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Abstract. In this research work, a fifth-order weighted essentially non-oscillatory (WENO) scheme
is created for traffic flow problems on networks. Street systems can be numerically demonstrated as a
graph, whose edges are a limited number of streets that connect at intersections. A scalar hyperbolic
conservation law can portray the advancement on each street, and traffic distribution matrices are con-
sidered to define coupling conditions at the network intersections. In this paper, numerical results for
road networks with rich solution structures will be presented. These numerical results show that the new
proposed scheme in this paper can generate essentially non-oscillatory and high resolution solutions.
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1 Introduction

By utilizing partial differential equations (PDEs), microscopic model of traffic flow endeavours to demon-
strate the advancement of the vehicular traffic density. Authors of [11, 15] proposed a simple first order
fluid approximation of traffic flow dynamics to describe the evolution of traffic flow on a single road.
Nowadays, this classical Lighthill-Whitham-Richards (LWR) model is the basis of many fluid-dynamic
models for traffic flow. Authors of [16] developed a multi-class model with heterogeneous drivers.
In [6], a macroscopic behavioural theory of traffic dynamics for homogeneous, multi-lane free-ways
was developed. For traffic flow on road networks, a number of different models such as [5, 7, 9] have
been developed. On each road, the traffic network can be described by employing PDEs, specifically
conservation laws, at the macroscopic scale.

The traditional LWR PDE is a scalar hyperbolic conservation law. Thus, it can be numerically
solved by variety of numerical methods, such as Godunov’s scheme and first-order Lax-Friedrichs finite
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difference scheme. Also, for solving multi-class models, the first-order Lax-Friedrichs finite difference
scheme can be employed. Using classical first order Godunov scheme and kinetic schemes, numerical
solutions to traffic flow problems on road networks are obtained in [2]. In recent years, a number of high-
order methods were developed for solving continuum traffic flow models. In [17], a high-order WENO
scheme for solving a multi-class LWR model has been developed. The numerical results, reported in [17],
demonstrate that the weighted essentially non-oscillatory (WENO) scheme is more efficient than the
low-order Lax-Friedrichs scheme. Also, WENO scheme was employed to solve a multi-class traffic
flow model with spatially varying fluxes for an inhomogeneous highway [18]. In [12], to model the
asymmetry in traffic flow, the WENO approach was employed.

Recently, many high-order finite difference or finite volume numerical schemes have been developed
for hyperbolic conservation laws. The essentially non-oscillatory (ENO) and WENO schemes, which
have been employed quite successfully to solve the problems with strong shocks, contact discontinuities
and sophisticated smooth structures, are the primary schemes used as the current state of the art in the lit-
erature. The first WENO scheme was originally proposed by Liu, Osher and Chan [13], in which instead
of using the optimal smooth candidate stencil for the reconstruction of high-order ENO type schemes, a
linear convex combination of all stencils including non-smooth stencils is used. After that, such WENO
scheme was improved by Jiang and Shu [10], in which a general framework for the designing of new
smoothness indicators and non-linear weights was specified in detail.

In this paper, we propose to apply a hybrid WENO (HyWENO) scheme for simulating hyperbolic
road network problems. The main procedure of HyWENO scheme is given in the following. First, in the
finite volume framework, a polynomial based on the cell averages is reconstructed in the interval of the
big spatial stencil. Second, the location of the extreme points of the reconstructed polynomial is identi-
fied. Third, if the extreme points of the reconstruction polynomial in the big spatial stencil are located
outside of the same stencil, the reconstructed polynomial is adapted to approximate the numerical flux
straightforwardly. This approximation is of high-order accuracy, resulting in a linear upwind scheme
with fewer numerical errors. Otherwise, the symmetrical weighted hybrid ENO-flux limiter reconstruc-
tion procedure [1] is applied to reconstruct the numerical flux.

The rest of this paper is organized as follows. In Section 2, the class of traffic models on networks
under consideration is reviewed. The finite volume HyWENO scheme for the governing equation for the
first-order LWR model in one dimension are introduced in Section 3. In Section 4, the numerical results
for some network problems are demonstrated. Concluding remarks are prepared in Section 5.

