concept of differentiation. The first mention of this idea was made by Leibniz and
Marquis in [19]. Subsequently, the concept of fractional integrodifferentiation was further developed in
many works(for more details, see [10, 16]). In recent years, many mathematical models involving frac-
tional and non-local operators have been actively studied as they arise in various applications, such as
physics, image processing, population dynamics, etc.( [7, 11]).
In [1, 9], the authors studied the existence of weak solutions for a fractional elliptic system.
The following equation

∂
2
t u+[u]2(θ−1)

s (−∆)su = |u|p−1u, (2)

where θ ∈ [1,2∗s ] and [u]s is defined by

(∫
Ω

∫
Ω

|u(x)−u(y)|2

|x− y|n+2s dxdy
) 1

2 . (3)

The researchers obtained the global existence and blow up of solutions for (2) by using Galerkin method
combined the potential wells in [18]. Also, they showed the global existence of solutions under initial
conditions. Then, in [17] the authors studied the global existence, behavior and blow up of solutions of
the following damped equation

∂
2
t u+[u]2(θ−1)

s (−∆)su+ |∂tu|α−1
∂tu+u = |u|p−2u, (4)

where 2<α < 2θ < p< 2∗s < s. In [14], the authors studied the blow up by a modified concavity method
in finite time (see [6, 23]). And in [5] the researches proved blow-up of solutions for the following
equation

∂
2
t u+(−∆)su+(−∆)s

∂tu = u|u|p−2, x ∈Ω, t > 0. (5)

The interaction between the source terms |u|p−1u and the damping |ut |q−1ut makes the problem more
interesting. In [12, 13], Levine was the first to study this interaction using the concavity method with
(q = 1). Then, Vitillaro in [21] extended Levine’s results to the nonlinear case (q > 1) and showed that
solutions with positive initial energy blow up in finite time. In the absence of the nonlinear damping
|ut |q−1ut , the authors studied the blow up of solutions for the wave equation involving the fractional
Laplacian using the concavity method in [5]. Messaoudi studied the decay of solutions using a combina-
tion of techniques involving the potential well method and perturbed energy in [15]. Recently, in [22] Wu
and Xue proved the uniform energy decay rates of the solutions using the multiplier method. Afterwards,
in [20] Piskin studied the blow up of solutions and provided lifespan estimates in three different ranges
of initial energy. In [3, 4], the authors studied a quasilinear hyperbolic equation involving the weighted
Laplacian operator with source terms.

In this work, first, we demonstrate the global existence of solutions for problem (1) with α = 1.
Secondly, we observe the finite-time blow up of solutions with positive initial energy, and we obtain
some numerical results.

This paper is organized as follows. In Section 2, we present some definitions, lemmas and notations.
In Section 3, we show the global existence of solutions. In Section 4, we prove the blow up of solutions
by using the concavity method, finally in Section 5 we obtain the some numerical simulations.
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2 Preliminaries

In this section, we give some definitions, lemmas and assumptions which will be used throughout this
article. Let || · ||2 and || · ||p+1 denote the usual L2(Ω) and Lp+1(Ω) norm, respectively. The fractional
Laplacian (−∆)su of the function u is given by

(−∆)su(x) =C
∫

Ω

u(x)−u(y)
|x− y|n+2s dy, ∀x ∈Ω, (6)

where C =C(n,s) is the normalisation constant. Now, we define the fractional-order Sobolev space by

W s,2(Ω) = {u ∈ L2(Ω) :
|u(x)−u(y)|2

|x− y| n2+s dy ∈ L2(Ω×Ω)}, (7)

with norm

||u||W s,2(Ω) =
(∫

Ω

|u|2 +
∫

Ω

∫
Ω

|u(x)−u(y)|2

|x− y|n+2s dxdy
) 1

2 . (8)

Let
W s,2

0 (Ω) = {u ∈W s,2(Ω) : u = 0, a.e on ∂Ω}, (9)

be a closed linear subspace of W s,2(Ω) (see [5]), and its norm is given by

||u||W s,2
0 (Ω)

=
(∫

Ω

∫
Ω

|u(x)−u(y)|2

|x− y|n+2s dxdy
) 1

2 . (10)

The space W s,2
0 (Ω) is Hilbert space with the inner product

< u,v >W s,2
0 (Ω)

=
∫

Ω

∫
Ω

|u(x)−u(y)||v(x)− v(y)|
|x− y|n+2s dxdy. (11)

Lemma 1 ( [8]). 1. For any s ∈ [1,2∗s ], there exists a positive constant C0 = C0(n,s) such that for any
u ∈W s,2

0 (Ω)

||u||Ls(Ω) ≤C0

∫
Ω

∫
Ω

|u(x)−u(y)|2

|x− y|n+2s dxdy.

