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Abstract. In this paper, we propose a fourth-order compact discretization method for solving a second-
order boundary value problem governed by the nonlinear Fredholm integro-differential equations. Using
an efficient approximate polynomial, a compact numerical integration method is first designed. Then by
applying the derived numerical integration formulas, the original problem is converted into a nonlinear
system of algebraic equations. It is shown that the proposed method is easy to implement and has the
third order of accuracy in the infinity norm. Some numerical examples are presented to demonstrate
its approximation accuracy and computational efficiency, as well as to compare the derived results with
those obtained in the literature.
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1 Introduction

In this study, we will develop a numerical method for solving a class of the second-order boundary value
problems governed by the following nonlinear Fredholm integro-differential equation (FIDE) z′′(t)+ p(t)z′(t)+ f0(t)z(t) = f1(t)+

∫ 1

0
ṽ(t,s)u(z(s))ds, t ∈ (0,1], (1a)

z(0) = a0, z(1) = b1, (1b)

where p(t), f0(t), f1(t), the kernel ṽ(s, t), and u are known L2 functions, while z(t) is a twice differen-
tiable function which should be determined.
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The subject of boundary value problems plays an important role in integro-differential equations in
studying physical, biological and chemical phenomena [7, 23]. Moreover, the integro-differential equa-
tions serve as mathematical models in various fields of engineering and natural science such as biological
models, economics, fluid dynamics, epidemic models and spatiotemporal development models [6, 19].
Unfortunately, the analytical solution to this type of problems is very complicated, and it may not be
available. Therefore, numerical methods are often used to approximate their exact solutions. In the
past two decades, different numerical methods are developed to solve the FIDEs including Haar wavelet
method [1], wavelet method [2, 11], differential transform method [3], Bernoulli matrix method [4],
multiscale Galerkin method [7], Chebyshev finite difference method [8], parametrization method [9],
exponential spline method [10], Bell polynomials method [12], direct computation method [13], Walsh
function method [14], Non-standard difference method [15], Legendre polynomial method [16], homo-
topy analysis method [17], reproducing kernel scheme [21], Sinc-collocation scheme [22] and iterative
methods [23]. In [5], a hybrid method based on block pulse functions and Bernstein polynomials are
used for solving the FIDEs. To the best of our knowledge, the convergence rate of the above-mentioned
methods are less than or equal two. Moreover, a few numerical methods are successful in solving the
nonlinear version of the problem (1).

The main purpose of this paper is to propose a straightforward and accurate numerical method for
solving the second-order boundary value problem governed by the nonlinear FIDE (1). To this end, we
use some fourth-order quadrature rules and a compact integration technique to discretize the presented
nonlinear FIDE. By implementing the proposed method, this problem reduces to a nonlinear algebraic
system of equations. The convergence analysis of the proposed method is established. We show that the
convergence rate in L∞ norm for the novel method is four.

2 A compact numerical integration method

Consider the partition {tk = kh : k = 0,1, . . . ,N} of the interval [0,1], where t0 = 0, tN = 1 and h = 1
N

denotes the step size. In this section, we will present a compact numerical method to approximate the
following definite integrals

Ik(g) :=
∫ tk

tk−1

(τ− tk−1)g(τ)dτ +
∫ tk+1

tk
(tk+1− τ)g(τ)dτ, k = 1, . . . ,N−1, (2)

which will be applied to discretize the FIDE (1). For every function g(t) ∈ C4[0,1], we can propose a
pair of approximate functions on [tk−1, tk] and [tk, tk+1] as follow

P−
k (t) := gk−1 +

gk−gk−1

h
(t− tk−1)+

gk−1−2gk +gk+1

2h2 (t− tk)(t− tk−1), t ∈ [tk−1, tk],

P+
k (t) := gk+1 +

gk+1−gk

h
(t− tk+1)+

gk−1−2gk +gk+1

2h2 (t− tk)(t− tk+1), t ∈ [tk, tk+1],

(3)

where gk = g(tk) and k = 1, . . . ,N− 1. In fact, using the forward and backward interpolations of func-
tion g for support points {tk−1, tk, tk+1}, the approximate functions P−

k (t) and P+
k (t) are respectively

formulated. In the following lemma, error of the approximate functions P±
k (t) for g(t) on [tk−1, tk] and

[tk, tk+1] is stated.
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Lemma 1. Let g(t) ∈ C4[0,1], then there exist numbers ξ
±
0,k, ξ

±
1,k ∈ (tk−1, tk+1) satisfyingg(t)−P−

k (t) = (t− tk)(t− tk−1)
(

1
3!(t− tk+1)g(3)(ξ−0,k)−

h2

4! g(4)(ξ−1,k)
)
, t ∈ [tk−1, tk],

g(t)−P+
k (t) = (t− tk)(t− tk+1)

(
1
3!(t− tk−1)g(3)(ξ+

0,k)−
h2

4! g(4)(ξ+
1,k)
)
, t ∈ [tk, tk+1],

(4)

where k = 1, . . . ,N−1.

