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Inverse eigenvalue problem of nonnegative matrices via unit
lower triangular matrices (Part I)
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Abstract. This paper uses unit lower triangular matrices to solve the nonnegative inverse eigenvalue
problem for various sets of real numbers. This problem has remained unsolved for many years for n > 5.
The inverse of the unit lower triangular matrices can be easily calculated and the matrix similarities are
also helpful to be able to solve this important problem to a considerable extent. It is assumed that in
the given set of eigenvalues, the number of positive eigenvalues is less than or equal to the number of
nonpositive eigenvalues to find a nonnegative matrix such that the given set is its spectrum.
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1 Introduction

The nonnegative inverse eigenvalue problem (NIEP) asks for necessary and sufficient conditions on a
multiset 0 = {A41,42,...,4,} of complex numbers as the spectrum of a nonnegative matrix A. If there is
such a nonnegative matrix A with spectrum o, we say that ¢ is realizable and that A is a realization of
o. Some necessary conditions for the realizability of o are

(i) max{|A;

;A; € 0} belongs to o;
(i) sk =YY", lik > 0; and
(i) s <" sy, for k,m=1,2,...

The Perron-Frobenius theorem implies the necessity of statement (i), the necessity of statement (ii) is the
observation that the trace of the k-th power of a nonnegative matrix is nonnegative and equal to the sum
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of the k-th powers of the eigenvalues; and the necessity of (iii) is known as the Johnson-Loewy-London
(JLL) inequality [7,9].

Throughout the remainder of the paper A; denotes max{|A;
necessary conditions (1), (ii) and (iii).

Many mathematicians have worked on the NIEP [3-5, 8, 11, ], and there are several methods
for finding realizations. In this paper we utilize a method, based on the similarity of a matrix to an upper
triangular matrix, to solve several nonnegative inverse eigenvalue problems. This method was initiated
by Guo in [6]. A matrix L is unit lower triangular provided each entry on its main diagonal equals 1,
and each entry above its main diagonal is zero. The inverse of a unit lower triangular matrix also is a unit
lower triangular. Recently, Nazari et al. have used unit lower triangular matrices in solving the inverse
eigenvalue problem of distance matrices [12].

The paper is organized as follows.

We solve the NIEP in several cases where each element of ¢ is real and the number of positive
elements of o is less than or equal the number of negative elements of ¢. This means that o =
{A1,A2,...,A,} is a given multiset of real numbers such that k < n/2 and

;A; € 0}, and 0 is assumed to satisfy the

M>A>>24>0>4,> > A, (1)

we find a nonnegative matrix C such that the above set with condition (1) is its eigenvalues.

2 Real spectrum with one positive number

We first show how our method can be used for o with just one positive element.To begin with, we present
Suleimanova’s Theorem [20] and provide another proof for it

Theorem 1. Let 6 = {Ai,...,A,} be a multiset of real numbers with conditions
M>020, > >N,
and Ay > =Y.' » Ai. Then © is realizable.

Proof. Forn =1, [A] is a realization. For n > 2, let

(A o ooz - o 1 00 -~ 0

o A O -~ 0 1 10 --- 0
Aol L= o

0O 0 O 0 1 0 0 ---

0 0 0 A | 100 - 1]

andr =Y , a;, where ¢ are nonnegative real numbers. Then

A,l —t (05 (04 o,
AM—A—t h+A oz o,
C=LAL'= : : : )
Al — A«n_1 —t 0Oy (04 oy,
A=At o) o3 O+ A |
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is similar to A. Additionally, C is nonnegative whenever

A >tand o > — A, i=2,3,...,n. 3)
By the assumptions on o, setting o; = —A; fori = 2,...,n gives a solution for (3). Hence o is realizable.
O

Remark 1. Note that if ¢ satisfies the hypothesis of Theorem | and additionally ¥'! | A; = 0, then in
order for C to be nonnegative the constraints (3) require that Ay =t and o; = —A; for (i =2,...,n). In
other words, the matrix C constructed in the proof of Theorem I is unique.