2. For any s ∈ [1,2∗s ] and any bounded sequence (u j) j in W s,2
0 (Ω), there exists u in Ls(Ω), with u = 0,

such that up to a subsequence, still denoted by (u j) j

u j→ u strongly in Ls(Ω) as j→ ∞.

3 The potential wells

In this section, we consider problem (1) in stationary case. In fact, if we replace u in this section by u(t)
for any t ∈ [0,T ), all the facts are still valid. We define

J[u(t)] =
1
2
||u||2

W s,2
0 (Ω)

− 1
p+1

||u||p+1
p+1,
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and
I[u(t)] = ||u||2

W s,2
0 (Ω)

−||u||p+1
p+1.

We also define the energy function

E[u(t)] =
1
2
||ut ||2 +

1
2
||u||2

W s,2
0 (Ω)

− 1
p+1

||u||p+1
p+1,

and we introduce the stable set as follows

W = {u : u ∈W s,2
0 (Ω), I(u)> 0;J(u)< d}∪{0},

where the mountain pass level d is defined as

d = inf
u∈W s,2

0 (Ω)/0
{sup

µ≥0
J(µu)}.

And the Nehari manifold
N = {u ∈W s,2

0 (Ω)/0 : I(u) = 0},

with the potential depth d
d = inf

u∈N
J(u),

which implies that
dist(0,N) = min

u∈N
||u||W s,2

0 (Ω)
.

Definition 1. Let us assume s ∈]0,1[,1 ≤ q < p ≤ p∗,u0 ∈W s,2
0 (Ω) and u1 ∈ L2(Ω). Then, there exists

a function u = u(t,x) which is a weak global solution of problem (1), if

u ∈ L∞
(
[0,T );W s,2

0 (Ω)
)

and ut ∈ L∞
(
[0,T );L2(Ω)

)
∩Lq+1(

Ω× [0,T )
)
,

u(0) = u0 and ut(0) = u1 a.e. in Ω.

If a weak global solution u belongs to C((0,∞);W s,2
0 (Ω)), we say that u is a strong global solution of

problem (1).
Now, we show that the energy function is a nonincreasing function along the solution of (1) in the

next lemma.

Lemma 2. Let u be a weak solution of (1). If u0 ∈W and u1 ∈ L2(Ω), then E(t) is a nonincreasing
function and

E(t)≤ E(0), ∀t ∈ [0,T ).

Proof. We have
E
′
(t) =−

(
||ut ||q+1

q+1 + ||ut ||2W s,2
0 (Ω)

)
≤ 0.

By integration over [0, t], we obtain E(t)−E(0)≤ 0.

Lemma 3. Let u0 ∈W and u1 ∈ L2(Ω). If p∗ ≤ 2n
n−2s

= 2∗s ,n > 2s, s ∈]0,1[, then the solution u ∈W,

∀t ≥ 0.
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Proof. Since u0 ∈W , we have

I(u0) = ||u0||2W s,2
0 (Ω)

−||u0||p+1
p+1 > 0,

and by the continuity of u(t), I(t)> 0, for some interval near t = 0. Let Tm > 0, then

J(t) =
1

p+1
I(t)+

p−1
2(p+1)

||u||2
W s,2

0 (Ω)
.

Since I(t)> 0, we have

J(t)≥ p−1
2(p+1)

||u||2
W s,2

0 (Ω)
,

then from E(t) and E
′
(t), we obtain

||u||2
W s,2

0 (Ω)
≤ 2(p+1)

p−1
J(t)≤ 2(p+1)

p−1
E(t)≤ 2(p+1)

p−1
E(0).

We have also

||u||p+1
p+1 ≤C∗s||u||p+1

W s,2
0 (Ω)

=C∗s||u||p−1
W s,2

0 (Ω)
||u||2

W s,2
0 (Ω)

≤C∗s
(2(p+1)

p−1
E(0)

) p−1
2 ||u||2

W s,2
0 (Ω)

= β ||u||2
W s,2

0 (Ω)
≤ ||u||2

W s,2
0 (Ω)

∀t ∈ [0,Tm], (12)

with C∗s =Cp+1
2∗s

. When we repeat the procedure, Tm is extended to T , so the proof is completed.

4 Blow up results

In this section, we prove the blow up result for problem (1), when q = 1.

Definition 2. A solution u of problem (1) is called blow up if there exists a finite time T ∗ such that

lim
t→T ∗−

||u(t,x)||2 = ∞.

We put
A(t) = ||u(t,x)||2 for t ≥ 0.

