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Abstract. This paper uses unit lower triangular matrices to solve the nonnegative inverse eigenvalue
problem for various sets of real numbers. This problem has remained unsolved for many years for n≥ 5.
The inverse of the unit lower triangular matrices can be easily calculated and the matrix similarities are
also helpful to be able to solve this important problem to a considerable extent. It is assumed that in
the given set of eigenvalues, the number of positive eigenvalues is less than or equal to the number of
nonpositive eigenvalues to find a nonnegative matrix such that the given set is its spectrum.
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1 Introduction

The nonnegative inverse eigenvalue problem (NIEP) asks for necessary and sufficient conditions on a
multiset σ = {λ1,λ2, . . . ,λn} of complex numbers as the spectrum of a nonnegative matrix A. If there is
such a nonnegative matrix A with spectrum σ , we say that σ is realizable and that A is a realization of
σ . Some necessary conditions for the realizability of σ are

(i) max{|λi|;λi ∈ σ} belongs to σ ;

(ii) sk = ∑
n
i=1 λ k

i ≥ 0; and

(iii) sm
k ≤ nm−1skm for k,m = 1,2, . . .

The Perron-Frobenius theorem implies the necessity of statement (i), the necessity of statement (ii) is the
observation that the trace of the k-th power of a nonnegative matrix is nonnegative and equal to the sum
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of the k-th powers of the eigenvalues; and the necessity of (iii) is known as the Johnson-Loewy-London
(JLL) inequality [7, 9].

Throughout the remainder of the paper λ1 denotes max{|λi|;λi ∈ σ}, and σ is assumed to satisfy the
necessary conditions (i), (ii) and (iii).

Many mathematicians have worked on the NIEP [3–5, 8, 11, 13–21], and there are several methods
for finding realizations. In this paper we utilize a method, based on the similarity of a matrix to an upper
triangular matrix, to solve several nonnegative inverse eigenvalue problems. This method was initiated
by Guo in [6]. A matrix L is unit lower triangular provided each entry on its main diagonal equals 1,
and each entry above its main diagonal is zero. The inverse of a unit lower triangular matrix also is a unit
lower triangular. Recently, Nazari et al. have used unit lower triangular matrices in solving the inverse
eigenvalue problem of distance matrices [12].

The paper is organized as follows.
We solve the NIEP in several cases where each element of σ is real and the number of positive

elements of σ is less than or equal the number of negative elements of σ . This means that σ =
{λ1,λ2, . . . ,λn} is a given multiset of real numbers such that k ≤ n/2 and

λ1 ≥ λ2 ≥ ·· · ≥ λk > 0≥ λn ≥ ·· · ≥ λk+1, (1)

we find a nonnegative matrix C such that the above set with condition (1) is its eigenvalues.

2 Real spectrum with one positive number

We first show how our method can be used for σ with just one positive element.To begin with, we present
Suleimanova’s Theorem [20] and provide another proof for it

Theorem 1. Let σ = {λ1, . . . ,λn} be a multiset of real numbers with conditions

λ1 > 0≥ λn ≥ ·· · ≥ λ2,

and λ1 ≥−∑
n
i=2 λi. Then σ is realizable.

Proof. For n = 1, [λ1] is a realization. For n≥ 2, let

A =


λ1 α2 α3 · · · αn

0 λ2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
0 0 0 · · · λn

 , L =


1 0 0 · · · 0
1 1 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0
1 0 0 · · · 1

 ,

and t = ∑
n
i=2 αi, where αi are nonnegative real numbers. Then

C = LAL−1 =


λ1− t α2 α3 · · · αn

λ1−λ2− t α2 +λ2 α3 · · · αn
...

...
...

. . .
...

λ1−λn−1− t α2 α3 · · · αn

λ1−λn− t α2 α3 · · · αn +λn

 , (2)
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is similar to A. Additionally, C is nonnegative whenever

λ1 ≥ t and αi ≥−λi, i = 2,3, . . . ,n. (3)

By the assumptions on σ , setting αi =−λi for i = 2, . . . ,n gives a solution for (3). Hence σ is realizable.

Remark 1. Note that if σ satisfies the hypothesis of Theorem 1 and additionally ∑
n
i=1 λi = 0, then in

order for C to be nonnegative the constraints (3) require that λ1 = t and αi = −λi for (i = 2, . . . ,n). In
other words, the matrix C constructed in the proof of Theorem 1 is unique.