Remark 2. In Theorem 1, if Y| A; > 0, then there are infinitely many appropriate choices of o; and
hence we have many different C. In fact, for each n-tuple d = (d,,da, . .. ,dy) of nonnegative real numbers
with Y d; =Y., A; there is a realization C of ¢ with main diagonal equal to d, because the equations
a; =d; for i =2,3,---,n, give us the value of o; and the matrix A can be determined based on the
values of o;. For instance, consider o = {10,—2,—-2,—-2,—1,—1}. By taking o; = —A; (i=2,...,6),
the resulting matrix is

222 2 11
4 0 2 2 1 1
C— 4 2 0 2 1 1
4 2 2 01 1
322 2 01
(32221 0
If we want the main diagonal of (2) to be (%,%,%,%,0,0), we take 0y =5/2, 03 =5/2, a4 =5/2, os =1,

06 = 1, and the resulting matrix C is

1/2 5/2 5/2 5/2
5/2 1/2 5/2 52
5/2 5/2 12 5/2
5/2 5/2 5/2 1)2
3/2 5/2 5/2 5/2
3/2 5/2 5/2 5/2

[ e Y S G
O = = = =

3 Real spectrum with two positive numbers
Now, we consider o having two positive eigenvalues. We begin with the case of n = 4.
Theorem 2. Let 6 = {A,A2,A3,A4} be a multiset of real numbers satisfying
M>A > 0> 4> 43,
4
y2
i=1

AMo> Al

v

0,

Then o is realizable.
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Proof. If A3+ A4 > 0 and A; > |23/, then according to Theorem 1, we can find a nonnegative 2 x 2
matrix A, that realizes {1;,A3} and a nonnegative 2 x 2 matrix B, that realizes {A;,A4}, so the matrix
C = diag{A,, B} has eigenvalues o. If A, + A4 < 0 and A; > |23, then we assume that o, @2, 03, and
oy be real numbers. Let t = Z?:z o; and A and L be the following matrices

M wtoy a3 O 1 0 00
o 0 lz o 0y N 1 100
A=10  0  a 0 and L=11 ¢ 1 ¢
0 0 0 M 1 1 01
Then
AM—t O + Oy o3 0
_ M—A—t—o 0+ A o+ o o
_ 1_ 1 2 1 2+ A2 3 1 4
C=IAL " = M—A;—t¢ O + 0y o+ A3 0 ’ “)
M—A—t—o +A—A 3+a a4+
is similar to the A. Whenever
_ligaia i:273747
t <A, (5
— <oy <A —A—t,
0 <o+ Oy,
the matrix C is nonnegative. The assumptions on ¢ imply that o = —A;,03 = —A3,04 = —A4 and
o] = A3 is a solution to these constraints. Hence o is realizable. ]

Example 1. Suppose that A; +A; + A3 + A4 = 0. If we take o; = —A;, i = 2,3,4 and oy = A3 then the
conditions in (5) are satisfied and each diagonal entry of C will be 0. For instance let 6 = {7,3,—5, -5},
the matrices L, L~!, A and C will be obtained as follows:

(1.0 0 0] 1 0 0 0] (72 5 0 |
1100 -1 1 00 03 =5 5
L= , L= , A= :
1 010 -1 0 1 0 00 -5 0
| 11 0 1| | 0 -1 0 1 | | 00 0 =5 |
0250
2 0 05
— -1 _
C=LAL = 5200
2500
This spectrum is studied in [ 1] and our method gives an easily derived realization. OJ

Now we consider the set of o with two positive eigenvalues and three negative eigenvalues with
special conditions.
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Theorem 3. Let 6 = {A,A2,A3,A4, A5}, where Ay, ..., As € R satisfy
M2>2A>02>24s >4 > A3,

5
Zli Z 07
i=1
A > A3,
M+A4+45>0.
Then o is realizable.

Proof. If Ay + A4+ As > 0 and A; > |A3|, then according to Theorem 1, we can find a nonnegative
3 x 3 matrix Cs that realizes {A,A4, A5} and a nonnegative 2 x 2 matrix C, that realizes {4;,A3}, so the
matrix C = diag{C,,C3} has eigenvalues o. If A, +A4 + A5 < 0 and A; > |A3], then we suppose that

a;,i=1,---,5 are real numbers. Sett = 21'5:2 a;. In this case, we consider
M optoutos oz 0 0 1 00 00O
0 },2 o Oy O5 1 1.0 00
A= 0 0 A3 0 0 |, L=(1 0100
0 0 0 A& O 1 1010
0 0 0 0 As 1 1.0 01
Then C = LAL™! is the matrix
A —t o) + 0ty + Os o3 0 0
M—A—t—oy o0+ o3+ Q 0y o
C= M—Az—t o +0y+0os 03+ Az 0 0 ) 6)

M—A—t—o w+h—A oz+o ou+My os
M=l —t—0 o+l —2As oz+0oy Oly o5 + As

The matrix C is similar to the matrix A, and C is nonnegative if and only if
A < o, i=2,3,4,5
t <A,
0<op+oy+os,
—3 <o <A —Ay—t.
With the given hypothesis on ¢, one solution to this system of inequalities is
=—A, O03=—A3, oy = —A4, 05 = —As5, O = A3.

