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Abstract. This paper investigates the accuracy of several forecasting methods for monthly rainfall fore-
casting. First, we study the feasibility of using the Singular Spectrum Analysis (SSA) to perform rainfall
forecasts. When the time series data has the outliers, SSA might results in misleading conclusions, and
thus robust methodologies should be used. Therefore, we consider the use of two robust SSA algorithms
for model fit and model forecasting. The results of these forecasting approaches are compared with other
commonly used time series forecasting techniques including Neural Network Autoregression (NNAR),
Autoregressive Integrated Moving Average (ARIMA), Exponential Smoothing (ETS) and TBATS. The
performance of these conjunction methods is compared in terms of accuracy for model fit and model
forecast, using the monthly rainfall data from four rain gauge stations in Guilan province of Iran as the
case study.
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1 Introduction

Rainfall, as an essential process in the hydrological cycle, is one of the most studied components of
hydrological and climate science, as it directly or indirectly affects our society. Accurate rainfall fore-
casting is vital in daily life, risk assessment, natural disaster prevention, and water resource planning and
management [33]. However, it is a difficult task due to the dynamic complexity and nonstationary nature
of measured hydrological data [1].

Several techniques for forecasting time series have been developed on a global scale. Stochastic
models and Artificial Intelligence (AI) are the most widely used time series modeling approaches for

∗Corresponding author
Received: 30 August 2023 / Revised: 6 October 2023 / Accepted: 13 October 2023
DOI: 10.22124/jmm.2023.25412.2262

c© 2023 University of Guilan http://jmm.guilan.ac.ir

http://jmm.guilan.ac.ir


784 M. Kazemi

hydrological forecasting. In stochastic modeling, forecasts are deciphered based on the statistical char-
acteristics of the past data [2]. Autoregressive Integrated Moving Average (ARIMA) model, which is the
most widely used stochastic model for forecasting time series, has great flexibility. In the case of stochas-
tic models, for yielding reliable results, the data has to be stationary [24]. A homogeneous non-stationary
time series can be reduced to a stationary time series, by taking a proper degree of differencing. However,
in the ARIMA model, the differencing can reduce only small-scale nonstationary process to a stationary
process [40]. AI-based time series models have gained popularity over the last few decades. These mod-
els are based on the input-output relationships. The most widely used AI-based models include Artificial
Neural Network (ANN), Genetic Programming (GP), and Model Tree (MT). Among them, ANN has
gained widespread acceptance from researchers in various fields. The ANN models are highly flexible
so that, any combination of different algorithms can be developed according to the complexity of the
data. However, the major drawback of ANN is that it is a grey box model, and outliers present in the data
can critically affect the reliability of the model. It is also reported by many researchers that, for climatic
data to yield reliable results by ANN, the data need to be preprocessed [32].

Singular Spectrum Analysis (SSA) is a powerful non-parametric technique for time series analysis
and forecasting, which incorporates elements of classical time series analysis, multivariate statistics,
and matrix algebra. Its main aim is to decompose the original time series into a set of components that
can be interpreted as trend components, seasonal components, and noise components [4, 7, 8]. The SSA
has proven both wide usefulness and applicability across many applications [10,27,41,46], being that its
scope of application ranges from parameter estimation to time series filtering, synchronization analysis,
and forecasting.

The SSA methodology for model fit can be summarized in four steps: (i) embedding, which maps the
original univariate time series into a trajectory matrix; (ii) singular value decomposition (SVD), which
helps decomposing the trajectory matrix into the sum of rank-one matrices; (iii) eigentriple grouping,
which helps deciding which of the components are associated to the signal and which are associated to
the noise; and (iv) diagonal averaging, which maps the rank-one matrices, associated to the signal, back
to time series that can be interpreted as trend, seasonal, or other meaningful components.

The SSA results and interpretation, similarly to many other classical time series methods, can be
sensitive to data contamination with outliers [34, 35]. In those cases, even a small percentage of outliers
can make a big difference in the results for model fit and forecast. Very few attempts have been made
in order to access the effect of the presence of outliers in the data while conducting SSA. The authors
in [11,36] presented some preliminary results on the effect of outliers in SSA, and in [38] the first attempt
is made to robustify SSA by considering an SVD based on a robust L1 norm instead of the L2 norm used
in the classical algorithm, which they used for model fit. The authors in [37] proposed a robust algorithm
for SSA that considers the SVD based on the Huber function. Also, in [20] four robust alternatives to
the SSA are proposed using the robust regularized SVD and the robust principal component analysis
algorithms.