2 Macroscopic traffic models

In a single road, we can describe the non-linear LWR model based on the conservation of cars by a scalar
hyperbolic conservation law as follows

ρt + f (ρ)x = 0, (1)

where ρ = ρ(x, t)∈ [0,ρmax] is the density of cars at time t, with ρmax > 0 is the maximum density of cars.
The function f (ρ) = ρv is the flux, where we can suppose that v is a given smoothing decreasing function
of density, depending only on the density. Other assumptions about flux f are f (0) = f (ρmax) = 0 and it
is strictly concave.

In this research work, a road network introduced in [3] is considered. Accordingly, there are finite
number of roads [ai,bi] that meet at some junctions. Consider a junction J with incoming roads Ii,
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where i = 1, . . . ,n and outgoing roads I j with j = n+1, . . . ,n+m. The choice of the outgoing road is
prescribed by traffic distribution matrix [3]

A =

αn+1,1 . . . αn+1,n
...

. . .
...

αn+m,1 . . . αn+m,n

 .
Here, α j,i is the the percentage of traffic coming from the incoming road i and going to the outgoing road
j. The conservation of vehicles requires that the total inflow into the junction equals the total outflow out
of the junction as follows

n

∑
i=1

f (ρi(bi, t)) =
n+m

∑
j=n+1

f (ρ j(a j, t)), (2)

where ρi with i = 1, . . . ,n are the car densities on incoming roads; ρ j with j = n+ 1, . . . ,n+m are the
car densities on outgoing roads. The following three rules are considered to determine a unique solution
to Riemann problems at junctions [4]:
• The i-th column of matrix A satisfies ∑

n+m
j=n+1 α j,i = 1.

• Respecting the previous rule, the maximization of the flux is imposed through the junction. If
n > m, then the next rule is needed.
• To illustrate this case, two incoming roads a and b and one outgoing road c are considered. If not

all incoming cars can enter the outgoing road c, and let Q be the quantity that can enter the outgoing
road. Then qQ cars come from first incoming road a and (1−q)Q cars from another, where 0≤ q≤ 1 is
a right of way parameter.

The initial densities at junction J are demonstrated by ρk,0 with k = 1,2, . . . ,n+m. The maximum
fluxes that can be obtained on incoming and outgoing roads are represented by γmax

i with i = 1, . . . ,n and
γmax

j with j = n+1, . . . ,n+m, respectively, that they can be defined as [4]

γ
max
i =

{
f (ρi,0), ρi,0 ∈ [0,ξ ],
f (ξ ), ρi,0 ∈ [ξ ,ρmax],

γ
max
j =

{
f (ξ ), ρ j,0 ∈ [0,ξ ],
f (ρ j,0), ρ j,0 ∈ [ξ ,ρmax],

(3)

where ξ is a strict maximum, such that f ′(ξ ) = 0. It can be concluded that the flux in incoming road
at junctions must be equal to or less than the demand flux f (ξ ). It seems that there are infinitely many
possible new fluxes that can be obtained based condition (3). Accordingly, in this research work, traffic
network with different arcs and one junction is considered as shown in [4].

3 Hybrid WENO scheme with maximum-principle-preserving limiter

This section briefly describes how to design HyWENO scheme for 1D traffic flow models in a single road.
In [1], Abedian et al. developed a finite volume symmetrical WENO scheme for solving conservation
laws. First, a HyWENO scheme is developed for the non-linear model in a single road (1), then the
scheme is extended to 1D network problems. We consider an uniform grid on computational domain
[ai,bi] with cells I j = [x j− 1

2
,x j+ 1

2
], j = 1, . . . ,N. The cell-averaged value ρ̄ j is defined in the following

form
ρ̄ j(t) =

1
∆x

∫
I j

ρ(x, t)dx. (4)
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The classical finite volume scheme for (1) can be written as

d
dt

ρ̄ j(t) =−
1

∆x
( f̂ j+ 1

2
− f̂ j− 1

2
), (5)

with a global Lax-Friedrichs flux defined by

f̂ j+ 1
2
= h(ρ−

j+ 1
2
,ρ+

j+ 1
2
) =

1
2
[

f (ρ+
j+ 1

2
)+ f (ρ−

j+ 1
2
)−α(ρ−

j+ 1
2
−ρ

+
j+ 1

2
)
]
, (6)

where α = maxρ | f ′(ρ)|, ρ
−
j+ 1

2
and ρ

+
j+ 1

2
are approximated by a high-order HyWENO reconstruction,

which will now be discussed.