Proof. Let P−
k (t) and P+

k (t) be functions (3) which approximate the function g on [tk−1, tk] and [tk, tk+1],
respectively. Note that it is sufficient to prove (4) in the case t ∈ [tk−1, tk], the other case t ∈ [tk, tk+1] can
be established in the same way. For every fixed t ∈ (tk−1, tk), we define

G(x) = g(x)− ḡk(x)−
g(t)− ḡk(t)

wk(t)
wk(x), x ∈ [tk−1, tk],

where wk(t) = (t− tk)(t− tk+1)(t− tk−1) and ḡk(x) = gk−1 +
gk−gk−1

h (x− tk−1)+
1
2(x− tk)(x− tk−1)g′′k .

It is easily seen that G′′(tk) = 0 and G(t) = G(tk−1) = G(tk) = 0. Then using the well-known Rolle’s
theorem, G′′(x) has at least one zero ς

−
k ∈ (tk−1, tk), i.e., G′′(ς−k ) = 0. Therefore, using the Rolle’s

theorem, G(3)(x) has at least one zero ξ
−
0,k ∈ (ς−k , tk) ⊂ (tk−1, tk). Since G(3)(ξ−0,k) = 0, ḡ(3)k (x) ≡ 0 and

w(3)
k (x) = 3!, we can derive

g(t) =
1
3!

g(3)(ξ−0,k)wk(t)+gk−1 +
gk−gk−1

h
(x− tk−1)+

1
2
(x− tk)(x− tk−1)g′′k , t ∈ [tk−1, tk].

Using the Taylor series of g(t), there exists ξ
−
1,k ∈ (tk−1, tk+1) satisfying

g′′k =
gk−1−2gk +gk+1

h2 − h2

12
g(4)(ξ−1,k).

Consequently, the error for P−
k (t) approximating g(t) on [tk−1, tk] is formulated by the first part of (4).

This completes the proof.

In the following lemma, we state a compact numerical integration method to approximate a pair of
specified integrals over [tk−1, tk] and [tk, tk+1].

Lemma 2. Let g(t) ∈ C4[0,1] and consider a pair of integrals over intervals [tk−1, tk] and [tk, tk+1] as

I−k (g) :=
∫ tk

tk−1

(τ− tk−1)g(τ)dτ, and I+k (g) :=
∫ tk+1

tk
(tk+1− τ)g(τ)dτ, (5)

where tk = kh and 1≤ k≤ N−1. Then for every k = 1,2, . . . ,N−1, there exists a constant Cgk ∈R such
that

I+k (g)+ I−k (g) =
h2

12
(gk−1 +10gk +gk+1)+Cgk h

6. (6)
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Proof. For k = 1, . . . ,N−1, by using the approximate functions (3), we can derive

I+k (g)+ I−k (g) =
∫ tk

tk−1

(τ− tk−1)g(τ)dτ +
∫ tk+1

tk
(tk+1− τ)g(τ)dτ

=
∫ tk

tk−1

(τ− tk−1)P
−
k (τ)dτ +

∫ tk+1

tk
(tk+1− τ)P+

k (τ)dτ +Ek(g)

=
h2

24
(3gk−1 +10gk−gk+1)+

h2

24
(−gk−1 +10gk +3gk+1)+Ek(g),

=
h2

12
(gk−1 +10gk +gk+1)+Ek(g),

where Ek(g) =
∫ tk

tk−1
(τ− tk−1)(g(τ)−P−

k (τ))dτ +
∫ tk+1

tk (tk+1−τ)(g(τ)−P+
k (τ))dτ . If τ ∈ [tk−1, tk], we

have
(τ− tk−1)

2(tk− τ)(tk+1− τ)≥ 0,(τ− tk−1)
2(tk− τ)≥ 0,

and when τ ∈ [tk, tk+1], we get

(τ− tk−1)(τ− tk)(τ− tk+1)
2 ≥ 0,(τ− tk+1)

2(tk− τ)≤ 0.

By the Mean Value theorem for definite integrals, there exist η
−
0,k,η

−
1,k ∈ (tk−1, tk) and η

+
0,k,η

+
1,k ∈ (tk, tk+1),

satisfying

Ek(g) =
∫ tk

tk−1

(τ− tk−1)
2(τ− tk)

(
(τ− tk+1)

g(3)(ξ−0,k)

3!
−h2 g(4)(ξ−1,k)

4!