In this paper, we focus on the performance of various SSA forecasting algorithms when applied to
the time series of monthly rainfall. In order to evaluate the potential of SSA for this aim, the performance
of SSA and its robust alternatives are compared with other commonly used time series forecasting tech-
niques including Neural Network Autoregression (NNAR), ARIMA, Exponential Smoothing (ETS), and
TBATS that stands for Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and
Seasonal components. These comparisons are done by considering the monthly rainfall data from four
rain gauge stations in Guilan province of Iran. The selection of this location is driven by the increasing
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of immigrants from various provinces of Iran to Guilan. This demographic shift raises concerns over
potential water scarcity challenges that may arise in the future. Hence, accurate forecasting of rainfall
levels in Guilan province assumes paramount importance for effective water resource management.

The rest of this paper is organized as follows. In Section 2, a brief description of the SSA algorithm
is presented. Section 3 focuses on the robust SSA methodology. In Section 4, the general scheme of
other time series forecasting techniques utilized in this study are briefly discussed. Section 5 presents the
results, wherein SSA, and robust SSA algorithms are compared with other forecasting methods in terms
of model fit and forecast, using the four monthly rainfall dataset. Finally, the concluding remarks are
drawn in Section 6.

2 Singular Spectrum Analysis (SSA)

The SSA has been recognized as a powerful technique for analyzing nonlinear and nonstationary time
series. The primary aim of SSA is to decompose the original series into the sum of a small number of
independent and interpretable components such as a trend components (which may not exist), oscillatory
components and noise [7]. The SSA technique has various modifications and extensions, some of them
are discussed in [1, 8]. The most fundamental version of SSA is called Basic SSA, in which we briefly
explain the theory underlying it. Also, one of the SSA forecasting methods namely recurrent forecasting
is briefly reviewed.

2.1 Basic SSA algorithm

The SSA technique consists of two complementary stages: decomposition and reconstruction. Each of
these stages includes two separate steps. At the decomposition stage, a time series is decomposed into
several interpretable components such as trend, seasonal and cyclical components, enabling us to signal
extraction and noise reduction. At the reconstruction stage, interpretable components are reconstructed,
which can be used to forecast new data points.

2.1.1 First stage: decomposition

The decomposition stage is performed in two sequential steps. First, the time series is converted into a
high-dimensional matrix called trajectory matrix. Then the trajectory matrix is decomposed into the sum
of rank-one matrices using SVD.

First step (embedding): Let YN = [y1, . . . ,yN ] be a time series of length N. For a given window
length L, the result of this step is a L×K matrix X = [Y1, . . . ,YK ], where K = N − L + 1 and Yi =
(yi, . . . ,yi+L−1)

T ,1 ≤ i ≤ K. This matrix is often called trajectory matrix. It is a Hankel matrix, which
means that all the elements along the diagonal i+ j = constant are equal.

Second step (SVD): Let S = XXT , and denote by λ1, . . . ,λd the positive eigenvalues of S in the de-
creasing order of magnitude (λ1 ≥ ·· · ≥ λd > 0) and U1, . . . ,Ud be the orthonormal eigenvectors of the
corresponding eigenvalues of S. In this step, the trajectory matrix X will be decomposed using SVD as:

X = X1 + · · ·+Xd , (1)
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where Xi =
√

λiUiV T
i and Vi = XTUi/

√
λi (i = 1, . . . ,d). The collection (

√
λi,Ui,Vi) is called i-th eigen-

triple of the SVD (1).

2.1.2 Second stage: reconstruction

In the second stage, a diagonal averaging procedure is conducted in the matrices associated to the signal
resulting into the sum of time series components that can then be interpreted as trend or oscillatory
components.

First step (eigentriple grouping): In this step, two main groups are created, one with components
associated to the signal and another with components associated to the noise. Formally, let I = 1, . . . ,r
and Ic = r+1, . . . ,d. Here, the first r leading eigentriples associated to the signal are chosen, while
excluding the remaining d− r eigentriples associated to the noise. Therefore, the trajectory matrix can
be written as:

X = ∑
i∈I

Xi + ε = ∑
i∈I

√
λiUiV T

i + ε, (2)

where ε is the noise term, being the noise-free approximation of the trajectory matrix written as XI =

∑i∈I Xi.

