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Abstract. This research inscription gets to grips with a novel type of boundary value problem of nonlin-
ear differential equations encapsuling a fractional derivative known as the Hadamard fractional operator.
Our results rely on the standard tools of functional analysis. The existence of the solutions of the afore-
hand equations is tackled by using Schaefer and Krasnoselskii’s fixed point theorems, whereas their
uniqueness is handled using the Banach fixed point theorem. Two pertinent examples are presented to
point out the applicability of our main results.
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1 Introduction

Fractional differential equations (FDEs) are mathematical equations that involve fractional derivatives.
Fractional derivatives are generalizations of the integer-order derivatives that appear in classical calculus.
They can be defined using various mathematical formulations, such as Riemann-Liouville, Caputo, and
Grunwald-Letnikov definitions.

FDEs have been increasingly used in recent years to model phenomena in various fields such as
Electrochemistry, material science, physics, engineering, finance, and biology. They are in fact described
by differential equations of fractional order [16,17,23]. On the other hand, fractional calculus has gained
significant attention due to its wide range of applications in various scientific fields. It has been used
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in fields such as biology, blood flow phenomena, image processing, groundwater problems, capacitor
theory, viscoelasticity, aerodynamics, geophysics, biophysics, polymer rheology, nonlinear oscillation of
earthquakes, and electrical circuits, to name a few. For more applications of FDEs, we refer to sufficient
works [19,21,22,24-26,30] and to the following research papers [1,3,5,8,15,31,33].

Functional analysis is an important branch of mathematics that deals with spaces of functions and
their properties. It is used to study a wide range of mathematical objects, including linear and nonlinear
differential equations, and has many applications in physics, engineering, and other fields.

In the study of nonlinear fractional differential equations (NFDEs), functional analysis can be used
to develop powerful analytical tools for their solution and analysis. Specifically, the theory of fractional
calculus and functional analysis can be used to construct a variety of function spaces, such as Sobolev
spaces and Besov spaces, that are appropriate for describing the behavior of solutions of NFDE:s.

One of the key advantages of using functional analysis in the study of NFDEs is that it provides
a rigorous framework for proving the existence and uniqueness of solutions, as well as their regularity
properties. Additionally, functional analysis techniques can be used to study the stability and asymptotic
behavior of solutions of NFDEs, which are important for understanding the long-term behavior of the
system being modeled.

In recent years, many authors have investigated the existence and uniqueness of solutions for non-
linear fractional differential equation boundary value problems. For a small sample of such work, we
refer [2,9-12,27-29,32,34,35] and references therein. Many latest studies in the existence theory focus
on the fractional equations with integral boundary conditions, which improve the classical conditions in
the development of mathematical modeling [6, 7, 13].

The present paper which draws inspiration from the aforementioned works and [4,14,29], investigates
the existence and uniqueness of solutions for the following high-order fractional differential equation:

—D%u(r) = A1 fi1(t,u(t)) + A dP fo(t,u(r)), n—1<a<n, n>2, rell=][le,
m—1 M

D" u(1)=0,0<k<n—2, D'u(e)=Y a D"u(s)ds,
i=1 Ni-1

ey

where 0 <y<l,a—y>n—1,0<B<L,nkeNandO=ny<mn < - <Np2 <M1= 1,a; >0
m—1 i

forie1,2,....m—1,and1# ) a / (logs)*~Y~!ds, DP denotes the Hadamard fractional derivative
i=1 i1

of order p = {a,y,y+k}, IP denotes the Hadamard fractional derivative of order B and fi, f» are given
continuous functions, A, A, are real constants such that A; or A, is nonzero.

This paper is structured as follows. After introducing, in Section 2, we recall briefly some basic
definitions and lemmas and preliminary facts which are required to prove our main results. In Section 3,
we shall provide sufficient conditions ensuring the existence of solutions for problem (1) via applications
of classical fixed point theorems (Scheafer’s and Krasnoselskii’s fixed point theorem, and the Banach’s
Contraction Principle.). Finally in Section 4, we give examples to illustrate the theory presented in the
previous sections.

