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Abstract. In this article, a nonlinear system of singularly perturbed differential equations of convection-
diffusion type with Dirichlet boundary conditions is considered on the interval [0,1]. Both components
of the solution of the system exhibit boundary layers near t = 0. A new computational method involving
classical finite difference operators, a piecewise-uniform Shishkin mesh and an algorithm based on the
continuation method is developed to compute the numerical approximations. The computational method
is proved to be first order convergent uniformly with respect to the perturbation parameters. Numerical
experiments support the theoretical results.
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1 Introduction

A Differential Equation (DE) in which a small positive parameter multiplying the highest derivative term
in the equation and/or its lower order derivative terms with some conditions is known as a Singular
Perturbation Problem (SPP). Most of the SPPs in real life follow system of nonlinear DEs. For instance,
the Navier-Stokes equation of fluid at high Reynolds number follow a nonlinear system of second order
DEs of Convection-Diffusion (CD) type [13]. For a broad introduction to singularly perturbed DEs of
CD type one can refer to [1, 2, 13, 15].

Classical computational methods fail to resolve SPPs due to the multiscale behaviour of their solu-
tions [1, 13, 15]. Many nonclassical computational methods are available in the literature for singularly
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perturbed linear DEs. However, only few computational methods are available in the literature for Sin-
gularly Perturbed Nonlinear Differential Equations (SPNDEs).

Articles [3] and [9] deal with the computational aspects of SPNDE of Reaction-Diffusion (RD) type
whereas [5], [8] and [10] deals with the computational aspects of SPNDE of CD type. Different compu-
tational methods for nonlinear system of SPNDEs of RD type are developed in [4], [11], [12] and [16].

From the mathematical point of view fluid and gas dynamics are described by the Navier-Stokes
equations. These comprise a system of four nonlinear partial differential equations of CD type. The
singularly perturbed nature of these equations become obvious when the magnitude of the convective
terms is much larger than that of the diffusion terms [13]. In 1995 Johnson et al. [6] observed that, in the
particular case of incompressible Navier-Stokes equations, the existing analyses often contain constants
that depend on eR, where R is the Reynolds number, and concluded that “in the majority of cases of
interest, the existing error analysis has no meaning”. Still today in many works on singularly perturbed
DEs either conditions are imposed on the magnitude of the perturbation parameters or artificial conditions
are imposed on the problems. Such works are not helpful to obtain the parameter-uniform estimates or
they weaken the nature of the original problems.

The process of obtaining robust, layer-resolving and parameter-uniform computational approxima-
tions for a nonlinear system of singularly perturbed DEs of CD type involves many challenges. To the
best of the author’s knowledge, no robust, layer-resolving and parameter-uniform computational method
is available in the literature for a nonlinear system of singularly perturbed DEs of CD type.

In this article, a nonlinear system of singularly perturbed DEs of CD type is considered. It is worth
observing that in the present study no artificial condition is imposed on the perturbation parameters and
the computational method developed in this article is robust, layer-resolving and parameter-uniform.

In the present article the intermediate value theorem plays an important role. It has been used as a
powerful tool to compute the bounds on the components −→v and −→w in Theorems 1 and 2 respectively.
Also it has been used to establish a linear operator (

−→
T N) ′ in Section 5 which reduces the process of

obtaining the error estimate to a linear case.

2 The nonlinear system

The following nonlinear system of singularly perturbed DEs is considered in this article

−→
T−→u (t) = E −→u ′′(t)+A(t)−→u ′(t)−−→f (t,−→u ) =

−→
0 , on Ω = (0,1), (1)

with −→u (0) =−→u 0 and−→u (1) =−→u 1, (2)

where−→u 0 = (u01, u02)
T and−→u 1 = (u11, u12)

T are known constant vectors. For all t ∈Ω = [0,1],−→u (t) =
(u1(t), u2(t))T ,

−→
f (t,−→u ) = ( f1(t,−→u ), f2(t,−→u ))T ∈C3(Ω×R2). Here, E and A(t) are 2× 2 diagonal

matrices with diagonal elements ε1, ε2 such that 0 < ε1 < ε2 < 1 and a1(t), a2(t) such that ai(t)∈C3(Ω),
for i = 1,2, respectively. It is assumed that for i = 1,2 and for all t ∈ Ω, ai(t) ≥ α > 0 and for all
(t,−→y ) ∈Ω×R2,

∂ fi(t,−→y )

∂y j
≤ 0, i, j = 1,2, i 6= j and (3)

min
t∈Ω

i=1,2

(
∂ fi(t,−→y )

∂y1
+

∂ fi(t,−→y )