Second step (diagonal averaging): In this step, using anti-diagonal averaging on the matrices in-
cluded in XI , the noise-free time series is reconstructed. First, the approximate trajectory matrix XI is
transformed into a Hankel matrix. Let As = {(l,k) : l + k = s,1 ≤ l ≤ L,1 ≤ k ≤ K} and #(As) be the
number of elements in As. The element x̃i j of the new Hankel matrix X̃I is given by

x̃i j = ∑
(l,k)∈As

xlk

#(As)
. (3)

Next, the Hankel matrix X̃I is transformed into a new series of dimension N, and the original time series
YN can be approximated by:

ỹi =

{
x̃i1 for i = 1, . . . ,L,
x̃L j for i = L+1, . . . ,N,

(4)

where j = i−L+1. The reconstructed noise-fee time series can then be used for out-of-sample forecast-
ing.

2.2 SSA forecasting

In SSA, there are two main forecasting methods: recurrent SSA and vector SSA. Here, we consider the
first one that is explained as follows.

Let U5j denotes the vector of the first L−1 components of U j, the j-th eigenvector of XX′, π j denotes
the last component of U j, j = 1, . . . ,r, and r denotes the number of eigenvalues used for reconstruction.
We can define the coefficient vector â as

â = (âL−1, . . . , â1)
′ =

1
1−ν2

r

∑
j=1

π jU
5
j , (5)
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where ν2 = ∑
r
j=1 π2

j . Considering the above notation, the h steps ahead out-of-sample recurrent SSA
forecasts ŷN+1, . . . , ŷN+h can be obtained as

ŷt =

{
ỹt for t = 1, . . . ,N,

∑
L−1
j=1 â jŷt− j for t = N +1, . . . ,N +h, (6)

where ỹ1, . . . , ỹN , are the fitted values for the reconstructed time series as obtained from equation (4).

2.3 SSA parameters selection

The SSA calibration depends upon two important parameters: the window length L, and the number of
eigentriples used for reconstruction r. The improper choice of L would imply an inferior decomposition
and incomplete reconstruction and misleading results in forecasting [26, 44]. Setting L parameter too
large could lead to the noise mixing up with the signal, and choosing L too small opens up the risk of
losing some parts of the signal to the noise. In [21], the authors recommended that L could be N

2 or N
4

to achieve optimal signal-noise separation and get better SSA forecasts. However, there are no specific
rules of selecting L parameter as it is depends on the structure of time series and the purpose of data
analysis.

Additionally, the large number of eigentriples r increase the noise in the reconstructed series. Also, it
might miss some parts of the signal when we consider r smaller than what is supposed to be [12]. Among
several ways to determine r described in the literature, the easiest way is done by checking breaks in the
eigenvalues spectra. As a rule of thumb, a pure noise series produces a slowly decreasing sequences of
singular values. Another useful insight is provided by considering separability between signal and noise
components, which is a fundamental concept in studying SSA properties, by using w-correlations [7].
We shall say that two series Y (1) and Y (2) are approximately separable if all correlations between the rows
and the columns of the corresponding trajectory matrices obtained from series Y (1) and Y (2) are close to
zero. In [7] they considered other characteristics of the quality of separability; namely, the weighted
correlation or w-correlation, which is a natural measure of deviation of two series Y (1)

T and Y (2)
T from

w-orthogonality:

ρ
(w)
12 =

(
Y (1)

T ,Y (2)
T

)
w

‖Y (1)
T ‖w‖Y (1)

T ‖w

, (7)

where ‖Y (i)
T ‖w =

√(
Y (i)

T ,Y (i)
T

)
w

, i= 1,2, and
(
Y (1)

T ,Y (2)
T

)
w = ∑

T
t=1 wty

(1)
t y(2)t with wt =min{t,L,T − t +1}.

According to this measure, two series are separable if the absolute value of their w-correlation is
small. Therefore, we determine r in such a way that the reconstructed series and residual have a small
w-correlation. Another way to determine r is by examining the forecasting accuracy, i.e. r is determined
in such a way that the minimum error in forecasting will be obtained. For other proposals one may
see [25, 39].

3 Robust SSA

Despite knowing that SSA has shown to be superior to traditional model-based methods in many applica-
tions, the SVD (second step of the SSA algorithm) is highly sensitive to data contamination with outliers.
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A first attempt to robustify the SSA by considering an SVD based on a robust L1 norm instead of the L2
norm used in the classical algorithm, is proposed by [38]. In [37] the authors proposed another robust
algorithm for SSA considering the SVD based on the Huber function and also suggested an algorithm
for robust SSA model forecasting. In this section, we briefly review those robust SSA algorithms.