Remark 2. In Theorem 1, if ∑
n
i=1 λi > 0, then there are infinitely many appropriate choices of αi and

hence we have many different C. In fact, for each n-tuple d = (d1,d2, . . . ,dn) of nonnegative real numbers
with ∑

n
i=1 di = ∑

n
i=1 λi there is a realization C of σ with main diagonal equal to d, because the equations

αi = di for i = 2,3, · · · ,n, give us the value of αi and the matrix A can be determined based on the
values of αi. For instance, consider σ = {10,−2,−2,−2,−1,−1}. By taking αi = −λi (i = 2, . . . ,6),
the resulting matrix is

C =



2 2 2 2 1 1
4 0 2 2 1 1
4 2 0 2 1 1
4 2 2 0 1 1
3 2 2 2 0 1
3 2 2 2 1 0

 .

If we want the main diagonal of (2) to be (1
2 ,

1
2 ,

1
2 ,

1
2 ,0,0), we take α2 = 5/2, α3 = 5/2, α4 = 5/2, α5 = 1,

α6 = 1, and the resulting matrix C is

C =



1/2 5/2 5/2 5/2 1 1
5/2 1/2 5/2 5/2 1 1
5/2 5/2 1/2 5/2 1 1
5/2 5/2 5/2 1/2 1 1
3/2 5/2 5/2 5/2 0 1
3/2 5/2 5/2 5/2 1 0

 .

3 Real spectrum with two positive numbers

Now, we consider σ having two positive eigenvalues. We begin with the case of n = 4.

Theorem 2. Let σ = {λ1,λ2,λ3,λ4} be a multiset of real numbers satisfying

λ1 ≥ λ2 > 0≥ λ4 ≥ λ3,
4

∑
i=1

λi ≥ 0,

λ1 ≥ |λ3|.

Then σ is realizable.
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Proof. If λ2 + λ4 ≥ 0 and λ1 ≥ |λ3|, then according to Theorem 1, we can find a nonnegative 2× 2
matrix A2 that realizes {λ1,λ3} and a nonnegative 2× 2 matrix B2 that realizes {λ2,λ4}, so the matrix
C = diag{A2,B2} has eigenvalues σ . If λ2 +λ4 < 0 and λ1 ≥ |λ3|, then we assume that α1,α2,α3, and
α4 be real numbers. Let t = ∑

4
i=2 αi and A and L be the following matrices

A =


λ1 α2 +α4 α3 0
0 λ2 α1 α4
0 0 λ3 0
0 0 0 λ4

 and L =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

 .

Then

C = LAL−1 =


λ1− t α2 +α4 α3 0

λ1−λ2− t−α1 α2 +λ2 α3 +α1 α4
λ1−λ3− t α2 +α4 α3 +λ3 0

λ1−λ2− t−α1 α2 +λ2−λ4 α3 +α1 α4 +λ4

 , (4)

is similar to the A. Whenever

−λi ≤ αi, i = 2,3,4,

t ≤ λ1, (5)

−α3 ≤ α1 ≤ λ1−λ2− t,

0≤ α2 +α4,

the matrix C is nonnegative. The assumptions on σ imply that α2 = −λ2,α3 = −λ3,α4 = −λ4 and
α1 = λ3 is a solution to these constraints. Hence σ is realizable.

Example 1. Suppose that λ1 +λ2 +λ3 +λ4 = 0. If we take αi = −λi, i = 2,3,4 and α1 = λ3 then the
conditions in (5) are satisfied and each diagonal entry of C will be 0. For instance let σ = {7,3,−5,−5},
the matrices L, L−1, A and C will be obtained as follows:

L =


1 0 0 0

1 1 0 0

1 0 1 0

1 1 0 1

 , L−1 =


1 0 0 0

−1 1 0 0

−1 0 1 0

0 −1 0 1

 , A =


7 2 5 0

0 3 −5 5

0 0 −5 0

0 0 0 −5

 ,

C = LAL−1 =


0 2 5 0
2 0 0 5
5 2 0 0
2 5 0 0

 .

This spectrum is studied in [1] and our method gives an easily derived realization.

Now we consider the set of σ with two positive eigenvalues and three negative eigenvalues with
special conditions.
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Theorem 3. Let σ = {λ1,λ2,λ3,λ4,λ5}, where λ1, . . . ,λ5 ∈ R satisfy

λ1 ≥ λ2 > 0≥ λ5 ≥ λ4 ≥ λ3,

5

∑
i=1

λi ≥ 0,

λ1 ≥ |λ3|,
λ1 +λ4 +λ5 ≥ 0.