∂y2

)
≥ β > 0. (4)
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With the above stated conditions, the existence of a unique solution −→u (t) to (1)-(2) such that −→u (t) ∈(
C3(Ω)

)2 can be ensured by the implicit function theorem [14]. A reduced problem to (1)-(2) is defined
to be

A(t)−→v ′0(t)−
−→
f (t,−→v 0 ) =

−→
0 , t ∈ [0,1), −→v 0(1) =−→u 1. (5)

As above, the implicit function theorem ensures a unique solution −→v 0(t) to (5). Moreover,

|v(k)0i (t)| ≤C for i = 1,2, k = 0,1,2,3 and t ∈Ω. (6)

In this article, C denotes a positive constant which is free from t, ε1, ε2 and N (the discretization param-
eter).

3 Some theoretical results

Decompose the solution −→u of (1)-(2) into −→v and −→w such that −→u =−→v +−→w where

E−→v ′′(t)+A(t)−→v ′(t)−−→f (t,−→v ) =
−→
0 on Ω, (7)

−→v (0)− suitably chosen, −→v (1) =−→u 1, (8)

and
E−→w ′′(t)+A(t)−→w ′(t)−−→f (t,−→v +−→w )+

−→
f (t,−→v ) =

−→
0 on Ω, (9)

−→w (0) =−→u 0−−→v (0), −→w (1) =
−→
0 . (10)

3.1 Bounds on −→v (t) and its derivatives

Theorem 1. For all t ∈Ω and for k = 0,1,2,

|v(k)1 (t)| ≤C, |v(k)2 (t)| ≤C, |v(3)1 (t)| ≤C ε
−1
1 , |v(3)2 (t)| ≤C ε

−1
2 .

Proof. From (7) and (5),

ε1 v ′′1 (t)+a1(t)
(
v ′1− v ′01

)
(t)−b11(t)(v1− v01)(t)−b12(t)(v2− v02)(t) = 0, (11)

and
ε2 v ′′2 (t)+a2(t)

(
v ′2− v ′02

)
(t)−b21(t)(v1− v01)(t)−b22(t)(v2− v02)(t) = 0, (12)

where bi j(t) =
∂ fi(t,

−→
µ (t))

∂u j
are intermediate values. Equations (11) and (12) can be written together as

follows
E−→v ′′(t)+A(t)−→v ′(t)−B(t)−→v (t) = A(t)−→v ′0(t)−B(t)−→v 0(t) =−→g (t), (13)

where

B(t) =
[

b11(t) b12(t)
b21(t) b22(t)

]
.

From (13) and (8), −→v satisfies a similar problem in [7]. Hence the bounds on −→v and its derivatives
follow by using similar arguments as in [7].
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3.2 Bounds on −→w (t) and its derivatives

For all t ∈Ω, let B1(t) = e−αt/ε1 and B2(t) = e−αt/ε2 .

Theorem 2. For all t ∈Ω,

|w1(t)| ≤C B2(t), |w2(t)| ≤C B2(t), |w(k)
1 (t)| ≤C

(
ε
−k
1 B1(t)+ ε

−k
2 B2(t)

)
, k = 1,2,3,

|w(k)
2 (t)| ≤C ε

−k
2 B2(t), k = 1,2, |w(3)

2 (t)| ≤C ε
−1
2

(
ε
−1
1 B1(t)+ ε

−2
2 B2(t)

)
.

Proof. Using (9),
ε1w ′′1 (t)+a1(t)w ′1(t)− c11(t)w1(t)− c12(t)w2(t) = 0, (14)

and
ε2w ′′2 (t)+a2(t)w ′2(t)− c21(t)w1(t)− c22(t)w2(t) = 0, (15)

where ci j(t) =
∂ fi(t,

−→
γ (t))

∂u j
are intermediate values. Equations (14) and (15) can be written together as

follows
E−→w ′′(t)+A(t)−→w ′(t)−C(t)−→w (t) =

−→
0 , (16)

where

C(t) =
[

c11(t) c12(t)
c21(t) c22(t)

]
.

From (16) and (10), −→w satisfies a similar problem in [7]. Hence the bounds on −→w and its derivatives
follow by using similar arguments as in [7].

4 Mesh and the discrete problem

On Ω, a piecewise-uniform Shishkin mesh with N mesh-intervals is now constructed as follows. Let
ΩN = {t j}N−1

j=1 then Ω
N
= {t j}N

j=0. The domain Ω is divided into 3 sub -intervals [0,τ1], (τ1,τ2) and
(τ2,1] such that Ω = [0,τ1]∪ (τ1,τ2) ∪(τ2,1]. The parameters τ2 and τ1 are defined by

τ2 = min
{

1
2
,
ε2

α
lnN

}
and τ1 = min

{
τ2

2
,
ε1

α
lnN

}
.