3.1 Robust SSA based on the L1 norm

The robust SSA algorithm proposed by [38] replaces the classical SVD based on the least squares L2
norm, by the robust SVD algorithm based on the L1 norm. This robust SVD is performed iteratively,
starting with an initial estimate of the first left singular vector U1 and leading to an outlier-resistant
approach that also allows for missing data. The algorithm for the L1 alternating procedure can be found
in [13] and a nice flowchart of the algorithm is presented by [22]. The robust SVD based on the L1 norm
is implemented using the function robustSVD from the R package pcaMethods.

3.2 Robust SSA based on the Huber function

Another robust alternative to the SSA algorithm is obtained by the robust SVD based on the Huber
function [14]. It is well known that SVD can be viewed as finding a sequence of rank-one matrix
approximations of a data matrix [5]. This idea is adapted to define a method for obtaining a sequence
of robust rank-one matrix approximations [45]. Our discussion focuses on obtaining the first pair of
components. Subsequent pairs of components can be obtained by applying the method sequentially on
the residuals from lower rank approximations. In SVD, the first pair of singular vectors of a data matrix
X = (xi j)m×n can be obtained by solving a least squares problem as:

(û, v̂) = argmin
u,v

(||X−uv′||2F), (8)

where u and v are m×1 and n×1 vectors, respectively, and ||.||F is the Frobenius norm of a matrix. To
achieve robustness, we replace the quadratic loss function in (8) with the Huber function [14] as follows:

Lδ (x) =
{ 1

2 x2, if |x| ≤ δ ,

δ
(
|x|− 1

2 δ
)
, if |x|> δ ,

(9)

where δ is a parameter that controls the robustness level, and a smaller value of δ usually leads to more
robust estimation. Thus, the first pair of singular vectors of the data matrix X can be defined as follows:

(û, v̂) = argmin
u,v

Lδ (
X−uv′

σ
), (10)

where σ is the scale parameter measuring the variability in the approximation errors. In practice, σ can
be estimated from the data using residuals from a preliminary rank-one approximation of X, and we refer
to [45] for more detatils.

With a slight abuse of notation, we also use Lδ (.) to denote the summation over elementwise ap-
plications when the scalar function Lδ (.) is applied to a matrix. A general loss function for rank-one
approximation of the matrix X can be written as:

Lδ (
X−uv′

σ
) =

m

∑
i=1

n

∑
j=1

Lδ (
xi j−uiv j

σ
). (11)
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To solve the optimization problem (10) an iterative reweighted least squares (IRLS) algorithm is used
[45].

The robust SVD based on the Huber function is a special case of robust regularized SVD, and can be
obtained with the function RobRSVD from the R package RobRSVD. In this R implementation, the authors
consider δ = 1.345, the value commonly used in robust regression that produces 95% efficiency for
normal errors. More details about this robust SVD can be found in [45].

4 Other forecasting methods

In this section, the other commonly used time series forecasting methods applied in this investigation are
briefly explained.

4.1 Neural Network Autoregression (NNAR)

There has been a growing interest in using neural networks for modeling and forecasting time series data.
A neural network can be considered as a network of neurons which are arranged in layers. In this struc-
ture, the first layer consists of predictors or inputs, while the last layer comprises forecasts or outputs.
Additionally, there may exist hidden layers that contain some neurons. Without any hidden layers, the
network is equivalent to a linear regression. However, the introduction of an activation function adds
non-linearity to the neural network.

This study focuses on a multilayer feed-forward network known as NNAR. To provide a complete
overview of this model, we will primarily refer to [18] and [43]. The NNAR model utilizes lagged values
of a time series as inputs to a neural network. The notation NNAR(p,k) is used in [18] to indicate feed-
forward networks with one hidden layer, p lagged inputs and k nodes in the hidden layer. Additionally, a
seasonal NNAR model is denoted by NNAR(p,P,k)m where p represents the number of lagged inputs, P
denotes the number of seasonal lags, and m represents the number of periods. The inputs for this NNAR
model consist of lagged values of the time series, inclusive of both lagged and seasonal lags. To be more
specific, the inputs can be represented as yt−1,yt−2, . . . ,yt−p,yt−m,yt−2m, . . . ,yt−Pm. In the NNAR model,
the inputs into each hidden layer neuron are combined linearly to give weight and produce output from
artificial neural networks and the activation function as the binary sigmoid, which is a nonlinear function.
Specifically, the j-th hidden layer neuron is defines as follows:

Z j = α j +
N

∑
i=1

ωi, jyi,

where N represents the number of input layer neurons, α j represents the intercept of the j-th hidden
neuron, ωi, j denotes the weights assigned to the connection between the input and the hidden layer, yi’s
are the covariates or neurons of the input layer, and the activation function is given by

g(z) =
1

1+ e−z .