Hence o is realizable. O

Theorem 4. Let 6 = {A,A2,A3,A4, A5}, where Ay, ..., As € R, satisfy

M2 >02>24s >4 > A3,
5

Z)vi 207

i=1
A+ 25 <O0.

Then o is realizable.
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Proof. Suppose a3, a4 and ;, i = 2,---,5 are real numbers. Sett = Z?:z @;. In this case, we consider
l] wmt+os oz oy O 1 00 0O
0 2,2 asy a4 Os 1 1.0 00
A= 0 0 A3 0 0 |, L=|(1 0100
0 0 0 A O 1 0010
0 0 0 0 As 1 1 0 0 1
Then C = LAL™! is the matrix
A —t o+ s o3 Ol 0
M—A—t—a3—ay 00+ Ay 0z+az O4+ay o5
C= M—Az—t O + 05 o3+ A3 (073 0 . @)
M—Ag—t O + 05 (04} Oy + Ay 0

M—A—t—a3—ay w+h—As os+a3 s+as Qs+As
The matrix C is similar to the matrix A, and C is nonnegative if and only if

—Ai < o, i=2,3,4,5,
t <A,
0< o+ as,

—03 < as,

—0y < ay,

aztas <A —A—t.

With the given hypothesis on ¢, one solution to this system of inequalities is
=—l, i3=—MA3, 04=—A, Os=—As5, a3 =2A3, as = M4.
Hence o is realizable. O

Example 2. Let 0 = {7,1,—3,—3, -2}, then consider the matrices A and L as following

71 3 3 0] 1.0 0 0 0]
01 -3 =3 2 11000
A={00 -3 0 0|, L=|101200
00 0 -3 0 1 0010
(00 0 0 -2 1100 1|

We have

C=IAL"' =

bh W W W O
—

S W O O W

S O W O W

S O O N O
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Now we consider the general case of two positive eigenvalues.
Theorem 5. Let 6 = {A1,A2,...,A,} be a multiset of n > 4 real numbers such that
M>2>0>4,>- > A3,

" Ai=0and Ay + Y1, A > 0, where r is the largest positive integer such that A + Y7, A; < 0. Then
O is realizable.

Proof. Leta;fori=2,3,...,nanda; > o; (i=3,...,n), be real numbers. Setzr =Y" , 0;. As A+, =

—A3—---—A,, we have 3 < r < n. Consider the matrices
[ A ot (et to) a3 o o O e 0]
0 2{2 a3 aril (Xr a}’l
0 0 3 - 0 0 --- 0
A=19 0 0 0 A O 0 0 |’
0 0 0 O 0 A~ 0 0
0 0 0 0 0 A |
and
(1 0 O 0 0 0]
1 10 - 00 0
1 0 1 00 0
=110 0 10 0|’
1 10 0 1 0
(110 - 00 - 1|

where the second column of L = (/;;) has n —r+ 1 ones from entry [, to entry /,5. Then the matrix
C = LAL™! is given by

[ cn c12 o3 0 041 0 0
21 tA ogtaz Qutas o Op_j+a, o« o
31 . Mt 04 O 0 0
C4,1 C42 (04] 14 +0y - O—1 0 0
c=| : : ’

Cr—1,1  Cr—12 o (o7 v A1 0 0 0
Crl Cr2 o+ay Os+as - O_j1+ar—1 A+0oy - o,

L Cnl Cn2 o3+as Og+ag -+ O_1+a,_q 0 )vn_‘_an ]
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where

C]]Z/l]-l,

cii=M—Ai—t,i=3,4---,r—1,
cr=cn=-=cn=M—A—t—(a3+---+ar1),
Cp=C3p=""+=C-1=0p+0+ -+0,and

cio =0+ Ay — A, i=r,...,n.