)
dτ

+
∫ tk+1

tk
(τ− tk)(τ− tk+1)

2

(
(τ− tk−1)

g(3)(ξ+
0,k)

3!
−h2 g(4)(ξ+

1,k)

4!

)
dτ

=
g(3)(η−0,k)

3!

∫ tk

tk−1

(τ− tk−1)
2(tk− τ)(tk+1− τ)dτ +h2 g(4)(η−1,k)

4!

∫ tk

tk−1

(τ− tk−1)
2(tk− τ)dt

+
g(3)(η+

0,k)

3!

∫ tk+1

tk
(τ− tk−1)(τ− tk)(τ− tk+1)

2dτ +h2 g(4)(η+
1,k)

4!

∫ tk+1

tk
(τ− tk+1)

2(tk− τ)dτ

=− 7h5

360

(
g(3)(η+

0,k)−g(3)(η−0,k)
)
+

2h6

(4!)2

(
g(4)(η+

1,k)+g(4)(η−1,k)
)
.

Therefore using the Mean Value theorem, there exists θ̃k ∈ (tk−1, tk+1) such that

g(3)(η+
0,k)−g(3)(η−0,k) = hαkg(4)(θ̃k), 0 < αk < 2.

Moreover, since g(4)(t) ∈ C[0,1], there exists θk ∈ (tk−1, tk+1) such that

Ek(g) =
(
− 7

360
αk +

1
(4!)2

)
h6g(4)(θk). (7)

Setting Cgk =
(
− 7

360 αk +
1

(4!)2

)
g(4)(θk) completes the proof.

The integration rule (6) describes a three-point difference formula which is of order four. This for-
mula is a key for describing the compact numerical integration method in this paper.
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3 A fully discrete method for the problem (1)

In this section, we formulate a fully discrete method for solving the second-order boundary value problem
of the nonlinear FIDE (1). Assume that the function p(t) is differentiable for all t ∈ [0,1]. Let

z(t) = γ(t)y(t), γ(t) = exp(−1
2

∫ t

0
p(s)ds), t ∈ [0,1].

Using some simple calculations, we transform the problem (1) into y′′(t)+q(t)y(t) = f (t)+
∫ 1

0
v(t,s)u

(
γ(s)y(s)

)
ds, t ∈ (0,1], (8a)

y(0) = a, y(1) = b, (8b)

where a0 = γ(0)a, b1 = γ(1)b and

q(t) = f0(t)−
1
4
(
(p(t))2 +2

d(p(t))
dt

)
, f1(t) = γ(t) f (t), ṽ(t,s) = γ(t)v(t,s).

It is clear that y(t) is a solution of (8) if and only if z(t) = γ(t)y(t) is a solution of (1). Therefore we will
implement a fully discrete method on the equivalent form (8) of the original problem (1). For mesh points
{tk}N

k=0, let Yk and Vk,n denote the approximate values of yk := y(tk) and vk,n := v(tk, tn), respectively. By
integrating over [tk, t], and using integration by parts on the right-hand side of Eq. (8), we have

y′(t)− y′k +
∫ t

tk
q(ξ )y(ξ )dξ =

∫ t

tk
f (ξ )dξ +

∫ t

tk

∫ 1

0
v(ξ ,s)u(γ(s)y(s))dsdξ . (9)

Now, by integrating over [tk, tk+1] and [tk−1, tk], we can derive∫ tk±1

tk
(y′(t)−y′k)dt +

∫ tk±1

tk

∫ t

tk
q(ξ )y(ξ )dξ dt

=
∫ tk±1

tk

∫ t

tk
f (ξ )dξ dt +

∫ tk±1

tk

∫ t

tk

∫ 1

0
v(ξ ,s)u(γ(s)y(s))dsdξ dt, 1≤ k ≤ N−1.

Using Fubini’s theorem [20], it follows

yk+1− yk−hy′k +
∫ tk+1

tk
(tk+1− t)q(t)y(t)dt

=
∫ tk+1

tk
(tk+1− t) f (t)dt +

∫ 1

0
u(γ(s)y(s))

(∫ tk+1

tk
(tk+1− t)v(t,s)dt

)
ds, k = 1, . . . ,N−1.

yk−1− yk +hy′k +
∫ tk−1

tk
(tk−1− t)q(t)y(t)dt

=
∫ tk−1

tk
(tk−1− t) f (t)dt +

∫ 1

0
u(γ(s)y(s))

(∫ tk−1

tk
(tk−1− t)v(t,s)dt

)
ds, k = 1, . . . ,N−1.