2 Preliminaries

In what follows, we are rendering some results of Hadamard fractional calculus that will be used through-
out this paper.
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Let ¢ (IT) = C(I1,R) be the Banach space of all continuous functions from IT into R with the norm

Hu” = sup{\u| e H}.
Next, let § := t% and define on an interval [a, D], the set
AC§la,b] = {g: [a,b] = R: 8" g(r) eAC[a,b]}.

Definition 1 ([18,21]). The Hadamard fractional integral of order & > 0 for a function @ € L!([a,b],R),

is defined as . . 1 a3 (s)
I*®)0) = Frey / (log2) = s,

where I'(+) is the Euler gamma function.

Definition 2 ([21, 34]). The Hadamard fractional derivative of order o > 0 of a continuous function
o : (a,b) — R is given by
1

D@ (t) = 5" (1) = )(tjt)” / t(logg)”_a_lw(s)

ds
[(n—o ’

N

2

where n =[] + 1, and [a] denotes the integer part of the real number o and & = t%,

integral converges.

provided the right

Proposition 1 ([15,20,21]). Let o, >0, n=[a]+ 1, and a > 0, then
1“(1ogé)ﬁ_l(t) - F(gf)oo(log;)ﬁw_], 3
p(10e)” 0= MO (10g Y o v
Theorem 1 ([15]). Let u(t) € AC§[a,b],0 <a <b < e and o >0, >0, then
DI%®(t) = IP~%® (1), @

D*DPw(t) =D*Paw(r).

Lemma 1 ([15,20]). Let a > 0 and n = o] + 1. If @ (t) € AC§[a,b), then the Hadamard fractional
differential equation
;x+ CU(Z‘) — 0,

has a solution
n—1 £\ a—k
o(t)= Z Cr (logf) ,
k=0 a
and the following formula holds:

n-l o—k
1“D*@() = @(1) + ¥ i log 5) , 5)
k=0 a

wherec, € R, k=1,2,...,n.
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By using the substitution u(t) = I"y(t) = D~ 7y(t), one can transform the fractional BVP (1) to the
following form:

DYy (1) = AL fi(6,1(1)) + ALP fo(2,17¥(2)), t €11,

m—1 i
V(1) =0,0<k<n—2,y(e) = Zai/n y(s)ds. ©

To obtain the solution of the fractional BVP (1), the following lemma is essential.

Lemma 2. For any h € €(I1), the unique solution of the linear fractional BVP

—D% Vy(t) =h(t), tell,

i (N
Y(1)=0,0<k<n—2, y(e a,/ y(s
is
1 a—y—1
() = ~1Th(s) + (log?) 1 (e Zaz [ s
-y alf  (logs)e—r-1ds i

Proof. By Lemma 1, the solutions of Eq. (7) are
y(t) = —1%""h(t) — c; (logt)* V! —cr(logt)* V2 — .. — ¢, (logt)* ™",

where ¢;(i = 1,2,. .,n) € R are arbitrary constants. By the conditions ylk )( )=0,0<k<n-2,we
obtain ¢y = --- = ¢, = 0. Then, we conclude that

y(t) = —1%"h(t) — c; (logr)* VL. (3)
Now, by the condition y(e Z a; / s)ds, we can get
-1

1 ml
c=— : (—Iayh(e) +Y ai/ I“”h(s)ds) .
i=1 i1

nNi
1-Y ai/ (logs)* " lds
i=1 i-1
Combining this value with Eq. (8), we obtain

(logr)* 7"

y(t) =—1"""h(r) + <1a "h(e) i
m_l i 1 i=1 Ni-1
1-Y ai/ (logs)* " 'ds
T i—1

The proof is complete. OJ
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Notice that, the solution of the equation —D%u(¢) = h(t) depends on the boundary conditions given
by (1) can be expressed as

u(t) =1"y(1)

logs)®— 71 m—1 ni
=17 |—1*""h(t) + mfl( °8 ) 1h(e) - Y a; 1" "h(s)ds
-5 aifni:](IOgs)afyflds i=1 Nio1