3.1 The HyWENO scheme

Step 1. By considering the big stencil S = {I j−2, . . . , I j+2}, the fourth degree reconstruction polynomial
p can be easily obtained by making the following condition

1
∆x

∫
Ii

p(η)dη = ρ̄i, i = j−2, . . . , j+2. (7)

Step 2. Identify the extreme points of p(x). Since the degree of p′(x) is at most three, therefore, the real
zero points of p′(x) can be explicitly solved and one is the extreme point of p(x) if it is not a doubled
zero point of p′(x).
Step 3. Now if the extreme points of the reconstruction polynomial p(x) are outside of the big stencil S
or there is no extreme point at all, the approximations at the boundaries of each cell are directly given by
ρ
−
j+ 1

2
:= ρ

−up
j+ 1

2
= p(x j+ 1

2
) and ρ

+
j− 1

2
:= ρ

+up
j− 1

2
= p(x j− 1

2
) and the procedure jumps to step 5.

Step 4. Now if there is one or more extreme points in the big stencil S, the WENO process proposed
by Abedian et al. [1] is applied to approximate ρ

±
j∓ 1

2
as follows. The big stencil S is divided into three

smaller stencils S0 = {I j−2, I j−1, I j}, S1 = {I j−1, I j, I j+1} and S2 = {I j, I j+1, I j+2} whose community is
the same S. Now we need three reconstruction polynomials pr(x), r = 0,1,2 associated to these small
stencils. First we find the polynomial Pr(x) from cell boundaries of the stencil Sr

Pr(x) =
3

∑
i=1

U [x j−r− 1
2
, . . . ,x j−r+i− 1

2
]

i−1

∑
m=0

i−1

∏
l=0,l 6=m

(x− x j−r+l− 1
2
), (8)

where U [· · · ] is a divided difference of the function U(x) =
∫ x
−∞

ρ(ξ , t)dξ . In order to achieve more
efficient reconstruction than ENO3 reconstruction (8), initially, a random point labelled as x j+ar+b is
selected and then a Taylor series expansion is utilized to determine the point that yields the greatest
accuracy. Consequently, we deduce that a and b are both equal to zero. Therefore, the point x j is added
to interpolation (8),

pr(x) = Pr(x)+U [x j−r− 1
2
, . . . ,x j−r+ 5

2
,x j]

3

∑
m=0

3

∏
l=0,l 6=m

(x− x j−r+l− 1
2
), r = 0,1,2. (9)



Hybrid FV WENO for traffic flow models 103

Remark 1. From (9), it is evident that the polynomial pr(x) is a cubic polynomial, meaning it has a
degree of three. As a result, the reconstruction described in Eq. (9) is capable of precisely reproducing
polynomials of degree three within the stencil. The objective of polynomials of the form (8) and (9)
is to approximate the boundaries of cell I j. By incorporating additional information within cell I j,
we aim to utilize data that is closer to the centre of the cell, as opposed to data that is farther away.
This approach allows for a more accurate representation of the cell boundaries. The polynomial (9)
interpolates a greater number of points, which aids in approximating the cell boundaries more effectively.
When the reconstruction is smooth, meaning there are no abrupt changes or discontinuities, we can
achieve higher levels of accuracy. Additionally, there is an expectation that the polynomial satisfies
the conservation property, ensuring that important quantities such as mass, momentum, or energy are
preserved accurately during the approximation process.