We consider the algorithm proposed by Hyndman [15] that defines the number of nodes in the hidden
layer (k) as an average of the number of inputs and the number of outputs, that is, (p+P+ 1)/2. The
nnetar function in the forecast package of R software fits an NNAR(p,P,k)m model to time series
data. In this function, the values of p and P are selected automatically if they are not specified.
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4.2 Autoregressive Integrated Moving Average model (ARIMA)

The ARIMA model is among the most widely used techniques for time series analysis and forecasting.
The non-seasonal ARIMA model depends on three parameters: p is the number of lagged observations in
the model, i.e., the autoregressive (AR) order; d is the number of times that the original observations are
differenced, i.e., the integrated (I) degree; and q is the size of the moving average window, i.e., the order
of the moving average (MA) [3]. This parametric model can then be written as ARIMA(p,d,q), with p,
d, and q non-negative integers. Given a time series YN = [y1, . . . ,yN ], the ARIMA(p,d,q) model can be
written as:

φ(B)(1−B)dyt = c+θ(B)εt , (12)

where yt is the observation at the time point t; B is the time lag operator, or backward shift, which is a
linear operator denoted by Bk such that Bkyt = yt−k; φ(B) = 1−φ1B1−·· ·−φpBp; θ(B) = 1+θ1B1 +
· · ·+θqBq; c = µ(1−φ1−·· ·−φp); µ is the mean of (1−B)dyt ; and εt is an error term, usually white
noise with mean zero. The seasonal ARIMA model incorporates both non-seasonal and seasonal factors
in a multiplicative model. The seasonal ARIMA(p,d,q)(P,D,Q)m model is written as

Φ(Bm)φ(B)(1−Bm)D(1−B)dyt = c+Θ(Bm)θ(B)εt , (13)

where Φ(Bm) = 1−Φ1Bm−·· ·−φPBPm; Θ(Bm) = 1+θ1Bm + · · ·+θQBQm; p is the non-seasonal AR
order, d is the non-seasonal differencing, q is the non-seasonal MA order, P is the seasonal AR order, D
is the seasonal differencing, Q is the seasonal MA order, and m is time span of repeating seasonal pattern.

Selecting an appropriate model order, that is the values p,d,q,P,D and Q, is a major task in ARIMA
modeling. In this paper, we use the auto.arima function from the forecast package of R software to
find the best ARIMA model automatically and estimate its parameters. For more information on how
this function works and examples of applications, see [17].

4.3 Exponential smoothing

Exponential smoothing methods are among the most widely used forecasting procedures in practice due
to their simplicity and effectiveness. These were originally classified by Pegels [31] and later modified
by Hyndman et al. [19], and extended by Taylor [42], giving a total of fifteen methods. It is shown
that the exponential smoothing family has good forecasting accuracy over several competitors [28–30],
and it is especially suitable for short time series. There are three main types of exponential smoothing
methods: (i) simple exponential smoothing (SES), that is suitable for forecasting time series data without
any trend or seasonality; (ii) Holt’s exponential smoothing, an extension of SES that incorporates trend
information; (iii) Holt-Winters exponential smoothing, that extends Holt’s method to incorporate sea-
sonality in the data. Also, there are two variations of Holt-Winters method: additive and multiplicative.
The ETS models can capture a variety of trend and seasonal structures (additive or multiplicative) and
combinations of those. In order to refer to the three components error, trend, and seasonality in exponen-
tial smoothing methods; the notation ETS is proposed in [16] and we also use this notation. A detailed
description of ETS can be found in [17] and is therefore not repeated here.

The selection of an appropriate exponential smoothing model and its parameters depends on the
data characteristics and the desired level of smoothing. We apply the ets function from the forecast
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package to find automatically the best ETS model. This function implement the innovative state space
modeling framework described in [17] for parameter estimation and forecasting.

4.4 TBATS model

An innovations state space modeling framework has been introduced in [23] for forecasting complex
seasonal time series such as those with multiple seasonal periods, high-frequency seasonality, non-integer
seasonality, and dual-calendar effects. This model, which is called BATS, is an exponential smoothing
state space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components. This
model is a generalization of the traditional seasonal innovative models to allow multiple seasonal periods.
In TBATS model, the trigonometric representation of seasonal components based on Fourier transform
is used and the initial T in the notation TBATS stands for trigonometric. For more information on the
theory and applications of TBATS, see [23]. The tbats function is made available through the forecast
package to fit TBATS model to a time series.