(10)

As the definition of pair of integrals I±k (g) for g(t) given in (5), the system of equations (10) can be
represented as

yk−1− yk +hy′k + I−k (qy) = I−k ( f )+
∫ 1

0
u(γ(s)y(s))I−k (v(.,s))ds, (11a)

yk+1− yk−hy′k + I+k (qy) = I+k ( f )+
∫ 1

0
u(γ(s)y(s))I+k (v(.,s))ds, k = 1, . . . ,N−1, (11b)
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where I±k ( f ) =
∫ tk±1

tk (tk±1− t) f (t)dt and

I±k (v(·,s)) :=
∫ tk±1

tk
(tk±1− t)v(t,s)dt, I±k (qy) =

∫ tk±1

tk
(tk±1− t)q(t)y(t)dt.

By adding the two sides of Eqs. (11), a system of integral equations is formulated

yk+1−2yk + yk−1 + Ik(qy) = Ik( f )+
∫ 1

0
u(γ(s)y(s))Ik(v(.,s))ds, k = 1, . . . ,N−1, (12)

where 
Ik(qy) := I−k (qy)+ I+k (qy), (13a)

Ik( f ) := I−k ( f )+ I+k ( f ), (13b)

Ik(v(.,s)) := I−k (v(.,s))+ I+k (v(.,s)). (13c)

From the boundary conditions given in (8), we have y0 = a and yN = b. The unknown values y1, . . . ,yN−1
can be obtained by solving the system of (12). To find the approximate solution of the system (12), it
is sufficient to utilize some numerical integration methods for integrals given in (13) and the integral
term in the right-hand side of Eq. (12). To this end, we apply the compact integration formula (6) to
approximate the integrals given by (13a)-(13c).

It should be noted that to approximate the integral terms in (12), we use the Simpson’s rule with the
nodes {t j}N

j=0 and weights w = (ω0 =
h
3 ,ω1 = 4 h

3 ,ω2 = 2 h
3 , . . . ,ωN−2 = 2 h

3 ,ωN−1 = 4 h
3 ,ωN = h

3)
>, i.e.,

∫ 1

0
u(γ(s)y(s))Ik(v(.,s))ds =

h2

12

N

∑
j=0

ω ju(γ jy j)(v(tk−1, t j)+10v(tk, t j)+ v(tk+1, t j))+Ckh6, (14)

where γ j = γ(t j), 1≤ k≤N−1, and Ck depends on the forth-order derivatives of y(t),u(γ(t)y(t)),v(t,s).
Therefore, if we set ϒ = [γ(t1), . . . ,γ(tN−1)]

> and

Y = [Y1, . . . ,YN−1]
>, Q = [q(t1), . . . ,q(tN−1)]

>, F = [ f (t1), . . . , f (tN−1)]
>, V = [v(tk, tn)]N−1

k,n=1,

then the following fully discrete system, as a compact discretization method, is developed to solve the
two-point boundary value FIDE (8)(

J0 +h2J diag(Q)
)
Y−h3 J V diag(w)u(ϒ Y) = h2J F+b0, (15)

where J0 = tridiag(1,−2,1) and J = 1
12 tridiag(1,10,1) are two (N−1)-dimensional tridiagonal matrices

with

b0 = h3
ω0u0Jv0 +h3

ωNuNJvN +

(
(−1− h2

12
Q0)y0 +

h2

12
f0 +

h3

12
(ω0u0v0,0 +ωNuNvN,0)

)
I1

+

(
(−1− h2

12
QN)yN +

h2

12
fN +

h3

12
(ω0u0v0,N +ωNuNvN,N)

)
IN−1,

u0 = u(γ0y0), uN = u(γNyN), v0 = [v(t1, t0), . . . ,v(tN−1, t0)]>, and vN = [v(t1, tN), . . . ,v(tN−1, tN)]>. For
i = 1,N − 2,N − 1, the symbol Ii signifies a (N − 1)-column vector with entry 1 in position i and 0
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elsewhere. For simplicity, the matrix representation of the compact discretization method (15) can be
represented as

A Y−h3 L u(ϒ Y) = b, (16)

where A = J0 +h2J diag(Q), L = JV diag(w) and b = h2JF+b0. The Eq. (16) describes a nonlinear
system of algebraic equations which can be solved by using a nonlinear solver such as the Newton
method. It should be noted that this matrix formulation is straightforward and easy to implement. The
convergence analysis of the method will be presented in the next section.

3.1 Convergence analysis

Here, we will develop the solvability and convergence analysis of the compact discretization method (16)
to solve the FIDE (8). To this end, we first recall the following lemma from [18].