1 m—1 ni
— : 1% "h(e) — a,-/ 1% "h(s)ds
L=X ai [y (logs)*=7~1ds T o

1 e t
- yr-1 a—y—1
X ( )/1 (logs) (logs) ds

__go (logt)a_lr(a—’)/ a—y _m_l ) i oa—y
=1 h(t)+F(a)(1—Z;”:’llaifmil(logs)“—y—lds) (1 h(e) ; a,/ill h(s)ds

=—I%(t)+

m—1 ni
= —I%h(t) + (logt)*'A (Iayh(e) -y a,-/ I“’%(s)ds) .
i=1 -1
Next, we introduce an operator .7 : € (IT) — € (I1) as

(7ut) = o [ (1021 sy ® - 22 [ () st ®

+ (logr)*'A [F(;l_y) /1 <log§>a_y_1f1 (s,u(s))%

e (1025)* " pats.atsn®

Aq m=1 Ni s s\ o—y—1 dn
“T(a-7p) ; a//l (logﬁ) fl(n,u(n))Tds
Ay ml . EAara dn
Ty &l ) (o) p) "SI ’ ©

— [(o—7) |
F(OC)(] — ?1:711 a; fniil (]ogs)a—y—lds)

It can be said that u is a solution of the fractional BVP (1) if and only if u is a fixed point of the operator
T on ¢ (I1).

For easy statement, denote

1 1 1omsbome s s\o-r-1dn
1A 4 S (o) T s )|
D(a+1) <r<a—y+1> fa 7 &%, ) (Ogn) n )]

>a—y+ﬁ—1

where

Ay = A

1 1 m—1 ni s<log% dn
A=A |————4A + // Mas |1,
2=l m gy P Tayi g T & ) Tarip n®
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|Al‘ ‘Az‘ ‘Al m=1 /71: / 06 7— ldn
K:= + +
a=rs) " T rep o) ; - 7
|As| /Th/ oz v+B-— T[
—|— a, 0 —
Cloe—y+B) ; ; g n
a)-:[ |Ai] \AZ\ ]
o Da+1) Ta+p+1)
I(a—7)

T(@)(1— X5 a [ (logs)* 7 1ds)
3 Main results

In this section, we prove some existence and uniqueness results to the nonlinear fractional differential
equation (1). For the sake of convenience, we impose the following hypotheses:

(H1) fi,f>:II xR — R are continuous functions.
(H2) There exists a constant L;, L, > 0 such that
f1(t,x) = fi(t,y)] < Lifx =],
f2(t,x) = fa(t,9)| < La|x =],
forr € I1, and each x,y € R, where L = max{L,L,}.

3.1 Existence and uniqueness result via Banach’s fixed point theorem

m—1 ni
Theorem 2. Suppose that 1 # Z a; / (logs)a_y_]ds and assume that the hypothesis (H2) holds. If
i=1 i

the inequality
LA +A2) <1,
is valid, then BVP (1) has a unique solution on T1.

Proof. Transform problem (1) into a fixed point problem for the operator .7 given by
o Al 4 o1 ds Ar a+p-1 ds
Tu(t) __F(a)/l (bg;) fl(s’u(s))s_lW/ (log ) fa(s,u(s))—
_ A ¢ e\ o—r-1 ds
log?)*~'A 7/ log - —
+ogn) s [t [ (10g€)" " itsuto)

N
Ar ! e\ a—r+p-1 ds
Py (oes) T )T

AyonGh e g s\ @71 dn
- oci—}/ Za,/”/] <logﬁ> i u(m) s

K tx r+B-1 dn
L(a—vy+p) y+[3 Z“’/, / Og fa(n,u (n))Tds.
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Applying the Banach contraction mapping principle, we shall show that .7 is a contraction. Let
u,v € AC3(IT,R). Then for each ¢ € IT, we have

|A;] 1\ o1 ds
(700 =01 < g5 [ (025)" il Al T

|Az| ! £\ otB—1 "
+72)/1 (10g;> [Fals,(s)) = fa(s.v(s))| =

INa+p
+ (logt)*~'A {F(O[:l_' 7 /le (logg)aﬂfwf] (s,u(s)) *f1(s,v(s))|?
A ! e\ a—r+p—1 s
m/ <logg) |f2(sa”(s))—f2(5,v(s))\?

rtls [ [ (o2 ) .t o) s

IAz\

ni oc y+p-1 an
“Tla—y+B) Y+B) Z / / log [f2(n,u(n ))—fz(n,v(n)ﬂnds].