Then σ is realizable.

Proof. If λ2 + λ4 + λ5 ≥ 0 and λ1 ≥ |λ3|, then according to Theorem 1, we can find a nonnegative
3×3 matrix C3 that realizes {λ2,λ4,λ5} and a nonnegative 2×2 matrix C2 that realizes {λ1,λ3}, so the
matrix C = diag{C2,C3} has eigenvalues σ . If λ2 + λ4 + λ5 < 0 and λ1 ≥ |λ3|, then we suppose that
αi, i = 1, · · · ,5 are real numbers. Set t = ∑

5
i=2 αi. In this case, we consider

A =


λ1 α2 +α4 +α5 α3 0 0
0 λ2 α1 α4 α5
0 0 λ3 0 0
0 0 0 λ4 0
0 0 0 0 λ5

 , L =


1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 1 0 1 0
1 1 0 0 1

 .

Then C = LAL−1 is the matrix

C =


λ1− t α2 +α4 +α5 α3 0 0

λ1−λ2− t−α1 α2 +λ2 α3 +α1 α4 α5
λ1−λ3− t α2 +α4 +α5 α3 +λ3 0 0

λ1−λ2− t−α1 α2 +λ2−λ4 α3 +α1 α4 +λ4 α5
λ1−λ2− t−α1 α2 +λ2−λ5 α3 +α1 α4 α5 +λ5

 . (6)

The matrix C is similar to the matrix A, and C is nonnegative if and only if

−λi ≤ αi, i = 2,3,4,5

t ≤ λ1,

0≤ α2 +α4 +α5,

−α3 ≤ α1 ≤ λ1−λ2− t.

With the given hypothesis on σ , one solution to this system of inequalities is

α2 =−λ2, α3 =−λ3, α4 =−λ4, α5 =−λ5, α1 = λ3.

Hence σ is realizable.

Theorem 4. Let σ = {λ1,λ2,λ3,λ4,λ5}, where λ1, . . . ,λ5 ∈ R, satisfy

λ1 ≥ λ2 > 0≥ λ5 ≥ λ4 ≥ λ3,

5

∑
i=1

λi ≥ 0,

λ2 +λ5 ≤ 0.

Then σ is realizable.
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Proof. Suppose a3, a4 and αi, i = 2, · · · ,5 are real numbers. Set t = ∑
5
i=2 αi. In this case, we consider

A =


λ1 α2 +α5 α3 α4 0
0 λ2 a3 a4 α5
0 0 λ3 0 0
0 0 0 λ4 0
0 0 0 0 λ5

 , L =


1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 1 0 0 1

 .

Then C = LAL−1 is the matrix

C =


λ1− t α2 +α5 α3 α4 0

λ1−λ2− t−a3−a4 α2 +λ2 α3 +a3 α4 +a4 α5
λ1−λ3− t α2 +α5 α3 +λ3 α5 0
λ1−λ4− t α2 +α5 α3 α4 +λ4 0

λ1−λ2− t−a3−a4 α2 +λ2−λ5 α3 +a3 α4 +a4 α5 +λ5

 . (7)

The matrix C is similar to the matrix A, and C is nonnegative if and only if

−λi ≤ αi, i = 2,3,4,5,

t ≤ λ1,

0≤ α2 +α5,

−α3 ≤ a3,

−α4 ≤ a4,

a3 +a4 ≤ λ1−λ2− t.

With the given hypothesis on σ , one solution to this system of inequalities is

α2 =−λ2, α3 =−λ3, α4 =−λ4, α5 =−λ5, a3 = λ3, a4 = λ4.

Hence σ is realizable.

Example 2. Let σ = {7,1,−3,−3,−2}, then consider the matrices A and L as following

A =



7 1 3 3 0

0 1 −3 −3 2

0 0 −3 0 0

0 0 0 −3 0

0 0 0 0 −2


, L =



1 0 0 0 0

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 1 0 0 1


.

We have

C = LAL−1 =



0 1 3 3 0

5 0 0 0 2

3 1 0 3 0

3 1 3 0 0

5 2 0 0 0


.
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Now we consider the general case of two positive eigenvalues.