The matrix C is nonnegative (and hence a realization of o) if and only if

A < o, i=2,...,n,
t <A,
—0; < aj, i=3,...,r—1,
AM—Ai—1t>0, i=3,...,r—1,

M—M—t—(o+-+01)>0,
(a2+ar+"'+an> 207

o+l -4 >0, i=vr,...,Nn.
with
o = li, i=2, ,n
and
a,-:l,-, i:3,...,n
and C is a nonnegative matrix. Hence, o is realizable. Ul

Example 3. Let 6 = {19,1,—5,—-5,—3,—3,—2,—2}. This spectrum is chosen from [2] and we show
how to use our method to find a realization. We select

91 5 5 3 3 2 0
o1 -5 -5 -3 -3 -2 2 1 0 00 0O O 07
00 -50 0 0 0 0 1000000
10100000
00 0 -5 0 0 0 0 1 001000 0
1000 0 30 0 o “|tooo01000
10000100
00 0 0 0 -3 0 0 L 0000010
00 0 0 0 0 -2 0 (1100000 1]
00 0 0 0 0 0 -2]
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Then the matrix C = LAL ! is

[0 1 5533 20]
170 0000 0 2
51053320
51503320
C=
31550320
31553020
2 1553300
| 1720 00 0 0 0 |

4 Real spectrum with three positive numbers and its extension

Now we study o with three positives and at least 3 non-positives.

Theorem 6. Let 6 = {A, A2, A3, A4, A5, A¢ } be a list of real numbers satisfying
M>222>A>0> 2> 245 > A4,

YO >0, A > |Ag] and A3 < |As

, and also A1 + A3+ As + Ag > 0. Then o is realizable.

Proof. If 23+ A3+ A5+ A¢ > 0, and A3 < |Ag|, then we have A, + A5 > 0, so A, > |As| and according to
Theorem 2 we can find a nonnegative 4 x 4 matrix Cy that realizes {A,, 43,45, A¢} and it is easy to find a
nonnegative 2 x 2 matrix C, that realizes {A;, A4}, so the matrix C = diag{C,,C4} has eigenvalues o. If
A + Az + As + A¢ < 0, we choose the real numbers o (i=1,...,6), a4, azs and aszs such that

A < o, i=2,...,6,
t <A,
—as <azs < o+ A — A3,
—oy <ap <M—A—t,
—oy <ant+azs <A —A—t,
0 < o+ 03,
oy <t,

where t = Z?:z a;. Let

[ A o+ o5+ o+ o 0 o O 0 7 1 000 0O

0 Ao Og+03 axy o5 O 1 1.0 0 00

A— 0 0 )Lg, as4 aszs Og I — 1 110 00
0 0 0 A 0 0 |’ 100100

0 0 0 0 A O 1 1.0 010

L0 0 0 0 0 A | 11100 1




126 A.M. Nazari, A. Nezami

Then the matrix C = LAL ! is

Al—l‘ r— 0y 0 oy 0 0
AM—A—t—axn o+ A O+ 03 Oy +ans 5 0
M—A—t—au—azu O+A—Az—ass o3+ A3 O4+a +az Os+ass O )
AM—Ay—t t— 0y 0 o+ Agq 0 0
M—A—t—axy o +A—As O+ 3 O+ ana 05+ As 0
| M~ —t—ay—au m+h—-A—as +Ai—A utautau as+as O+ |

The matrix C is nonnegative if and only if the claimed system of inequalities is consistent. To show that
the above inequalities are compatible, we present the following: By selecting a; = —A; fori=2,3,...,6,
all entries of the last column of matrix (8) will be nonnegative. Also, by selecting aszs = As, the entries of
the fifth column of this matrix will be nonnegative. Additionally if we select a4 = A4 and az4 > 0, then
all entries of the fourth column of matrix (8) will be nonnegative. The condition 0 < o + 0z means that
A3 < —Ag and this confirms that all the entries of the third column of matrix (8) will also be nonnegative.
In second column the condition ¢t — a4 > 0 is equivalent to A, + A3 + As + A¢ < 0 and the condition
Az < —A¢ gives A3 < —As5 and consequently all entries of this column are nonnegative. For the first
column, if we select az4 = 0, and since