Hence,

[(Fu)(t) = (Tv) ()] < Li[|lu—v] [IAll

1 1
A
Tlatl) (F(a—y+1)
/Th/ a y—ldn
al
i n

+Lolu—v]| [!All

|

1 1
F(a+[3+1) +A<F(ay+ﬁ+1)

T(a—7+B) Y+B /n/ (1og ) ldv;? )”

Thus, |(Tu)(t) — (Tv)(t)| < (LiA1 + LaAz)||u — v||. Consequently,

[(Zu) (@) = (Tv)(O)]| < LA+ Ag)lJu— .

AsL<1/(A1+A;), 7 is acontraction. Hence, by the Banach’s fixed point theorem, the fractional BVP
(1) has a unique solution. The proof is completed. UJ

3.2 Existence result via Scheafer’s fixed point theorem

m—1 ni
Theorem 3. Suppose that 1 # Z a; / (logs)“*yflds and assume that assumptions (HI)-(H2) hold.
=1 JMi-1

Then, problem (1) has at least one solution on 1.

Proof. We use Scheafer’s fixed point theorem to prove that .7 has at least a fixed point. The proof will
be given in several steps.
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e Step 1 .7 is continuous.

In view of the continuity of fi, f2, we conclude that the operator .7 is continuous.

e Step 2 The operator .7 maps bounded sets into bounded sets in ¢ (I1):

For r > 0, we take u € B, = {u € €(I1), || u ||< r}. Let sup fi(z,1) = M; and sup f>(¢,1) = M>,
tell tell
and assume that M = max{M,M}.

Choosing r > %

‘fl(S,X(S))’ < |f1(S,X(S>) _fl(svl)‘ + ’fl(s71)| < Lir+M,

and from (H2), we obtain

|2 (s,x(5))] < |fa(s,u(s)) = fa(s, D]+ fa(s, 1)] < Lor + Ma.

For u € B,, and for each ¢ € I1, we get

7u)] < {05 [ (10) 1A — 2l [ (10) ™ It uto)|
+ (logr)*~ 1A[ (lxl_’y) /le(logi)““|f1(s,u(s))|‘is

1A, | t e\ a—y+B—1 ds
+((x—y+ﬁ)/ <logg) [f2(s, u(s))| =

A m- Ni a—_l d
L T [ [ (o2 ) .ty s

+(a‘A;‘+I3 Saif" [ (0e2) " e atn >rds]-

We obtain

| Tu(t)] < (Lr+M) ([\Al < (a 1y+1)

@
el / )|
%’A”[ ( +ﬁ 1) A(F(a—ylﬂiﬂ)

m=1 i oc y+B—1
BT Taf, ) (e d"ds>”>

| Tu(@)| < (Lr+M)(A1+A2) <.

Consequently,

Hence, .7 is uniformly bounded.

e Step 3 .7 is equicontinuous on II.
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Letus take u € B, t1,t, € I, 1) < 1, we get

[ (102 )5 — o™y ) (s,

\Tutz) — Tu(ty)| < Al

T(a)
ot [ g ) At &
o [ (ogt—1ogs)® P og e P s(su(s)|
s [ o) P (o)
+ ((ogte)*~* — (ogm)* s | L [ (10€) T (o)
(a'A;LB) [ (o) st
T

S X[ [ oe )= st Gl

A m_] ni a B—1 d
a';LB Yoa ' [ (0es)""" ip0m <>>|,;7ds].

Thus,

| T u(tz) = Tu(n)] < ((logt)® — (logt2)*) +

‘A1|L |A2‘LV o a
T+ 1) m((logh) — (log)®)

+ ((log2)®™" — (log)*~")A [F(lfl 0 (102 )" sl S

1A ot e\ a—y+B—1 ds
et ACH M

A m—1 n;i s S o—y—1 d
framg Lo [ [ (e ) I utm s

|A2| m—1 Ni oz Y+B-1
rasyrp Lol [ (eey f2(n.u(n >>|ds].