The divided difference U [x j−r+ 5
2
,x j] of Eq. (9) is calculated by

U [x j−r+ 5
2
,x j] =

1
A

[∫ x j

−∞

ρ(ξ )dξ −
∫ x

j−r+ 5
2

−∞

ρ(ξ )dξ

]
=

1
A

∫ x j

x
j−r+ 5

2

∑
j

L j(x)χ j(x)dx, (10)

where A = x j− x j−r+ 5
2

and χ j(x) is the characteristic function of the cell I j. To complete Eq. (10), a
polynomial is needed that retains the information in the cell I j, therefore, similar to the NT scheme [14],
the polynomial L j(x) = ρ̄ j +(x− x j)

1
∆x ρ ′j is applied, where the numerical derivative ρ ′j is obtained by

the UNO limiter [8]. By placing L j(x) in Eq. (10), the following equation is explicitly obtained

U [x j−r+ 5
2
,x j] =

1
5−2r

(ρ̄ j− (r2− r−2)ρ̄ j+1 +(r2−3r+2)ρ̄ j+2 +
1
4

ρ
′
j), r = 0,1,2, (11)

accordingly, we can obtain

ρ
−(0)
j+ 1

2
:= p0(x j+ 1

2
) = (22ρ̄ j +9ρ̄ j+1− ρ̄ j+2 +8ρ

′
j)/30,

ρ
−(1)
j+ 1

2
:= p1(x j+ 1

2
) = (ρ̄ j−1 +15ρ̄ j +2ρ̄ j+1 +8ρ

′
j)/18,

ρ
−(2)
j+ 1

2
:= p2(x j+ 1

2
) = (−2ρ̄ j−2 +13ρ̄ j−1 +19ρ̄ j +24ρ

′
j)/30,

(12)

and

ρ
+(0)
j− 1

2
:= p0(x j− 1

2
) = (19ρ̄ j +13ρ̄ j+1−2ρ̄ j+2−24ρ

′
j)/30,

ρ
+(1)
j− 1

2
:= p1(x j− 1

2
) = (2ρ̄ j−1 +15ρ̄ j + ρ̄ j+1−8ρ

′
j)/18,

ρ
+(2)
j− 1

2
:= p2(x j− 1

2
) = (−ρ̄ j−2 +9ρ̄ j−1 +22ρ̄ j−8ρ

′
j)/30.

(13)

The reconstruction

ρ
±(3)
j∓ 1

2
:=

1
d3

[
ρ
±up
j∓ 1

2
−

2

∑
k=0

dkρ
±(k)
j∓ 1

2

]
,

is also considered to obtain symmetrical linear weights dr. In the small stencils Sr, if there is large
gradients or discontinuities, the related reconstructions produce spurious oscillations, so to prevent or
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minimize this, the smoothness indicator βr associated with each stencil is introduced as follows

βr =
2

∑
k=1

∆x2k−1
∫

I j

(
dk

dxk pr(x)
)2

dx, r = 0,1,2. (14)

Practically, the definition of β3 may be simplified by using max(β0,β1,β2) instead. A direct computation
based on (9) yields:

βr =
1

8100
(9ρ̄ j−12ρ̄ j+(1−r)+3ρ̄ j+2(1−r)+(1− r)96ρ

′
j)

2

+
13

2700
(57ρ̄ j−66ρ̄ j+(1−r)+9ρ̄ j+2(1−r)+(1− r)48ρ

′
j)

2

+
781

162000
(72ρ̄ j−96ρ̄ j+(1−r)+24ρ̄ j+2(1−r)+(1− r)48ρ

′
j)

2, r = 0,2,

(15)

and

β1 =
9

2916
(ρ̄ j−1− ρ̄ j+1−16ρ

′
j)

2 +
13
12

(ρ̄ j−1−2ρ̄ j + ρ̄ j+1)
2

+
449856
58320

(ρ̄ j−1− ρ̄ j+1 +2ρ
′
j)

2.