From the total N mesh points, N
4 mesh points are placed uniformly on each of the sub-domains [0,τ1]

and [τ1,τ2] and the remaining N
2 mesh points are placed on the sub-domain [τ2,1]. Let h1, h2 and h3

denote the step size in [0,τ1], [τ1,τ2] and [τ2,1], respectively. Then h1 = 4τ1/N, h2 = 4(τ2− τ1)/N and
h3 = 2(1− τ2)/N.

The discrete problem corresponding to (1)-(2) is defined to be
−→
T N−→U (t j) = E δ

2−→U (t j)+A(t j)D+−→U (t j)−
−→
f (t j,

−→
U (t j)) =

−→
0 , for t j ∈Ω

N , (17)
−→
U (t0) =−→u (t0) and

−→
U (tN) =−→u (tN). (18)

Here

δ
2Z(t j) =

(D+−D−)Z(t j)

h j
, D+Z(t j) =

Z(t j+1)−Z(t j)

h j+1
, D−Z(t j) =

Z(t j)−Z(t j−1)

h j
,

with h j = t j− t j−1, h j = (h j+1 +h j)/2, h0 = h1/2 and hN = hN/2.
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5 Error analysis
−−→
dim
Let
−→
Θ 1 and

−→
Θ 2 be any two vector mesh functions such that

−→
Θ 1(t0) =

−→
Θ 2(t0) and

−→
Θ 1(tN) =

−→
Θ 2(tN).

For t j ∈ΩN ,

(
−→
T N−→Θ 1−

−→
T N−→Θ 2)(t j)

= E δ 2(
−→
Θ 1−

−→
Θ 2)(t j)+A(t j)D+(

−→
Θ 1−

−→
Θ 2)(t j)−

−→
f (t j,

−→
Θ 1(t j))

+
−→
f (t j,

−→
Θ 2(t j))

= E δ 2(
−→
Θ 1−

−→
Θ 2)(t j)+A(t j)D+(

−→
Θ 1−

−→
Θ 2)(t j)−D(t j)(

−→
Θ 1−

−→
Θ 2)(t j)

= (
−→
T N) ′(

−→
Θ 1−

−→
Θ 2)(t j),

(19)

where D(t j) = (dik(t j))2×2, dik(t j) = ∂ fi(t j,
−→
ζ (t j))/∂uk are intermediate values and (

−→
T N) ′ is the

Frechet derivative of
−→
T N . Since (

−→
T N) ′ is linear, it satisfies the discrete maximum principle in [7]. Thus,

||(
−→
Θ 1−

−→
Θ 2)(t j)|| ≤ C ||(

−→
T N) ′(

−→
Θ 1−

−→
Θ 2)(t j)||=C ||

−→
T N−→

Θ 1(t j)−
−→
T N−→

Θ 2(t j)||. (20)

Theorem 3. Let −→u be the solution of (1)-(2) and
−→
U be that of (17)-(18). Then for t j ∈Ω

N
,

||(−→U −−→u )(t j)|| ≤ C N−1 lnN. (21)

Proof. Let t j ∈ΩN . From (20),

||(−→U −−→u )(t j)|| ≤ C ||(
−→
T N−→U −

−→
T N−→u )(t j)||.

Consider
||
−→
T N−→u (t j)||= ||(

−→
T N−→u −

−→
T N−→U )(t j)||.

Hence,

||(
−→
T N−→u −

−→
T N−→U )(t j)|| = ||

−→
T N−→u (t j)||= ||(

−→
T N−→u −

−→
T−→u )(t j)||

≤ E ||(δ 2−→u −−→u ′′)(t j)||+ ||A(t j)|| ||(D+−→u −−→u ′)(t j)||

≤ E ||(δ 2−→v −−→v ′′)(t j)||+ ||A(t j)|| ||(D+−→v −−→v ′)(t j)||

+E ||(δ 2−→w −−→w ′′)(t j)||+ ||A(t j)|| ||(D+−→w −−→w ′)(t j)||.

Since the bounds for −→v and −→w are same as in [7], the required result follows.