5 Real data study

The data used in this paper is obtained from the Regional Water Company of Guilan province in Iran
(https://www.glrw.ir). It includes monthly rainfall data (in mm) from May 2015 to June 2023 at four rain
gauge stations: (i) Hashtpar, (ii) Manjil, (iii) Rasht, and (iv) Shalman. In this section, we compare the
classical SSA and the robust SSA algorithms with other forecasting methods, including NNAR, ARIMA,
ETS, TBATS, in terms of accuracy for model fit and model forecast.

Table 1 shows the descriptive statistics of the monthly rainfall recorded in the four stations, including
the minimum, maximum, mean, and standard deviation. The standard deviations of the original data
are large, indicating that the monthly rainfall has dramatic fluctuations, and thus difficult for modeling.
Manjil is the station that shows the smallest variations among the considered stations, and low mean
rainfall. On the other end, there are Shalman and Rasht showing larger variations with higher mean
monthly rainfall. In addition to the descriptive measures, Figure 1 shows the movements of the monthly
rainfall at the four stations over time. Application of the tsoutliers function from the forecast

package reveals the presence of two outlier data points in Manjil station and three in Shalman station.
Conversely, no outlier data points are detected in Hashtpar and Rasht stations. Even a small proportion
of outliers can significantly impact model fitting and forecasting results.

Table 1: Descriptive measures for the monthly rainfall at the four rain gauge stations.

Station N Minimum Maximum Mean Standard deviation

Hashtpar 98 0.0 304.5 84.0102 66.0732
Manjil 98 0.0 112.0 21.6092 22.9365
Rasht 98 0.7 342.0 100.2449 78.5913
Shalman 98 0.0 477.5 96.3602 91.8995

https://www.glrw.ir
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Figure 1: Time series for the monthly rainfall at the four rain gauge stations.

5.1 Model fit

As mentioned in the Subsection 2.3, for SSA and robust SSA algorithms, there are two choices to be
made: (i) the window length L; and (ii) the number of eigentriples used for reconstruction r. The win-
dow length L could be approximately half of the time series length N or 1

4 depending on the length of
time series, and proportional to the number of observations per period (e.g. to 12 for monthly time se-
ries, to four for quarterly time series, etc.). Two values of L are chosen for each time series, L1 = 24
and L2 = 48 accordingly. The choice of the number of eigentriples used for reconstruction r, for each of
the considered window lengths and each of the time series, is done by taking into consideration the w-
correlations among components. Figure 2 shows the w-correlation matrices for each of the four stations,
considering the window length L = 24. The results for L = 48 are similar, so we do not present them
here for the sake of brevity. The w-correlation matrices can be obtained with the function wcor of the
R package Rssa [6] and the number of eigentriples r should be chosen in order to maximize the separa-
bility between signal and noise components; i.e., maximize the w-correlation among signal components,
maximize the w-correlation among noise components, and minimize the w-correlation between signal
and noise components. Figure 2 indicates that the optimal number of eigentriples used for reconstruction
is r = 5 for Hashtpar and Manjil stations, whereas for Rasht and Shalman stations, the optimal value is
r = 3.
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Figure 2: w-correlation matrices for each of the four rain gauge stations, considering the window length
L = 24.

To identify the order of ARIMA model for the series, we followed the procedure outlined in [17].
This approach involves a combination of unit root tests, AICc minimization (AIC with a correction for fi-
nite sample sizes), and maximum likelihood estimation. The specific ARIMA models determined for the
Hashtpar, Manjil, Rasht, and Shalman stations are ARIMA(0,0,0)(2,0,0)12, ARIMA(0,0,0)(0,1,1)12,
ARIMA(0,0,0)(1,0,0)12, and ARIMA(0,0,0)(1,0,0)12, respectively. Figure 3 displays the Autocor-
relation Function (ACF) and Partial Autocorrelation Function (PACF) of the monthly rainfall for each
station. Based on these plots, it might be argued that the ARIMA model fitted using the method in [17]
may not be the best fit for these time series, and better models could potentially be identified. This is due
to the fact that instead of exhaustively considering every possible combination of p and q, the algorithm
employs a stepwise search to traverse the model space. If the fitted model accurately captures the trends,
variability, and correlation structure present in the time series data, we expect the residuals of the model
to be uncorrelated. To assess the presence of correlation in the residuals, ACF plot or the Ljung-Box test
can be employed. Table 2 presents the results of Ljung-Box test to evaluate the presence of autcorrelation
in the residuals of ARIMA fitted models across the four rain gauge stations. We also presented ACF plots
of the residuals in Figure 4.
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Figure 3: ACF (left) and PACF (right) plots for each of the four rain gauge stations, considering the
window length L = 24.