(16)

Therefore, the non-linear weights based on the linear weights dr and associated smoothness indicators
are obtained as [10]

ωr =
αr

∑
3
k=0 αk

, αl =
dl

(ε +βl)2 , r, l = 0,1,2,3. (17)

Here, ε is a positive constant that is used to prevent division by zero, thus ε is set as 10−6. For linear
weights any convex combination can be considered. Accordingly, we make the choice: d0 = d2 =

1
8 ,d1 =

1
4 ,d3 =

1
2 . Therefore, the final approximations at the boundaries of each cell are given by

ρ
−
j+ 1

2
=

3

∑
i=0

ωiρ
−(i)
j+ 1

2
, ρ

+
j− 1

2
=

3

∑
i=0

ωiρ
+(i)
j− 1

2
. (18)

Step 5. The semi-discrete scheme (5) is discretized in time by a third-order strong stability preserving
(SSP) high-order Runge-Kutta (RK) time discretizations in the following form [10]

ρ
(1)
j = ρn

j +∆tF(ρn
j ),

ρ
(2)
j = 3

4 ρn
j +

1
4 ρ

(1)
j + 1

4 ∆tF(ρ
(1)
j ),

ρ
n+1
j = 1

3 ρn
j +

2
3 ρ

(2)
j + 2

3 ∆tF(ρ
(2)
j ),

(19)

where F(ρ) is the spatial operator.

3.2 Maximum-principle-satisfying limiter

For scalar hyperbolic conservation laws (1), the forward Euler temporal discretization for the semi-
discrete scheme (2) is

ρ̄
n+1
j = ρ̄

n
j −λ

(
h(ρ−

j+ 1
2
,ρ+

j+ 1
2
)−h(ρ−

j− 1
2
,ρ+

j− 1
2
)
)
, (20)
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where λ = ∆t
∆x . Also, ρ

±
j+ 1

2
are reconstructed from HyWENO scheme, discussed in the previous subsec-

tion. The maximum-principle-satisfying polynomial rescaling limiter proposed in [19] can be written
as

p̃(x) = θ(p(x)− ρ̄ j)+ ρ̄ j, θ = min
{∣∣∣∣ρmax− ρ̄n

j

M j− ρ̄n
j

∣∣∣∣, ∣∣∣∣ ρ̄n
j

m j− ρ̄n
j

∣∣∣∣,1}. (21)

Here, M j and m j are the maximum and the minimum of p(x) at Legendre Gauss-Lobatto quadrature
points for the cell I j. It can be easily checked that with the application of such a limiter, the conservation
and bound preserving properties of the numerical solution are satisfied. Furthermore, it was proved [19]
that such a limiting process maintains the original order accuracy of the approximation. Hence (20) can
be rewritten as

ρ̄
n+1
j = ρ̄

n
j −λ

(
h(ρ̃−

j+ 1
2
, ρ̃+

j+ 1
2
)−h(ρ̃−

j− 1
2
, ρ̃+

j− 1
2
)
)
, (22)

where ρ̃
+
j− 1

2
= p̃(x j− 1

2
) and ρ̃

−
j+ 1

2
= p̃(x j+ 1

2
), it was proven that the scheme (22) satisfies a strict maximum

principle for scalar conservation laws under the CFL condition

λα ≤ 1
12

, (23)

with a global Lax-Friedrichs flux. Because SSP high order RK time discretization (19) is a convex com-
bination of Euler forward, HyWENO scheme with this time discretization will still satisfy the maximum
principle [19].

4 Numerical results

In this section, some benchmark test cases are employed to check the proposed high-order finite volume
hybrid WENO, named as “HyWENO” scheme. The reference solution generated by the traditional
fifth-order WENO scheme of Jiang and Shu (WENO-JS) [10] with N = 5000 grid points is denoted as
“Reference”. For all the numerical test cases, the third-order SSP RK method (19) is considered under
the CFL condition (23).

4.1 Accuracy test

The first test is to solve the traffic flow Eq. (1) with the following flux function

f (ρ) = ρ(1−ρ), ρ ∈ [0,1], (24)

with the initial condition ρ(x,0)= 0.5+0.5sin(2πx). The computational domain is [0,1] and the periodic
boundary condition is assigned. The solution up to time T = 0.1 is computed. The results are shown in
Table 1. One can observe the fifth-order convergence rate for HyWENO scheme. The HyWENO scheme
is also tested with the following initial condition,

ρ(x,0) =
{

1, x ∈ [0,0.3]∪ [0.6,1],
0, otherwise.