6 The continuation method

The nonlinear DE in (1)-(2) is modified to an artificial nonlinear partial differential equation as given
below. For (t,x) ∈ (0,1)× (0,X ],

−∂
−→u (t,x)

∂x
+E

∂ 2−→u (t,x)
∂ t2 +A(t)

∂
−→u (t,x)

∂ t
−−→f (t,−→u (t,x)) =

−→
0 ,

−→u (0,x) =−→u (0), −→u (1,x) =−→u (1), x≥ 0 and −→u (t,0) =−→u init(t), 0 < t < 1.

(22)
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The continuation method developed for a scalar nonlinear DE of RD type in [2] is modified appropriately
for a nonlinear system of DEs of CD type as given below which is used to solve (22). For j = 1, . . . ,N
and k = 1, . . . ,K,

−D−x
−→
U (t j,xk)+E δ 2

t
−→
U (t j,xk)+A(t j)D+

t
−→
U (t j,xk)−

−→
f (t j,

−→
U (t j,xk−1)) =

−→
0 , (23)

−→
U (t0,xk) = −→u (t0),

−→
U (tN ,xk) =

−→u (tN) for all k and
−→
U (t j,x0) = −→u init(t j) for all t j ∈Ω

N
,

(24)

where

δ
2
t Z(t j,xk) =

(D+
t −D−t )Z(t j,xk)

h j
, D+

t Z(t j,xk) =
Z(t j+1,xk)−Z(t j,xk)

h j+1
,

D−t Z(t j,xk) =
Z(t j,xk)−Z(t j−1,xk)

h j
, D−x Z(t j,xk) =

Z(t j,xk)−Z(t j,xk−1)
hx

.

The initial guess −→u init(t) is taken to be −→u (0)+ t(−→u (1)−−→u (0)). The choices of the step size hx =
xk− xk−1 and the number of iterations K are determined as follows. Define

Err(k) = max
1≤ j≤N

(
||−→U (t j,xk)−

−→
U (t j,xk−1)||

hx

)
for k = 1, . . . ,K. (25)

The step size hx is chosen sufficiently small so that Err(k) decreases with the increasing k. Precisely, we
choose hx such that

Err(k)≤ Err(k−1) for all k,1 < k ≤ K (26)

and K such that

Err(K)≤ tol, (27)

where tol is a prescribed small tolerance. Algorithm given below is used to compute the numerical solu-
tion for (22).

Algorithm :

Step 1: Begin from x0 with hx = 1.

Step 2: Suppose (26) is not satisfied for some k, then quit the current step and begin from xk−1 with hx

as hx/2. Continue halving hx until finding a hx for which (26) is satisfied.

Step 3: If (26) is satisfied at each hx, then continue the procedure until either (27) is satisfied or K = 100.

Step 4: If (27) is not satisfied, then it is assumed that the stepping process is stalled due to the choice of
a large hx. In such a case, the entire process is repeated from x0 with hx/2 instead of hx.

Step 5: If (27) is satisfied, then
−→
U (t j,xK) are taken as the numerical approximations to the solution of

(22).
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7 Numerical illustrations

Two examples are presented in this section. The continuation method constructed in the above section
is used together with the proposed computational technique to solve the examples. The tolerance ′tol′

is taken to be 10−5. Notations DN , pN and CN
p denote the parameter-uniform maximum pointwise error,

parameter-uniform order of convergence and parameter-uniform error constant respectively that are given
by

DN = max
ε1,ε2

DN
E where DN

E =‖ −→U N−−→U 2N ‖,

pN = log2
DN

D2N , CN
p =

DNN p?

1−2−p? where p? = min
N

pN .

Example 1. Consider the BVP

E−→u ′′(t)+A(t)−→u ′(t)−−→f (t,−→u (t)) =
−→
0 , t ∈ (0,1)

with −→u (0) = (sin(15),0.1) , −→u (1) =
(

e−0.7,
√

2
5

)
, E =

[
ε1 0
0 ε2

]
,

A(t) =
[

2− sin(t) 0
0 1+ et

]
and
−→
f (t,−→u (t)) =

(u1(t))5 +2u1(t)− sin(1
2)u2(t)

(u2(t))3 +4u2(t)−u1(t)−2

 .
Example 2. Consider the BVP

E−→u ′′(t)+A(t)−→u ′(t)−−→f (t,−→u (t)) =
−→
0 , t ∈ (0,1),

with −→u (0) = (cos(1),0.1) , −→u (1) =
(

0.5+ e−0.1, 1√
1+π

)
, E =

[
ε1 0
0 ε2

]
,

A(t) =

[
2− sin(t2) 0

0
3
2
+ e−t

]
and
−→
f (t,−→u (t)) =

(u1(t))3 +2u1(t)− cos(3
2)u2(t)+ t

(u2(t))7 +3u2(t)−u1(t)−1

 .
For Example 1 and Example 2, the values of DN ,CN

p , pN are presented in Table 1 and Table 2 re-
spectively and graphs of the numerical solutions for ε1 = 2−6,ε2 = 2−5 and N = 256 are portrayed in
Figure 1 and Figure 4, respectively. Further, for N = 256 and for different values of the parameters ε1
and ε2, the changes in the components of the solution −→u (t) are portrayed in Figure 2 and Figure 5, re-
spectively. Moreover, the Log-log plot for the error in the suggested computational method for Example
1 and Example 2 is presented in Figure 3 and Figure 6, respectively.