Lemma 4. Let u0 ∈W and u1 ∈ L2(Ω). Assume that E(0) > 0 and
∫

Ω
u0u1dx > 0, then any solution u

blows up in a finite time.

Proof. We have
A
′
(t) = 2 < ut ,u >L2(Ω), t ∈ [0,T ],

and
A
′′
(t) = 2 < utt ,u >L2(Ω) +2||ut ||2, t ∈ [0,T ].
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Now, we multiply problem (1) by u, then we integrate over Ω. We obtain

< utt ,u >L2(Ω)=−||u||W s,2
0 (Ω)
−< ut ,u >W s,2

0 (Ω)
−
∫

Ω

utudx+
∫

Ω

|u|p−1udx.

By Cauchy-Schwartz inequality, we get

A
′2(t) = 4 < u,ut >

2
L2≤ 4||u||22||ut ||22, t ∈ [0,T ],

which implies that

A
′′
(t)A(t)− (1+δ )(A

′
(t))2

≥
(
2||ut ||22−2||u||2

W s,2
0 (Ω)

−2 < ut ,u >L2(Ω) +2
∫

Ω

u|u|p−1u
)
A(t)−4(1+u)< ut ,u >2

L2

≥
(
2||ut ||22−2||u||2

W s,2
0 (Ω)

−2 < ut ,u >L2(Ω) +2
∫

Ω

u|u|p−1u
)
A(t)−4(1+u)||ut ||22||u||22

=
(
−2||u||2

W s,2
0 (Ω)

−2 < ut ,u >L2(Ω) +2
∫

Ω

u|u|p−1u−4(1+2δ )||ut ||22
)
A(t),

where δ > 0. Then, we put

M(t) =−2||u||2
W s,2

0 (Ω)
+2

∫
Ω

u|u|p−1u−4(1+2δ )||ut ||22.

After that

M(t) =−2||u||2
W s,2

0 (Ω)
+2||u||p+1

p+1−4(1+2δ )||ut ||22

≥−4(1+2δ )||ut ||22−2||u||2
W s,2

0 (Ω)
+(p+1)||ut ||22 +(p+1)||u||2

W s,2
0 (Ω)

−2(p+1)E(0)

=−(8δ − p+1)||ut ||22 +(p−1)||u||2
W s,2

0 (Ω)
−2(p+1)E(0)

≥−(8δ − p+1)||ut ||22 +(p−1)||u||2 +(p−1)||u||22−2(p+1)E(0),

for t ∈ [0,T ). Set δ =
p−1

8
> 0, then we get

M(t)≥ (p−1)||u||22−2(p+1)E(0)≥ 0.

So, we obtain
A
′′
(t)A(t)− (1+δ )(A

′
(t))2 > 0, t ∈ [0,T ).

This implies that

(A−δ )
′
= −δA−δ−1A

′
(t)< 0,

(A−δ )
′′
= −δA−δ−2(A′′(t)A(t)− (1+δ )(A

′
(t))2)< 0,

for all t ∈ [0,T ), which means that the function A−δ is concave. Obviously, A(0) > 0, then there must
exist T ∗ such that

lim
t−→T ∗

A−δ (t) = 0.

So, that
lim

t−→T ∗−
A(t) = ∞.

Thus, the proof is completed.
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Figure 1: Uniform mesh grid.

5 Numerical simulation

In this section, we give some numerical simulation to illustrate the theoretical results for problem (1).
We solve problem (1) under specific initial data and Dirichlet boundary conditions. We use a numerical
schema based on the finite element method [2,24]. The error between the exact solution and the approx-
imate solution in the example is draw, by using FreeFEM++. Then, we draw the curse of the error. The
numerical approximation error L is L = uh−ue (uh: the approximate solution, and ue: the exact solution)
at different time iterations t = 0, t = 0.5 and t = 0.9.

Test: We consider the domain Ω= {(x,y) : x2+y2 < 1}with a triangulation discretization which consists
1682 triangle and 888 vertices. And we use the initial conditions

u0(x,y) = sinh(x)sinh(y), u1 =−2sinh(x)sinh(y).

We consider problem (1) in two space-dimension and take q = p = 1 and α = 7. We show the
numerical approximation of solutions u at different time iterations t = 0, t = 0.5 and t = 0.9
respectively.

It is noticed that the value of the error (L) decreases if t increases, so we have the stability and
convergence of solutions.

6 Conclusion

In this work, we obtained the global existence results, the blow up of solutions and some numerical
simulations for a hyperbolic equation involving the fractional Laplacian with source terms in a bounded
domain. This improves and extends many results in the literature.
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