(25)

The numerical solutions of HyWENO scheme with limiter, WENO-JS scheme with limiter, HyWENO
without limiter, named as “HyWENO-without” and the “Reference” solution are demonstrated in Fig.
1. As can be seen, HyWENO scheme with limiter presents better resolution than the traditional WENO
schemes.
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Table 1: Errors and orders of convergence for “accuracy test” with ρ(x,0) = 0.5+0.5sin(2πx).
HyWENO WENO-JS

N L1-error L1-order L∞-error L∞-order L1-error L1-order L∞-error L∞-order
10 1.64E-02 - 5.31E-02 - 1.90E-02 - 7.49E-02 -
20 1.45E-03 3.51 9.75E-03 2.45 2.03E-03 3.20 1.22E-02 2.64
40 7.30E-05 4.31 6.91E-04 3.81 1.23E-04 4.06 1.04E-03 3.55
80 2.39E-06 4.94 3.05E-05 4.50 4.46E-06 4.83 4.73E-05 4.47

160 7.05E-08 5.08 9.32E-07 5.04 1.63E-07 4.75 1.37E-06 5.08
320 2.09E-09 5.08 2.77E-08 5.06 4.74E-09 5.10 7.29E-08 4.26

4.2 Bottleneck

The simplest traffic flow model on networks is represented by the bottleneck problem. The conservation
of cars is always expressed by (1), supplemented with initial and boundary conditions. The bottleneck
problem models a road with different widths, hence different flux functions along different parts of the
road are needed. The coupling conditions at junction with one incoming road a and one outgoing road b
are set to be

γ̂a = γ̂b = γ̂, γ̂ = min{γmax
a ,γmax

b }. (26)

Here, γmax
a and γmax

b are determined in (3). Accordingly, the numerical fluxes of the junction point at
incoming and outgoing roads are taken as

f̂ a
N+ 1

2
= γ̂a, f̂ b

1
2
= γ̂b. (27)

The flux function f1(ρ) in the widest road a is given by Eq. (24), while the flux function in the narrowest
road b

f2(ρ) = ρ(1− 3
2

ρ), ρ ∈ [0,
2
3
].

The maximum of the fluxes is unique:

f1(ξ1) = max
[0,1]

f1(ρ) =
1
4
, ξ1 =

1
2

; f2(ξ2) = max
[0, 2

3 ]
f2(ρ) =

1
6
, ξ2 =

1
3
.

Let ρl be the traffic density for the incoming road a and ρr be the traffic density for the outgoing road b.
We first consider the following initial and boundary data:

ρ1(x,0) = 0.66, x ∈ [0,1],

ρ2(x,0) = 0.66, x ∈ [1,2],

ρ1(0, t) = ρ1,b(t) = 0.25, t > 0.

(28)

The initial value 0.66 is very close to the maximum value that can be absorbed by road b, after a short
time, e.g. T = 0.5, the formation of a traffic jam can be observed, see Fig. 2.

We then consider the following initial and boundary data:

ρ1(x,0) = 0, x ∈ [0,1],

ρ2(x,0) = 0, x ∈ [1,2],

ρ1(0, t) = ρ1,b(t) = 0.4, t > 0.

(29)
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Figure 1: Accuracy test with initial data (25). Left: numerical solution with N = 100 at the final time T = 0.1.
Right: Zoomed region. HyWENO-without: “◦”, HyWENO: “×” and WENO-JS: “+”.

Since ρ1,b > ρ̄ ≈ 0.21, there is a jam formation as showed by Fig. 3. The results obtained here are
comparable with those in [2].

Finally, we consider the following initial and boundary data:

ρ1(x,0) = 0.4+0.2sin(5πx), x ∈ [0,1],

ρ2(x,0) = 0.66, x ∈ [1,2],

ρ1(0, t) = ρ1,b(t) = 0.25, t > 0.

(30)

The numerical solution and the exact solution at time T = 0.5 and T = 0.7 are shown in Fig. 4. Similar
to the previous initial condition, the numerical results show that the present scheme can also obtain high
resolution numerical solutions for this challenging examples with rich solution structures.