8 Conclusion

In this article, a robust, layer-resolving and parameter-uniform computational method is developed for
a nonlinear system of singularly perturbed DEs of CD type. From the tables, it is evident that the
parameter-uniform maximum pointwise error (DN) monotonically decreases when the number of mesh
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Table 1: α = 0.9, ε1 =
η

4 , ε2 =
η

2

η
Number of mesh points N

128 256 512 1024 2048
20 4.7337e-03 2.4072e-03 1.2138e-03 6.0945e-04 3.0537e-04

2−2 2.3629e-02 1.2741e-02 6.6174e-03 3.3724e-03 1.7024e-03
2−4 2.2114e-02 1.4360e-02 9.7754e-03 5.4120e-03 2.8548e-03
2−6 2.2117e-02 1.4190e-02 9.6098e-03 5.2934e-03 2.7841e-03
2−8 2.2118e-02 1.4145e-02 9.5659e-03 5.2622e-03 2.7655e-03
2−10 2.2118e-02 1.4133e-02 9.5548e-03 5.2543e-03 2.7608e-03
2−12 2.2118e-02 1.4131e-02 9.5520e-03 5.2523e-03 2.7596e-03
2−14 2.2118e-02 1.4130e-02 9.5513e-03 5.2518e-03 2.7593e-03
DN 2.3629e-02 1.4360e-02 9.7754e-03 5.4120e-03 2.8548e-03
pN 7.1847e-01 5.5483e-01 8.5300e-01 9.2274e-01
CN

p 1.0925e+00 9.7539e-01 9.7539e-01 7.9327e-01 6.1471e-01

Table 2: α = 0.9, ε1 =
η

4 , ε2 =
η

2

η
Number of mesh points N

128 256 512 1024 2048
20 5.3036e-03 2.6915e-03 1.3558e-03 6.8045e-04 3.4086e-04

2−2 2.6753e-02 1.4552e-02 7.5928e-03 3.8786e-03 1.9602e-03
2−4 2.3239e-02 1.6007e-02 1.1128e-02 6.3042e-03 3.3657e-03
2−6 2.2983e-02 1.5809e-02 1.0981e-02 6.2125e-03 3.3137e-03
2−8 2.2909e-02 1.5755e-02 1.0941e-02 6.1881e-03 3.3000e-03
2−10 2.2889e-02 1.5740e-02 1.0931e-02 6.1818e-03 3.2965e-03
2−12 2.2884e-02 1.5737e-02 1.0929e-02 6.1802e-03 3.2956e-03
2−14 2.2883e-02 1.5736e-02 1.0928e-02 6.1798e-03 3.2954e-03
DN 2.6753e-02 1.6007e-02 1.1128e-02 6.3042e-03 3.3657e-03
pN 7.4100e-01 5.2447e-01 8.1982e-01 9.0540e-01
CN

p 1.1182e+00 9.6240e-01 9.6240e-01 7.8423e-01 6.0224e-01

points (N) increases. Further, we also observe that the proposed method is almost first order parameter-
uniform convergent. This is in agreement with Theorem 3.

From Figure 1 and Figure 4, we observe that both the components u1(t) and u2(t) of the solution−→u (t)
exhibit boundary layers near the boundary t = 0. Moreover, from Figure 2 and Figure 5 we perceive that
both the components u1(t) and u2(t) of the solution −→u (t) changes very rapidly near the boundary t = 0
when the perturbation parameters ε1 and ε2 tends to zero.

The Log− log plot for the error in the suggested numerical method for Example 1 and Example 2
is presented in Figure 3 and Figure 6, respectively. From Figure 3 and Figure 6 we perceive that the
maximum pointwise errors are bounded by O(N−1 lnN) which is proved in Theorem 3.
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Figure 1: Solution profile of Example 1.
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Figure 2: Changes in the components of the solution −→u (t) of Example 1.
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Figure 3: Log-log plot for the error in Example 1.
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Figure 5: Changes in the components of the solution −→u (t) of Example 2.
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