Lemma 3. [18] Let D = [di, j]
N−1
i, j=1 be a tridiagonal matrix in which di,i = d0, di,i±1 = d1 and di, j = 0

otherwise. Then, the eigenvalues of D are λ D
j = d0 +2d1 cos

(
jπ
N

)
where j = 1,2, · · · ,N−1.

This lemma yields that
λ

J0
j =−4sin2

(
jπ
2N

)
, j = 1,2, . . . ,N−1,

|λmin(J0)| := min{|λ J0
j |, j = 0, . . . ,N−1}= 4sin2 ( π

2N

)
= π2h2 > 0,

κ(J0)6 16
π2 N2,

(17)

where κ(J0) denotes the condition number of J0.

Corollary 1. The compact discretization method (16) has a unique solution, and it is stable.

Proof. We can formulate a linearization form of the system (16) as

MY = b, (18)

where M = (J0 + h2J diag(Q)− h3 LϒDu) is the coefficient matrix of the present method. The matrix
Du is a diagonal matrix containing the jacobian of u(γy), i.e., Du = diag(

[
∂u(γkyk)

∂y

]N−1
k=1 ). Thus this system

is equivalent to the linear system
J0Y = b, (19)

when the higher powers h2 and h3 are ignored, i.e., h→ 0. From (17), we can conclude that the matrix J0
is invertible and κ(J0) = O(N2). Therefore κ(M) does not grow rapidly with N, when [0,1] is divided
into N cells. Consequently the nonlinear system (16) has a unique solution, and it is stable.

In the following theorem, we show that the compact discretization method (16) is of accuracy order
4 with respect to L∞ norm.

Theorem 1. Let the functions f (t),v(t,s),u(z(t)),q(t) ∈ C4[0,1]. If y = [y1,y2 . . . ,yN−1]
> and

Y = [Y1, . . . ,YN−1]
> be solutions of Eqs. (14) and (16), respectively. Then we have ‖y−Y‖

∞
= O(h4).
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Proof. If we set y = [y1, . . . ,yN−1]
>, then from Eqs. (6) and (14), we have

A y−h3 L u(ϒ y) = b+R, (20)

where R = (C̄+C1)h6. Moreover the elements of vectors C̄,C1 depend on the forth-order derivatives of
functions y,q,v, u and Ĉ = [Ĉ1, . . . ,ĈN−1]

>. Hence if ‖v‖p denotes the norm 1≤ p≤ ∞ of the vector v,
then we have

‖R‖2 6 C̃ h5
√

h (21)

where C̃ = max
t,s∈[0,1]

{| f (4)(t)|, |q(4)(t)|, |u(4)(t)|, |y(4)(t)|, | ∂
4v(t,s)

∂ tk∂ s j |, j+k = 4}. Subtracting Eq. (16) from Eq.

(20), yields
A(y−Y)−h3 L

(
u(ϒ y)−u(ϒ Y)

)
= R. (22)

Consequently a linearization form of the error system can be achieved as

M E(h) = R, (23)

where E(h) = y−Y, and M is the coefficient matrix given in (18). Let σmin(M) denotes the smallest
singular value of M, then from Eq. (23) we conclude that

‖E(h)‖2 6
‖R‖2

σmin (M)
6

‖R‖2

|λmin(J0)|
, as h→ 0.

Using inequalities (21) and (17), we have

‖E(h)‖2 6
4C̃
π2 h3

√
h, (24)

as h→ 0. Since ‖E(h)‖∞ 6 ‖E(h)‖2 6
√

N‖E(h)‖∞ and Nh = 1, we can derive

‖E(h)‖
∞
6

4C̃
π2 h4. (25)

Thus the proof is completed.

It is known that in the finite dimensional spaces, all norms are equivalent, therefore we can derive
‖E(h)‖1 = O(h3) and ‖E(h)‖2 = O(h3+ν), where ν = 1

2 .

4 Numerical examples

The performance of the compact discretization method (15) to solve the FIDE (8) is demonstrated in
this section. In the following numerical simulations, the step size is selected as h = 2−k,k = 2,3, . . ..
The error E(h) with respect to L1, L2,L∞ norms and condition number of the coefficient matrix M are
computed. Moreover, the accuracy order of the present method with respect to Lp norm is calculated by

log2

(
‖E(h)‖p

‖E( h
2 )‖p

)
with p = 1,2,∞.
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Table 1: Errors and the accuracy order of the proposed method (16) for Example 1.
α = 4, β = 1 α = 4.5, β = 2

N L1 error Order L2 error Order L∞ error Order κ(M) L1 error Order L2 error Order L∞ error Order κ(M)