4.3 A junction with two incoming and one outgoing roads

This example involves an intersection that comprises of two entry roads, labelled as a and b, and one exit
road, labelled c. Each of these roads is defined by the range [0,1], as previously discussed in reference [2].
In our analysis, we refer to the two entry roads as Road1 and Road2, and the exit road as Road3, as
depicted in Fig. 5. Accordingly,

γ̂c = min{γmax
a + γ

max
b ,γmax

c }, (31)
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Figure 2: Bottleneck problem with initial data (28). Left (top to bottom): numerical solution with N = 100 at the
final time T = 0.5, 1.0 and T = 4.0. Right: Zoomed region.

where the maximum flux γmax
a ,γmax

b and γmax
c are defined as in (3). If γmax

a + γmax
b ≤ γmax

c , then we set [4]

γ̂a = γ
max
a , γ̂b = γ

max
b , γ̂c = γ̂a + γ̂b. (32)

For the case of γmax
a + γmax

b > γmax
c , it follows [4]

γ̂a = qγ
max
c , γ̂b = (1−q)γmax

c , γ̂c = γ
max
c , if γ

max
a ≥ qγ

max
c ,γmax

b ≥ (1−q)γmax
c ,

γ̂a = γ
max
a , γ̂b = γ

max
c − γ

max
a , γ̂c = γ

max
c , if γ

max
a < qγ

max
c ,γmax

b ≥ (1−q)γmax
c ,

γ̂a = γ
max
c − γ

max
b , γ̂b = γ

max
b , γ̂c = γ

max
c , if γ

max
a ≥ qγ

max
c ,γmax

b < (1−q)γmax
c .

(33)
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Figure 3: Bottleneck problem with initial data (29). Left (top to bottom): numerical solution with N = 100 at the
final time T = 4.0 and T = 10. Right: Zoomed region.
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Figure 4: Bottleneck problem with initial data (30). Left (top to bottom): numerical solution with N = 100 at the
final time T = 0.5 and T = 0.7. Right: Zoomed region.



110 R. Abedian

Figure 5: A junction with two incoming and one outgoing roads.

We make the assumption that drivers aim to maximize the flow of traffic through a junction. To facil-
itate this, the numerical fluxes for both incoming and outgoing roads at the junction point are set to a
predefined value of

f̂ K
N+ 1

2
= γ̂K , K ∈ {a,b,c}. (34)

We are given the flux function for three roads: incoming road a, incoming road b, and outgoing road c,
which are all described by (24). The following initial condition is considered

ρ1(x,0) =
{

0.1+0.1sin3(5πx), x ∈ [0,0.2]∪ [0.4,0.6]∪ [0.8,1],
0.2, otherwise.

ρ2(x,0) =
{

0, x ∈ [0,0.2]∪ [0.4,0.6]∪ [0.8,1],
0.1+0.1sin(5πx), otherwise.

ρ3(x,0) = 0.1.

(35)

Also, the boundary conditions are assigned as ρm,b(0, t)= 0.1 with m= 1,2. Fig. 6 displays the numerical
and reference solutions for Road1 at time T = 0.5 and T = 1.0, using N = 100. The new scheme yields
more precise numerical solutions than the classical fifth-order WENO-JS scheme, and it avoids spurious
oscillations. Fig. 7 compares the numerical solutions of the new scheme and the WENO-JS scheme (with
and without limiters) for Road2 at T = 0.5. When limiters are used, the numerical solutions are positive.
However, without limiters, the minimum values are negative. Finally, Fig. 8 illustrates the numerical
solutions for Road3 at T = 0.5 and T = 1.0 using N = 100. The new scheme yields more precise
numerical solutions than the classical fifth-order WENO-JS scheme, and it avoids spurious oscillations.