From Figure 4, it is observed that for Hashtpar and Manjil stations, the ACF plots of the residuals
show autocorrelations within the bounds of ±1.96/

√
n. This suggests that the autocorrelations of the

residuals are not significant. However, for Rasht, a single spike is observed at lag 6, and for Shalman
station, a single spike is observed at the lag 20. Nevertheless, based on the Ljung-Box test for residuals,
all p-values are greater than α = 0.05, indicating that autocorrelations in the residuals are not significant.
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Table 2: Results of Ljung-Box test to evaluate the presence of autcorrelation in the residuals of ARIMA
fitted models across the four rain gauge stations.

Station ARIMA(p,d,q)(P,D,Q)m Q-statistic p-value

Hashtpar ARIMA(0,0,0)(2,0,0)12 22.545 0.1647
Manjil ARIMA(0,0,0)(0,1,1)12 26.192 0.1249
Rasht ARIMA(0,0,0)(1,0,0)12 23.340 0.1779
Shalman ARIMA(0,0,0)(1,0,0)12 25.489 0.0842
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Figure 4: Acf plots for the residuals of ARIMA fitted models across the four rain gauge stations.

In order to evaluate and compare the ability for model fit using the seven models, SSA, robust SSA
based on the L1 norm (RL-SSA), and robust SSA based on the Huber function (RH-SSA), NNAR,
ARIMA, ETS, and TBATS, the root mean square error (RMSE) is calculated for each time series as
follows:

RMSE =

√
1
N

N

∑
t=1

(yt − ỹt)2, (14)

where yt are the observed values and ỹt the fitted values by the considered model/algorithm.
Table 3 shows the RMSE for model fit by each of the seven models applied to each of the four

stations, considering a window length L1 = 24 and L2 = 48. The bold numbers show the method with the
lowest RMSE for a given station. From this table, we can conclude that when the window length is set to
be 48, the classical SSA provides the best results, while the robust SSA algorithms has the second best
performances. However, when the window length in the SSA related algorithms is set to be 24, NNAR
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followed by TBATS outperforms the other methods for Rasht and Shalman stations, while classical SSA
has the best performance for the other two stations. In summary, for the three last stations (Manjil, Rasht
and Shalman), classical SSA with window length L = 48 provided lowest RMSE values for model fit,
while robust SSA based on Huber function (RH-SSA) has the best performance for the Hashtpar station.

Table 3: RMSE results of all models for model fit (the bold numbers show the method with the lowest
RMSE, and underlined numbers represent the second best method, for a given station).

Method L Hashtpar Manjil Rasht Shalman

SSA 24 45.1356 14.7954 59.0636 74.7610
SSA 48 38.0538 14.4480 42.5357 48.6417
RL-SSA 24 51.6824 17.4490 64.5301 82.7758
RL-SSA 48 39.4138 16.5495 49.6822 60.0780
RH-SSA 24 45.5833 15.7424 60.5624 77.0145
RH-SSA 48 37.1327 15.4243 44.5721 55.5056
ARIMA - 59.01134 21.2334 69.9947 77.80322
NNAR - 56.14799 16.9339 53.5626 60.1228
ETS - 49.97855 17.44423 61.45218 66.61744
TBATS - 49.99718 17.06914 58.48833 65.52479

5.2 Model forecasting

In this subsection, we compare the forecasting abilities of SSA, robust SSA based on the L1 norm (RL-
SSA), robust SSA based on the Huber function (RH-SSA), and other forecasting methods including
ARIMA, NNAR, ETS, and TBATS. The RMSE is calculated as follows:

RMSE =

√√√√1
g

N

∑
t=N0+h+1

(yt − ỹt)2,

where N0 = N − h− g, yt are the last g observed values used as the testing set, and ỹt the respective
h steps-ahead forecast values. The RMSE is sensitive even to small errors, which can size the model
performance for high rainfall values. Table 4 shows the RMSE for the monthly rainfall forecasting at
each of the four rain gauge stations, considering each of the seven models. In this table, the bold font
shows the forecasting method with the lowest RMSE for a given station. The data from May 2015 to
June 2022 with a total of 86 observations from each time series are used for estimation purposes as the
training data. The remainder with 12 observations are used to evaluate the forecasting performance of
the models as the testing set. One, five, and ten steps ahead out-of-sample forecast is performed to assess
the prediction performance. Figure 5 shows the original time series (in black) along with one-month-
ahead forecasts for the testing data, obtained from the seven models, across the four rain gauge stations.
Additionally, Figure 6 displays the original time series (in black) alongside the predicted values for the
training data.
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Table 4: RMSE results of all models for forecasting (the bold numbers show the method with the lowest
RMSE, and underlined numbers represent the second best method, for a given station).