4 2.69e-04 – 1.87e-04 – 1.49e-04 – 5.74e+00 1.10e-02 – 6.38e-03 – 4.32e-03 – 5.67e+00
8 3.73e-05 2.85 1.65e-05 3.50 9.40e-06 3.99 2.47e+01 1.45e-03 2.92 5.69e-04 3.49 2.72e-04 3.99 2.41e+01
16 4.77e-06 2.97 1.46e-06 3.50 6.06e-07 3.95 9.99e+01 1.83e-04 2.99 5.02e-05 3.50 1.70e-05 4.00 9.69e+01
32 5.99e-07 2.99 1.29e-07 3.50 3.79e-08 4.00 3.99e+02 2.29e-05 3.00 4.42e-06 3.50 1.06e-06 4.00 3.85e+02
64 7.49e-08 3.00 1.14e-08 3.50 2.37e-09 4.00 1.59e+03 2.85e-06 3.00 3.90e-07 3.50 6.62e-08 4.00 1.53e+03

128 9.37e-09 3.00 1.01e-09 3.50 1.48e-10 4.00 6.38e+03 3.56e-07 3.00 3.44e-08 3.50 4.13e-09 4.00 6.13e+03
256 1.17e-09 3.00 8.92e-11 3.50 9.24e-12 4.00 2.55e+04 4.44e-08 3.00 3.04e-09 3.50 2.58e-10 4.00 2.45e+04
512 1.41e-10 3.06 7.43e-12 3.59 5.47e-13 4.08 1.02e+05 5.52e-09 3.01 2.67e-10 3.51 1.61e-11 4.01 9.80e+04

Table 2: Errors and the accuracy order of the proposed method (16) for Example 1.
α = 2.5, β = 2 α = 4, β = 50

N L1 error Order L2 error Order L∞ error Order κ(M) L1 error Order L2 error Order L∞ error Order κ(M)

4 1.38e-01 – 8.07e-02 – 5.39e-02 – 5.65e+00 2.48e+00 – 1.46e+00 – 9.59e-01 – 8.66e+00
8 1.88e-02 2.87 7.41e-03 3.45 3.55e-03 3.92 2.41e+01 3.68e-01 2.75 1.44e-01 3.34 6.69e-02 3.84 8.76e+00

16 2.41e-03 2.97 6.61e-04 3.49 2.25e-04 3.98 9.66e+01 4.81e-02 2.94 1.31e-02 3.46 4.32e-03 3.95 2.00e+01
32 3.03e-04 2.99 5.85e-05 3.50 1.41e-05 4.00 3.84e+02 6.08e-03 2.98 1.16e-03 3.49 2.72e-04 3.99 6.35e+01
64 3.79e-05 3.00 5.18e-06 3.50 8.84e-07 4.00 1.53e+03 7.62e-04 3.00 1.03e-04 3.50 1.70e-05 4.00 2.26e+02
128 4.74e-06 3.00 4.58e-07 3.50 5.52e-08 4.00 6.11e+03 9.53e-05 3.00 9.11e-06 3.50 1.06e-06 4.00 8.53e+02
256 5.92e-07 3.00 4.05e-08 3.50 3.45e-09 4.00 2.44e+04 1.19e-05 3.00 8.05e-07 3.50 6.65e-08 4.00 3.31e+03
512 7.40e-08 3.00 3.58e-09 3.50 2.16e-10 4.00 9.76e+04 1.49e-06 3.00 7.11e-08 3.50 4.16e-09 4.00 1.30e+04

Example 1. Consider the following second-order boundary value problem of the FIDE{
y′′(t)+βy′(t)− e−β ty(t) = f (t)+

∫ 1
0 (α +2)stβ cos(πβ t)y(s)ds, t ∈ [0,1],

y(0) = 0, y(1) = β ,
(26)

where the function f (t) is chosen such that the exact solution is y(t) = β tα .

The numerical solution of this boundary value problem is computed by the proposed method. Nu-
merical results containing the L1,L2,L∞ errors, condition number of the coefficient matrix M and the
rate of convergence of the compact discretization method are displayed in Tables 1-2 and Figure 1 when
the computational domain [0,1] is divided into N cells. From Table 1 we can see that the desired order
of convergence of the presented method is achieved for α = 4,β = 1 and α = 4.5,β = 2, which the
theoretical results presented by Theorem 1. Note that the third-order derivative of the exact solution with
α = 2.5 is nonsingular at t = 0, and the kernel of the integral term of Eq. (26) is oscillatory when β � 1.
To demonstrate the efficiency of the method, the numerical results with α = 2.5,β = 2 and α = 4,β = 50
are provided in Table 2. Moreover, the log plots of L∞ error versus the values of α and β are depicted by
Figure 1(a) and Figure 1(b), respectively. Tables 1-2 verify that κ(M) does not grow rapidly with N.