Theorem 5. Let σ = {λ1,λ2, . . . ,λn} be a multiset of n≥ 4 real numbers such that

λ1 ≥ λ2 > 0≥ λn ≥ ·· · ≥ λ3,

∑
n
i=1 λi = 0 and λ1 +∑

n
i=r λi ≥ 0, where r is the largest positive integer such that λ2 +∑

n
i=r λi ≤ 0. Then

σ is realizable.

Proof. Let αi for i = 2,3, . . . ,n and ai ≥ αi (i = 3, . . . ,n), be real numbers. Set t = ∑
n
i=2 αi. As λ1+λ2 =

−λ3−·· ·−λn, we have 3≤ r ≤ n. Consider the matrices

A =



λ1 α2 +(αr + · · ·+αn) α3 · · · αr−1 0 · · · 0
0 λ2 a3 · · · ar−1 αr · · · αn

0 0 λ3 · · · 0 0 · · · 0
...

...
...

. . .
...

... · · ·
...

0 0 0 0 λr−1 0 0 0
0 0 0 0 0 λr 0 0
...

...
...

...
...

...
. . .

...
0 0 0 · · · 0 0 · · · λn


,

and

L =



1 0 0 · · · 0 0 · · · 0
1 1 0 · · · 0 0 · · · 0
1 0 1 · · · 0 0 · · · 0
...

...
...

. . .
...

... · · ·
...

1 0 0 · · · 1 0 · · · 0
1 1 0 · · · 0 1 · · · 0
...

...
...

...
...

...
. . .

...
1 1 0 · · · 0 0 · · · 1


,

where the second column of L = (li j) has n− r + 1 ones from entry lr2 to entry ln2. Then the matrix
C = LAL−1 is given by

C =



c11 c12 α3 α4 · · · αr−1 0 · · · 0
c21 α2 +λ2 α3 +a3 α4 +a4 · · · αr−1 +ar−1 αr · · · αn

c31 c32 λ3 +α3 α4 · · · αr−1 0 · · · 0
c4,1 c42 α3 λ4 +α4 · · · αr−1 0 · · · 0

...
...

...
...

. . .
...

... · · ·
...

cr−1,1 cr−1,2 α3 α4 · · · λr−1 +αr−1 0 · · · 0
cr1 cr2 α3 +a3 α4 +a4 · · · αr−1 +ar−1 λr +αr · · · αn
...

...
...

...
...

...
...

. . .
...

cn1 cn2 α3 +a3 α4 +a4 · · · αr−1 +ar−1 0 · · · λn +αn


,
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where

c11 =λ1− t,

ci1 =λ1−λi− t, i = 3,4, · · · ,r−1,

c21 =cr1 = · · ·= cn1 = λ1−λ2− t− (a3 + · · ·+ar−1),

c12 =c32 = · · ·= cr−1 = α2 +αr + · · ·+αn and

ci2 =α2 +λ2−λi, i = r, . . . ,n.

The matrix C is nonnegative (and hence a realization of σ ) if and only if

−λi ≤ αi, i = 2, . . . ,n,

t ≤ λ1,

−αi ≤ ai, i = 3, . . . ,r−1,

λ1−λi− t ≥ 0, i = 3, . . . ,r−1,

λ1−λ2− t− (α3 + · · ·+αr−1)≥ 0,

(α2 +αr + · · ·+αn)≥ 0,

α2 +λ2−λi ≥ 0, i = r, . . . ,n.

with

αi =−λi, i = 2, . . . ,n

and

ai = λi, i = 3, . . . ,n

and C is a nonnegative matrix. Hence, σ is realizable.

Example 3. Let σ = {19,1,−5,−5,−3,−3,−2,−2}. This spectrum is chosen from [2] and we show
how to use our method to find a realization. We select

A =



19 1 5 5 3 3 2 0

0 1 −5 −5 −3 −3 −2 2

0 0 −5 0 0 0 0 0

0 0 0 −5 0 0 0 0

0 0 0 0 −3 0 0 0

0 0 0 0 0 −3 0 0

0 0 0 0 0 0 −2 0

0 0 0 0 0 0 0 −2



, L =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1 1 0 0 0 0 0 1


.
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Then the matrix C = LAL−1 is

C =



0 1 5 5 3 3 2 0

17 0 0 0 0 0 0 2

5 1 0 5 3 3 2 0

5 1 5 0 3 3 2 0

3 1 5 5 0 3 2 0

3 1 5 5 3 0 2 0

2 1 5 5 3 3 0 0

17 2 0 0 0 0 0 0



.