Consequently,

A A2
a+1) Tloe+p+1)

| Tu(ty) — Tu(t)] SLr(F( )((logzl)“_(logtz)a)

+((logr2)®" — (logr)*)A [r(lf]— 3 /1 (1og§)°’+1 A (s,u(s))|%

|A2| t e anyrﬁfl dS
e GRS

A S e s s a=y=1 d
e L[ [ (o) m(n,u(nm#ds

m—1 ; .
Al Z /"/ log -7t 1|f2(n,u(n))|dgds]’

Lo —7v+pB)
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which implies || T u(tz) — Tu(t1)|| — 0 as to — t;, By Arzela-Ascoli theorem, we conclude that
7 is completely continuous operator.

o Step 4 We show that the set Q defined by

Q={uecc),u=p7(u),0<p <1},

is bounded.
Let u € Q, then u = p.7 (u), for 0 < p < 1. Thus, for each ¢ € I1, we get
™ N As| [Ty 1ol ds
S17un) < oo [ (1028)" oIS+ gtz [ (10eh)" T ) S
a—1 A ¢ e\ a-r-l
+ g a8 [ (10g )" iGsuto)s
Aol [T, eyorB ds
iy (0e5) T Aol

o fl' le/n JACH TN

|A2| ni oc y+B-1
"Tla—7+B) Y+B) ; Z / / log |f2(n,u(n ))|—ds.

So, we can write .
E\ﬁu(t)] < (Lr+M)(A1 4+ A2).

Therefore,
| Tu(t)|| < p[(Lr+M)(A1+Az)].

This shows that .7 is bounded.
As consequence of Schaefer’s fixed point theorem, problem (1) has at least one solution on IT.

3.3 Existence result via Krasnoselskii’s fixed point theorem

m=1 ni

Theorem 4. Suppose that 1 # Z a; / (log s)a_y_lds and assume that the hypotheses (H1)-(H2) hold,
i=1 i—1

such that

Lo < 1. (10)

If there exist ¥ € R such that
7> (LF+M) (A + A). (11)

then, problem (1) has at least one solution on I1.

Proof. Suppose that (11) holds, where Br = {u € € (I1), || u || < 7}. Let us split the operator .7 : € (I1) —
% (I1) defined by Eq (9) as
Tu(t) = Ru(t)+ 2u(t),
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where # and 2 are given by
o Ay 4 E - ds Ay ! E a+p-1 @
) = it [ (1023) " A S — gt [ (10ef)™ " st
and

) = Gogt)* ' [ [ (1o2) Aot

Ay 4 e\ a—r+p-1 ds
ey TE / (108%) Polsu(s)

Al m—1 /ni /S s\ a—y—1 dn
— L Vg log — : —Ld
o7 & (logzy)™ " itmum)Thds
A, mol /"i /S 5\ - THB-1 dn
+— a; log — U —ds| .
o yip &), ) (oey) T AaT

Claim 1: Z(u)+ 2(v) € B
For u,v € By and for each r € I1, we get

A1 [ AN ds
)+ 200 < s [ (108 5) " s uo)I T

gy | (oel) ™t T

+ (logr)*~'A {r(fl_’ ; /] (1og§)oc_y_1 i (s,u(s))|%
g  (eS) " G S

b [ [ (o) it

A, i a P61
Ta—v+8) T(o—7v+P) Za‘/l / log |f2(n,u(n ))Ids].

Hence,

1
\%u(z>+gv()y<(Lr+M)<\A1\[( ot <(a 7+ 1)

— ( s o— Y—ldn
— ds
i1 n

1
a+p+1) ( (o — y+B+1)

i s\ a—y+B—
+F(a—y+ﬁ);ai/7./1(logn> Y 1%)])

+|A1|[
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Consequently,
| Zu(t) + 2v(t)|| < (LF+M) (A1 +A2) <T.