Example 2. Consider the following FIDEy′′(t)+ sin(πt)y′(t)+(t3 +1)y(t) = f (t)+
∫ 1

0
scos(πt)exp(y(s))ds, t ∈ [0,1],

y(0) = 1, y(1) = 2,

where f (t) = 3 + t2 + t3 + t5 − 1
2(exp(1)− 1)exp(1)cos(πt) + 2t sin(πt), and the exact solution is

y(t) = t2 +1.
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(a) The log plots of L∞ error versus the values of α. (b) The log plots of L∞ error versus the values of β .

Figure 1: For N = 28 cells, the absolute error of the compact discretization method (15) to solve the
nonlinear FIDE (26) with the exact solution y(t) = β tα .

Table 3: Errors, the accuracy order and the CPU time (in second) of the proposed method (16) for
Example 2.

N L1 error Order L2 error Order L∞ error Order κ(M) CPU time (s)
4 2.25e-03 – 1.35e-03 – 9.27e-04 – 6.47e+00 0.01
8 2.76e-04 3.02 1.13e-04 3.58 6.02e-05 3.94 6.59e+00 0.01
16 3.44e-05 3.01 9.84e-06 3.52 3.70e-06 4.02 2.90e+01 0.01
32 4.29e-06 3.00 8.67e-07 3.50 2.31e-07 4.00 1.18e+02 0.02
64 5.36e-07 3.00 7.66e-08 3.50 1.44e-08 4.00 4.73e+02 0.02

128 6.71e-08 3.00 6.77e-09 3.50 9.02e-10 4.00 1.89e+03 0.03
256 8.37e-09 3.00 5.98e-10 3.50 5.63e-11 4.00 7.55e+03 0.03

For N = 2,22, . . . ,28, the numerical results of the compact discretization method are illustrated in
Table 3. As this table shows that the present method is successful for this problem containing the high-
nonlinear term exp(y), and the numerical results follow the theoretical results given by Corollary 1 and
Theorem 1. Moreover Table 3 shows that the present method is very fast in solving this high-nonlinear
FIDE.

Example 3. Consider the following linear two-point boundary value problem of the FIDE [7]{
y′′(t)+ ty′(t)+π2y(t) = πt cos(πt)− 2t+1

π
+
∫ 1

0 (s+ t)y(s)ds, t ∈ [0,1],
y(0) = y(1) = 0.

The exact solution is y(t) = sin(πt).

For N = 22, . . . ,29 cells, the errors with respect to L1,L2,L∞ norms, κ(M) and the accuracy order
of the present method (15) and the multiscale Galerkin method [7] are displayed by Table 4. It can be
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Table 4: Computational results of the multiscale Galerkin method [7] and present method for Example
3.

Present method Method of [7]
N L1 error Order L2 error Order L∞ error Order κ(M) L2 error Order L1 error Order
4 6.59e-03 – 3.87e-03 – 2.75e-03 – 3.80e+01 – – – –
8 8.71e-04 2.92 3.48e-04 3.48 1.75e-04 3.98 1.78e+02 – – – –
16 1.11e-04 2.98 3.09e-05 3.49 1.10e-05 3.99 7.39e+02 1.60e-2 – 1.33e-1 –
32 1.39e-05 2.99 2.73e-06 3.50 6.88e-07 4.00 2.98e+03 4.06e-3 1.98 6.39e-2 1.06
64 1.74e-06 3.00 2.42e-07 3.50 4.31e-08 4.00 1.19e+04 1.02e-3 1.99 3.16e-2 1.02
128 2.17e-07 3.00 2.14e-08 3.50 2.69e-09 4.00 4.77e+04 2.55e-4 2.00 1.57e-2 1.00
256 2.79e-08 2.96 1.94e-09 3.46 1.73e-10 3.96 1.98e+05 6.38e-5 2.00 7.87e-3 1.00
512 3.34e-09 3.06 1.69e-10 3.52 9.99e-12 4.11 7.63e+05 1.59e-5 2.00 3.93e-3 1.00

seen that the present method has the third- and fourth-order of accuracy with respect to L1 and L∞ norms,
respectively. While the multiscale Galerkin method [7] is of order 1 with respect to L1 norm. Moreover
the L2 errors of the present method and the multiscale Galerkin method are 1.69×10−10 and 1.59×10−5,
respectively. Consequently the present method is accurate than the method given by [7].

Example 4. Consider the following linear Fredholm integro-differential boundary value problem with
p(t)≡ 0 and q(t)≡ 0 [6, 10]y′′(t)−

∫ t

0
(s+ t)y(s)ds =−π

2 sin(πt)− 2t +1
π

, t ∈ [0,1],

y(0) = y(1) = 0.
(27)

This problem has the exact solution in form y(t) = sin(πt).