4.4 A junction with two incoming and two outgoing roads

This instance involves a crossing that has two entryways, named a and b, and two exits, named c and d.
Each of these roads is defined by the range [0,1], as shown in Fig. 9. To simplify the computation, we
refer to the incoming roads as Road1 and Road2, and the outgoing roads as Road3 and Road4. In this
case, the traffic distribution matrix (2) can be rewritten as

A =

[
α β

1−α 1−β

]
,
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Figure 6: Two incoming and one outgoing roads with initial data (35) for Road1. Left: T = 0.5 and right:
T = 1.0.
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Figure 7: Two incoming and one outgoing roads with initial data (35) for Road2 at T = 0.5. Left: with limiter
and right: without limiter.
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Figure 8: Two incoming and one outgoing roads with initial data (35) for Road3. Left: T = 0.5 and right:
T = 1.0.
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Figure 9: A junction with two incoming and two outgoing roads.

where α,β ∈ [0,1]. We can guarantee the flux balance condition at junctions (2) with

[
α β

1−α 1−β

][
γa

γb

]
=

[
γc

γd

]
.

In order to find a unique solution for this situation, additional limitations are needed when choosing a
particular incoming flux, such as γ̂a and γ̂b. Additionally, we are assuming that the drivers will act in a
manner that maximizes the outgoing flux, then

αγa +βγb = γ
max
c , (1−α)γa +(1−β )γb = γ

max
d . (36)

The numerical fluxes γ̂a and γ̂b at the junction point are expressed through various scenarios which are
explained in detail in reference [4]:

I. if γa ≤ γmax
a and γb ≤ γmax

b therefore γ̂a = γa, γ̂b = γb;
II. if γa > γmax

a and γb > γmax
b therefore γ̂a = γmax

a , γ̂b = γmax
b ;

III. if γa > γmax
a and γb ≤ γmax

b , if α < β therefore γ̂a = γmax
a , γ̂b = min

(
γmax

c −αγmax
a

β
,γmax

b

)
other-

wise γ̂a = γmax
a , γ̂b = min

(
γmax

d − (1−α)γmax
a

1−β
,γmax

b

)
;

IV. if γa ≤ γmax
a and γb > γmax

b , if α > β therefore γ̂b = γmax
b , γ̂a = min

(
γmax

c −βγmax
b

α
,γmax

a

)
other-

wise γ̂b = γmax
b , γ̂a = min

(
γmax

d − (1−β )γmax
b

1−α
,γmax

a

)
.

The values of f̂ a
Na+

1
2
= γ̂a, f̂ b

Nb+
1
2
= γ̂b, f̂ c

1
2
= γ̂c, f̂ d

1
2
= γ̂d are assigned to the numerical fluxes at the

point where incoming and outgoing roads intersect. Eq. (24) provides the flux function for both incoming
and outgoing roads, and the distribution matrix is defined as

A =

[
0.4 0.3
0.6 0.7

]
.
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Figure 10: Two incoming and two outgoing roads with initial and boundary data (37). Left: T = 0.25 and right:
T = 0.5. Top to bottom: Road1, Road2, Road3, and Road4.
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The following initial condition and boundary condition are assigned

ρ1(x,0) =
{

0.2, x ∈ [0,0.2]∪ [0.4,0.6]∪ [0.8,1],
0.4, otherwise.

ρ2(x,0) = 0.2+0.1sin(5πx),

ρ3(x,0) = 0.5,

ρ4(x,0) = 0.5,

ρk,b(0, t) = 0.2, k = 1,2.

(37)

Fig. 10 displays the numerical solutions for Road1, Road2, Road3, and Road4 at two different times,
specifically T = 0.25 and T = 0.5 using N = 100. The numerical solutions are characterized by high
resolution and absence of oscillations, and are considered to be quite satisfactory.

5 Conclusions

In this research work, we developed a maximum-principle-satisfying non-linear high-order finite volume
HyWENO scheme to traffic flow problem on networks. The finite volume HyWENO scheme is coupled
with a limiter at each time stage to satisfy strict maximum principle under suitable CFL numbers, which
would be important for traffic flow problems, where positivity of the density should be guaranteed. This
was demonstrated on several examples, including those involving solutions with rich solution structures,
where higher-order accuracy at edges and vertices of the traffic flow network provided superior solution
quality. Extensions of the proposed algorithm to systems of hyperbolic conservation laws on networks
are subject to future investigations.
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