Now, using condition (11), we conclude that Z(u) + 2(v) € B
Claim 2: We shall prove that 2 is continuous and compact.
i) The continuity of f] and f, imply that the operator 2 is continuous.

ii) Now, we prove that 2 maps bounded sets into bounded sets of ¢ (IT). For u € By and for each r € I1,

we have
_ a—y-— ds
2uln)] < logn)®'a | B [ (10eS) G
‘Az’ t a—y+B— 1
Ta—7+B) ) ( £5) IS
A G a,y, d
ey Lo / JACT |f1<s,u<s>>\,;”'ds
A ni a y+B—1
(a' ;'w Y oaf / fog 2 )" st >>|ds]
‘A] Lll"—l-M])/ 0‘ Y= ldS
- s
|A2|(L21”—|—M2) o— 7+ﬁ—1ds
Pofvme 772/ log —
T(a—7+p) <° ) s
+\A1\(L1r+M1 - / / a rldn
I'(o = n
|A2|(L21’—|—M2 "= / / S o— V‘f‘ﬂ—ldT]
+_ — —ds| .
F(a—v+p) Z n n
We obtain
_ A |As|
< (Lr+ M)A
[2u(t)] < (L7 +M) X[F (a—7y+1) F(a—}/+[3+1)
m—1 ni 1
|A1 Zaz/ / oc Y- dn s
i=1 77
‘Aﬂ /n, / a Y+B— ldn
+ a; lo —ds
F(a—v+P) Z i g n
So,
| Qu(t)| < (LF+M)A.K
Consequently,

[ Lu(r)[| < ee.

Thus, it follows from the above inequalities that the operator 2 is uniformly bounded.
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iii) The operator 2 maps bounded sets into equicontinuous sets of ¢ (IT).
Lett,,, € Il;tp < 11, u € Br. Then, we have

|Fu(t) - Fu(t)] < ((logn)* ~ (logn)*~)A [F('A" “(1028) " st 2
|A2| -1+B ds
g ), (o)) puo T

s [l [ (o ayllfl(s,u(S))l%nds

‘A2| ml i a—y+p-1 dn
T(a—y+p) ; / / IOg |f2(S7u(S))nds].

As t; — tp, the right-hand side of the above inequality tends to zero. As consequence of [ i),
ii), iii)], together with the Arzela-Ascoli theorem, we can conclude that 2 is continuous and
completely continuous.

Claim 3: Now, we prove that % is a contraction mapping.
Let u,v € €'(IT). Then, for each ¢ € I1, we have

()0~ (@)0] < [ oe ) i (als) ~ A1
+F((';“ﬂm [ (10) ™ 1t uts)) — s v

By (H1), we obtain

A1l Az
[(a+1) T(a+p+1)

|(Zu) (1) = (2v)(1)] < Lfju—v]| [

Consequently,

|[(Zu) (1) = (2v) (1) < Loofju—v].

Using condition (10) we conclude that % is a contraction mapping.
As a consequence of Krasnoselskii’s fixed point theorem, we deduce that .7 has a fixed point
which is a solution of (1).

O
4 Applications
To elaborate, our results constructed in the previous two subsections, here we provide two examples.
Example 1. Consider the following fractional boundary value problem
—Diu(t) = fi(t,u(t)) +1%f2( u(t)), 1<a<2, tell,
1 (i (12)

D%u(l):O, D%u(e):i D4u( )ds + = /D4u s)ds.
0
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Heren:Z,a:S/Z,y:1/4,B:1/3,a1 :1/2,612:0,613:1/2, T]o:(), m :1/4, n2:1/3, Tl3:1
and

fl(t,bl) = mCOS(H), fz(t,u) = msln(u)
As
(00 = A0 < a1,
and {
alt)— o0.)] < 51,

(H2) is satisfied with L = max{L;,L;} = %. and L(A; + Ay) < 1. Therefore, by the conclusion of
Theorem 2, the fractional BVP (12) has a unique solution on IT.

Example 2. Consider the problem

—D3u(t) = fi(t,u(t ))+12f2(t,ut)), l<a<3, tell,

1 5 (13)
D4u(1):D4u(1) 0, D4u /D4u Yds+ = /D4u

Heren=3, a=5/2, y=1/4 B=1/2 a1 =1/2, ay=0, a3 =1/2, 19 =0, m1 = 1/8, o = 1/8,
N3 =1/4 and

1
fl(t,bl) = mCOS(”), fz(t,u) = msln(u)
As |fi(t,u) = fi(t,v)] < 5lu—v|, and [fo(t,u) — fo(t,v)] < 5lu—v|, (H2) is satisfied with
L =max{L;,L} = %. and Lo < 1. Hence by Theorem 4, the boundary value problem (13) has at

least one solution on IT.
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