4 Real spectrum with three positive numbers and its extension

Now we study σ with three positives and at least 3 non-positives.

Theorem 6. Let σ = {λ1,λ2,λ3,λ4,λ5,λ6} be a list of real numbers satisfying

λ1 ≥ λ2 ≥ λ3 > 0 > λ6 ≥ λ5 ≥ λ4,

∑
6
i=1 λi ≥ 0, λ1 ≥ |λ4| and λ3 ≤ |λ6|, and also λ1 +λ3 +λ5 +λ6 ≥ 0. Then σ is realizable.

Proof. If λ2 +λ3 +λ5 +λ6 ≥ 0, and λ3 ≤ |λ6|, then we have λ2 +λ5 ≥ 0, so λ2 ≥ |λ5| and according to
Theorem 2 we can find a nonnegative 4×4 matrix C4 that realizes {λ2,λ3,λ5,λ6} and it is easy to find a
nonnegative 2×2 matrix C2 that realizes {λ1,λ4}, so the matrix C = diag{C2,C4} has eigenvalues σ . If
λ2 +λ3 +λ5 +λ6 ≤ 0, we choose the real numbers αi (i=1, . . . ,6), a24, a34 and a35 such that

−λi ≤ αi, i = 2, . . . ,6,

t ≤ λ1,

−α5 ≤ a35 ≤ α2 +λ2−λ3,

−α4 ≤ a24 ≤ λ1−λ2− t,

−α4 ≤ a24 +a34 ≤ λ1−λ2− t,

0≤ α6 +α3,

α4 ≤ t,

where t = ∑
6
i=2 αi. Let

A =



λ1 α2 +α5 +α6 +α3 0 α4 0 0
0 λ2 α6 +α3 a24 α5 0
0 0 λ3 a34 a35 α6
0 0 0 λ4 0 0
0 0 0 0 λ5 0
0 0 0 0 0 λ6

 , L =



1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 0 0 1 0 0
1 1 0 0 1 0
1 1 1 0 0 1

 .
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Then the matrix C = LAL−1 is
λ1− t t−α4 0 α4 0 0

λ1−λ2− t−a24 α2 +λ2 α6 +α3 α4 +a24 α5 0
λ1−λ2− t−a24−a34 α2 +λ2−λ3−a35 α3 +λ3 α4 +a24 +a34 α5 +a35 α6

λ1−λ4− t t−α4 0 α4 +λ4 0 0
λ1−λ2− t−a24 α2 +λ2−λ5 α6 +α3 α4 +a24 α5 +λ5 0

λ1−λ2− t−a24−a34 α2 +λ2−λ3−a35 α3 +λ3−λ6 α4 +a24 +a34 α5 +a35 α6 +λ6

 . (8)

The matrix C is nonnegative if and only if the claimed system of inequalities is consistent. To show that
the above inequalities are compatible, we present the following: By selecting αi =−λi for i= 2,3, . . . ,6,
all entries of the last column of matrix (8) will be nonnegative. Also, by selecting a35 = λ5, the entries of
the fifth column of this matrix will be nonnegative. Additionally if we select a24 = λ4 and a34 ≥ 0, then
all entries of the fourth column of matrix (8) will be nonnegative. The condition 0≤ α6 +α3 means that
λ3 ≤−λ6 and this confirms that all the entries of the third column of matrix (8) will also be nonnegative.
In second column the condition t −α4 ≥ 0 is equivalent to λ2 + λ3 + λ5 + λ6 ≤ 0 and the condition
λ3 ≤ −λ6 gives λ3 ≤ −λ5 and consequently all entries of this column are nonnegative. For the first
column, if we select a34 = 0, and since

λ1−λ2− t−a24 = λ1 +λ3 +λ5 +λ6 ≥ 0,

then we have nonnegative entries of this column.