Station SSA RL-SSA RH-SSA ARIMA NNAR ETS TBATS

one-step-ahead

Hashtpar 45.1631 41.8713 44.3003 46.6307 65.4170 49.1724 45.0945
Manjil 13.8279 15.1882 12.1176 15.4223 14.3575 18.2529 15.1371
Rasht 57.0732 43.8261 50.3878 39.6891 66.0762 45.2730 40.8733
Shalman 43.7358 56.8805 41.8069 52.1285 93.3484 51.4315 50.6261

five-step-ahead

Hashtpar 46.3739 49.1631 43.4417 49.1971 58.0938 49.2797 44.5486
Manjil 14.1279 15.1702 12.3004 18.4389 21.7046 18.8373 18.3192
Rasht 67.2449 47.0623 59.9564 46.6603 67.2273 111.8616 51.8536
Shalman 44.4978 54.3320 42.7679 52.7647 81.3589 52.2147 50.1439

ten-step-ahead

Hashtpar 47.6808 49.9914 45.2679 49.2458 67.0889 49.2116 42.4314
Manjil 14.6204 11.9890 12.3174 17.9994 22.4835 17.8495 16.5358
Rasht 73.1706 51.8973 72.4721 44.9188 96.7256 195.8318 45.2398
Shalman 43.1522 63.6617 40.1460 51.0000 47.0983 51.8971 50.5451

From Table 4, it can be observed that robust SSA algorithm based on the Huber function (RH-SSA)
achieved the best performance in terms of RMSE for one-step-ahead forecasting in the two considered
time series. Conversely, robust SSA algorithm based on the L1 norm and ARIMA model demonstrated
the best performance in one of the time series in this case. Furthermore, RH-SSA model exhibited the
best performance for five-step-ahead forecasting in the three time series. Interestingly, ARIMA only
yielded the best performance in the Rasht gauge station. Additionally, for ten-step-ahead forecasting,
each of the RH-SSA, RL-SSA, ARIMA, and TBATS models achieved the best performance in one par-
ticular case. In summary, the monthly rainfall forecasting at the Hashtpar, Manjil, and Shalman stations,
robust RH-SSA algorithm emerged as the superior model followed by RL-SSA and classical SSA. Simi-
larly, for the Rasht station, ARIMA proved to be the best model followed by TBATS. Moreover, in most
instances, TBATS exhibited better performance compared to ARIMA, NNAR, and ETS; however, it was
consistently outperformed by SSA-related methods. Figure 5 also confirms the above findings. The
NNAR model, as it utilizes lagged values as inputs, lacks predicted values for some initial observations.
Consequently, in Figure 6, the fitted values for the initial points are not shown. Figure 6 clearly illustrates
that NNAR performs very well for the training data at Hashtpar Station. However, as depicted in Figure
5, this approach demonstrates poor performance in forecasting the testing data in Hashtpar, indicating
overfitting. This holds true for TBATS at Hashtpar and Shalman stations as well. Its performance is
satisfactory for the training data, but not suitable for forecasting the test data.
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Figure 5: Forecasting results of the testing data across the four rain gauge stations.
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Figure 6: Predicted values for the training data across the four rain gauge stations.
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6 Conclusions

In this paper, we utilized the classical SSA methodology as well as two robust SSA algorithms, RL-SSA
and RH-SSA, to achieve model fit and forecast the monthly rainfall. To evaluate the effectiveness of
these approaches, we compared the results with those obtained from other commonly used time series
forecasting techniques, such as NNAR, ARIMA, ETS, and TBATS, using the RMSE criterion.

Our study focused on four rain gauge stations in Guilan province, specifically Hashtpar, Manjil,
Rasht, and Shalman. The evidence gathered from this investigation demonstrates that there is no single
model to be the best for any of the stations. We expect that our research will serve as a useful tutorial for
government entities in selecting an appropriate model for rainfall forecasting. Such decisions are pivotal
in effectively predicting flash floods and managing water resources.
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