Here, numerical results of three numerical techniques the presented compact discretization method
(15), the fast multiscale Galerkin method [6] and exponential spline method [10] for solving the linear
two-point boundary value FIDE (27) are compared in Table 5. As it is shown that the accuracy order
of the present method is 3, 3.5 and 4 with respect to L1,L2 and L∞ norms, respectively. While the fast
multiscale Galerkin method [6] and exponential spline method [10] have the accuracy-order one and two
with respect to L1 and L∞ norms, respectively. Moreover for N = 256 cells, the errors of present method
and method given in [6] and [10] are of order O(10−11),O(10−3) and O(10−7), respectively. Therefore
the present method is more accurate than those techniques given in the literature.

Example 5. Consider the following nonlinear two-point boundary value FIDE [1]{
y′′(t) = exp(t)+ 1

4(exp(2)−2)t + 1
2
∫ 1

0 t(s− y2(s))ds, t ∈ [0,1],
y(0) = 1,y(1) = exp(1),

(28)

where its exact solution is y(t) = exp(t).

The numerical results containing the L1,L2,L∞ errors, κ(M) and the convergence order of the com-
pact discretization method (15) and the Haar wavelet method [1] with collocation/Guass points for solv-
ing the nonlinear two-point boundary value FIDE (28) are compared in Table 6 when [0,1] is divided
into N = 2,22, . . . ,27 cells. Table 6 indicates that the presented method is more accurate than the method
given by [1]. Moreover, the numerical results given in this table follow the theoretical results presented
by Corollary 1 and Theorem 1.
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Table 5: Numerical results of the fast multiscale Galerkin method [6], exponential spline method [10]
and the present method (15) for Example 4.

Present method Method of [6] Method of [10]
N L1 error Order L2 error Order L∞ error Order κ(M) L1 error Order L∞ error Order
4 3.21e-03 – 1.88e-03 – 1.34e-03 – – – – –
8 4.11e-04 2.96 1.6394e-04 3.52 8.25e-05 4.02 5.39e+00 2.55e-1 – – –
16 5.17e-05 3.00 1.44e-05 3.50 5.12e-06 4.00 2.34e+01 1.28e-1 1.00 2.42e-4 –
32 6.47e-06 3.00 1.28e-06 3.50 3.21e-07 4.00 9.53e+01 6.40e-2 1.00 5.96e-5 2.02
64 8.09e-07 3.00 1.13e-07 3.50 2.00e-08 4.00 3.83e+02 3.20e-2 1.00 1.48e-5 2.01

128 1.01e-07 3.00 9.96e-09 3.50 1.25e-09 4.00 1.53e+03 1.60e-2 1.00 3.71e-6 2.00
256 1.26e-08 3.00 8.80e-10 3.50 7.83e-11 4.00 6.14e+03 8.00e-3 1.00 9.23e-7 2.01

Table 6: Numerical results of the present method (15) and the Haar wavelet method [1] with colloca-
tion/Guass points for Example 5.

Haar wavelet method [1] with
Present method collocation points Guass points

N L1 error Order L2 error Order L∞ error Order κ(M) L2 error Order L2 error Order
4 8.15e-05 – 4.79e-05 – 3.26e-05 – 6.26e+00 1.95e-3 – 7.71e-4 –
8 1.01e-05 2.90 4.35e-06 3.46 2.13e-06 3.94 2.71e+01 5.12e-4 1.93 1.96e-4 1.98

16 1.39e-06 2.97 3.87e-07 3.49 1.35e-07 3.98 1.11e+02 1.31e-4 1.96 4.93e-5 1.99
32 1.75e-07 2.99 3.42e-08 3.50 8.45e-09 4.00 4.45e+02 3.33e-5 1.98 1.24e-5 1.99
64 2.18e-08 3.00 3.02e-09 3.50 5.27e-10 4.00 1.78e+03 8.37e-6 1.99 3.10e-6 2.00
128 2.55e-09 3.09 2.50e-10 3.59 3.08e-11 4.09 7.14e+03 2.10e-6 2.00 7.77e-7 2.00

5 Conclusions

In this paper, the compact discretization method was used to approximate the solution of second-order
boundary value problem governed by the nonlinear FIDEs. In the compact discretization approach, the
desired solution is obtained through some fourth-order numerical integrations. The accuracy of the pro-
posed method is displayed using illustrative test examples which were recently considered using other
techniques. The compact discretization method is very fast and easy to implement for the nonlinear Fred-
holm integro-differential boundary value problems. Moreover, the numerical results show the excellent
performance of this novel method for solving the considered boundary value problems.
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