We now discuss the method in Theorem 6 for the general case of three positive real eigenvalues.
For convenience, we illustrate this for n = 10 and we consider λ1 ≥ λ2 ≥ λ3 > 0 ≥ λ10 ≥ ·· · ≥ λ4 with
∑

10
i=1 λi ≥ 0. We also assume that the three following conditions for these given eigenvalues are held:

λ2 +λ3 +λ5 +λ6 + . . .+λ10 ≤ 0, (9)

λ3 +λ8 +λ9 +λ10 ≤ 0, (10)

λ1 +λ3 +λ5 +λ6 +λ7 +λ8 +λ9 +λ10 ≥ 0. (11)

Let

L =



1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0
1 1 0 0 0 0 1 0 0 0
1 1 1 0 0 0 0 1 0 0
1 1 1 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 1


, (12)
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and

A =



λ1 α2 +α3 +α5 + · · ·+α10 0 α4 0 0 0 0 0 0
0 λ2 α3 +α10 +α9 +α8 a24 α5 α6 α7 0 0 0
0 0 λ3 a34 a35 a36 a37 α8 α9 α10
0 0 0 λ4 0 0 0 0 0 0
0 0 0 0 λ5 0 0 0 0 0
0 0 0 0 0 λ6 0 0 0 0
0 0 0 0 0 0 λ7 0 0 0
0 0 0 0 0 0 0 λ8 0 0
0 0 0 0 0 0 0 0 λ9 0
0 0 0 0 0 0 0 0 0 λ10


, (13)

where αi ≥−λi for i = 2, . . . ,10. Then the matrix C is

C =



λ1− t t−α4 0 α4 0 0 0 0 0 0
c21 α2 +λ2 c23 α4 +a24 α5 α6 α7 0 0 0
c31 c32 α3 +λ3 c34 α5 +a35 α6 +a36 α7 +a37 α8 α9 α10
λ1−λ4− t t−α4 0 α4 +λ4 0 0 0 0 0 0
c51 α2 +λ2−λ5 c53 α4 +a24 α5 +λ5 α6 α7 0 0 0
c61 α2 +λ2−λ6 c63 α4 +a24 α5 α6 +λ6 α7 0 0 0
c71 α2 +λ2−λ7 c73 α4 +a24 α5 α6 α7 +λ7 0 0 0
c81 c82 α3 +λ3−λ8 c84 α5 +a35 α6 +a36 α7 +a37 α8 +λ8 α9 α10
c91 c92 α3 +λ3−λ9 c94 α5 +a35 α6 +a36 α7 +a37 α8 α9 +λ9 α10
c10,1 c10,2 α3 +λ3−λ10 c10,4 α5 +a35 α6 +a36 α7 +a37 α8 α9 α10 +λ10


,

with

t =
10

∑
i=2

αi,

c32 = c82 = c92 = c10,2 = λ2−λ3−a35−a36−a37 +α2,

c23 = c53 = c63 = c73 = α3 +α10 +α9 +α8,

c34 = c84 = c94 = c10,4 = α4 +a24 +a34,

c21 = c51 = c61 = c71 = λ1−λ2− t−a24,

c31 = c81 = c91 = c10,1 = λ1−λ2− t−a24−a34.

Now, with conditions (9) and (10) and the following choices, it is easy to verify that the matrix C is
nonnegative and then σ is realizable:

αi =−λi, i = 2,3, . . . ,10,

a37 = λ7, a34 = 0, a36 = λ6,

a35 = λ5, a24 = λ4.

Example 4. Let

σ = {λ1 = 8,λ2 = 5,λ3 = 1,λ4 =−5,λ5 =−3,λ6 =−2,λ7 =−1,λ8 =−1,λ9 =−1,λ10 =−1}.

We see that λ3 +λ8 +λ9 +λ10 =−2≤ 0, then by above theorem we find a nonnegative matrix C that σ
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is its spectrum. At first, we choose the elements of matrix A as:

A =



8 3 0 5 0 0 0 0 0 0

0 5 2 −5 3 2 1 0 0 0

0 0 1 0 −3 −2 −1 1 1 1

0 0 0 −5 0 0 0 0 0 0

0 0 0 0 −3 0 0 0 0 0

0 0 0 0 0 −2 0 0 0 0

0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 −1



.

Then with L given in (12), we have

C = LAL−1 =



0 3 0 5 0 0 0 0 0 0

0 0 2 0 3 2 1 0 0 0

0 5 0 0 0 0 0 1 1 1

5 3 0 0 0 0 0 0 0 0

0 3 2 0 0 2 1 0 0 0

0 2 2 0 3 0 1 0 0 0

0 1 2 0 3 2 0 0 0 0

0 5 1 0 0 0 0 0 1 1

0 5 1 0 0 0 0 1 0 1

0 5 1 0 0 0 0 1 1 0



,

which has spectrum σ .
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