M-l —t—as=A+23+As5+ 21 >0,
then we have nonnegative entries of this column. O

We now discuss the method in Theorem 6 for the general case of three positive real eigenvalues.
For convenience, we illustrate this for n = 10 and we consider A; > A, > A3 > 0> A;p > --- > A4 with
2}21 Ai > 0. We also assume that the three following conditions for these given eigenvalues are held:

M+A+As+Ac+...+ 410 <0, 9)
A3 +Ag+ A9+ A1 <0, (10)
M+ +As+ A+ A7+ A5+ Ao+ A9 > 0. (11)
Let
(1. 0 0000 O O 0 0]
1 1.0 0 0 0 0 0 0 O
1 1.1.0 0 0 0 0 0 O
1 0 01 00 0 0 0 O
1 1.0 061 00 O OO0
=11 170001000 0] a2)
1 1.0 0 0 01 0 0 O
1 110 0 0 01 0 O
1 110 0 0 0 0 1 O
111000000 1|
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and

[ M mtoz+os++a 0

0 2
0 0 23
0 0 0
0 0 0
A=1 o 0 0
0 0 0
0 0 0
0 0 0
0 0 0

o3+ ¢o + 09 + Ofg

where o; > —A; for i =2,...,10. Then the matrix C is

B l] —t
2]
€31
l| 7).471
C = Cs1
Co1
71
C81
€91
L cio,1

with

1 — 0y 0 Oy
o0+ €23 O +ans
3 o+A3 34
t—oy 0 Oy + Ag
W+l —As  cs3 Oy +az4
w+i—2A ce3 Oy +ang
W+ —A o3 Oy + az4
cs2 o+A3—Ag s

c92 B+Az—A  coy

10,2 o+A3—Aio  cro4

10
t= Z a;,
i=2

0
[24]
05 +ass

s+ As
Qs

Qs

O5 +ass
s +ass
05 +ass

(071 0

az Os

asz4  ass
A 0
0 A5
0 0
0 0
0 0
0 0
0 0

0

25

O +aze

0

Og

as+ 26

25

O +aze

O +-aze

O +ase

ase

coocofoo

a7
oy +asy

a7

a7

o7+ A7
oy +asy
07 +azy
o7 +asy

127
0 0 0 0 ]
a 0 O 0
azy; Og Oy o
0 0 O 0
0 0 O 0
0 0 0 0 ’ (13)
Az 0 O 0
0 A O 0
0 0 X O
0 0 0 Ao |
0 0 0 T
0 0 0
og Qo aio
0 0 0
0 0 0
0 0 0 ’
0 0 0
g+ a9 ao
o3 W+l o
og (e op+Ap

C3 =g =Con =102 = A — A3 —a3s — aze — azy + o,

€23 =C53 = C63 = €73 = 03 + 010 + O + O3,

C34 = C84 = C94 = C10,4 = 04 + a24 +asz4,

1 =c51=ce1 =c71 =M — Ay —t —an,

31 =cg1 =C91 =C101 =M — Ay — 1 —ax —az.

Now, with conditions (9) and (10) and the following choices, it is easy to verify that the matrix C is
nonnegative and then o is realizable:

Example 4. Let

(Xi:—ﬂ.i,i:2,3,...,10,

ay; = A7, a4 =0, azs = A,
azs = As, ax = A4.

O = {l] :8,12 =5,)L3 = 1,&4 = —5,15 = —3,16 = —2,17 = —1,2,8 = —1,19 = —1,&10 = —1}.

We see that A3 + Ag + A9 + 419 = —2 < 0, then by above theorem we find a nonnegative matrix C that o
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is its spectrum. At first, we choose the elements of matrix A as:

(830 5 0 0 0 0 0 O]
052 -5 3 2 1 0 0 0
001 0 -3 —2 -1 1 1 1
000 -5 0 0 0 0 0 0
000 0 -3 0 0 0 0 0
A:00000—20000
000 0 O O —-1 0 0 0
000 0 O O 0 —1 0 0
000 0 O O 0 0 -1 0
(000 0 0 0 0 0 0 -1

Then with L given in (12), we have

03 0500O0O0O0TO0
0020321000
0500000111
530000O0O0O0O0
Co AL — 0320021000 ’
022030T1O0O00O0
0120320000
051 000O0O0T 1
051000O0T1°O01
(05100001 1 0]
which has spectrum o.
Acknowledgements
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