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Abstract. In this article, a class of singularly perturbed nonlinear differential equations with Robin
boundary conditions is considered. A numerical method consists of the classical finite difference operator
over a Shishkin mesh with two-mesh algorithm is constructed to solve the problems. The method is
proved to be first order convergent uniformly with respect to the perturbation parameter. Experiments
are carried out for two different types of Robin boundary conditions and Neumann boundary conditions
as a special case of Robin boundary conditions.

Keywords: Singular perturbation problems, Robin boundary conditions, nonlinear differential equations, finite dif-
ference scheme, Shishkin mesh, parameter-uniform convergence.
AMS Subject Classification 2010: 34A34, 65L05.

1 Introduction

A singularly perturbed differential equation (DE) is a differential equation whose solution contains re-
gions of rapid variation; the regions which may be apparent in the solution or in its derivatives are called
layers. The perturbation technique is a well known tool which is frequently exploited to analyze prob-
lems in fluid dynamics. Problems which arise in fluid dynamics are often nonlinear in nature and some
techniques are available in the literature to solve such problems. Further, very few works are available in
the literature for singularly perturbed nonlinear DEs.
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OMalley [11] considered a partially perturbed nonlinear system of IVPs. In [8], Manikandan et al.
considered a singularly perturbed nonlinear system of DEs arising in a two-time scale system. A method
is constructed with the standard backward difference operator on a Shishkin mesh to solve the system.
In [9], a system of singularly perturbed second order semilinear DEs with Dirichlet boundary conditions
is considered and a second order convergent method consists of a classical finite difference(CFD) scheme
on a Shishkin mesh is constructed to solve it.

In [10], a partially perturbed nonlinear system of DEs is considered in which one component of
the solution exhibits boundary layers due to the presence of perturbation parameter whereas the other
component exhibits less-severe layers. A method composed of a CFD scheme applied on a Shishkin mesh
is suggested to solve the system. In [2], on a uniform mesh, an exponentially fitted difference scheme is
developed for a singularly perturbed nonlinear reaction diffusion BVPs. The method of integral identities
with the use of exponential basis functions and interpolating quadrature rules with weight and remainder
term in integral form are considered in it. Ishwariya et al. in [6] modelled a biochemical reaction namely
Michaelis-Menten kinetics into a system of singularly perturbed first order nonlinear DEs with prescribed
initial values. A CFD scheme has been used as the nonlinear solver on an appropriate Shishkin mesh.
The method is proved to be parameter uniform almost first order convergent in the maximum norm.

For a system of singularly perturbed semilinear reaction-diffusion DEs, a parameter uniform method
is constructed with an appropriate layer-adapted piecewise uniform mesh in [4]. A class of two parameter
singularly perturbed nonlinear reaction diffusion equations with initial boundary value conditions is con-
sidered in [5]. The asymptotic behaviors of the solution are discussed by constructing the asymptotic ex-
pansion of the solution under suitable conditions. In [12], semilinear reaction-diffusion two-point BVPs
with multiple solutions which can have boundary or interior layers are considered. In [14], the authors
discussed the existence, uniqueness and asymptotic estimates of solutions of the singularly perturbed
nonlinear second-order ODEs of convection diffusion type with Robin boundary conditions. Chein-Shan
et.al. [7], developed two novel algorithms to find the solution for a second-order nonlinear singularly
perturbed BVP of convection diffusion type which satisfies the Robin boundary conditions. The authors
introduced a new idea of boundary shape function with two different types of algorithms such that the
BVP is transformed into an IVP for the new variable. It should be noted that no work is available in the
literature for a singularly perturbed nonlinear DE of reaction-diffusion type with Robin and Neumann
boundary conditions.

The behaviour of a singularly perturbed linear DE of convection-diffusion type with Robin boundary
conditions is investigated in [1] and a numerical method is also developed. It is worth observing that
the layer patterns and the usage of CFD operators for a singularly perturbed linear DE of convection-
diffusion type with Robin boundary conditions reported in [1] are preserved correspondingly in the
present article for a singularly perturbed nonlinear DE of reaction-diffusion type with Robin and Neu-
mann boundary conditions. Further, the novel aspect of the present article is that no artificial condition
on the perturbation parameter ε is imposed.

Consider the following class of nonlinear singularly perturbed BVP with Robin boundary conditions.

− εy′′(t)+ f (t,y) = 0 on Ω = (0,1), (1)

y(0)− y′(0) = φ , y(1)+ y′(1) = ψ, 0 < ε � 1. (2)

where φ and ψ are given constants. For all (t,y)∈ Ω̄×R and f (t,y)∈C4(Ω̄×R) the following condition
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is assumed

min
t∈Ω̄

(
∂ f (t,y)

∂y

)
≥ α > 0, for some constant α, (3)

where Ω̄ = [0,1]. Assumption (3) and the implicit function theorem ensure that y ∈ C4(Ω̄). Problem
(1)-(2) can be written in the operator form as

Ty(t) := −εy′′(t)+ f (t,y) = 0 on Ω, (4)

b0y(0) = φ , b1y(1) = ψ, (5)

where b0 = I−d/dt and b1 = I +d/dt.
Throughout the article, C denotes a generic positive constant, which is independent of t,ε and N, the

discretization parameter.

2 Analytical results

The reduced problem corresponding to (1)-(2) is defined by

f (t,r) = 0 on Ω. (6)

The existence of a unique solution for (6) is ensured by condition (3) and the implicit function theorem.
Further, the solution r of (6) and its derivatives are bounded independently of ε. Hence,

|r(k)(t)| ≤C for k = 0,1,2,3, t ∈ Ω̄. (7)

A decomposition of the solution y(t) of (1) into a smooth component p(t) and a singular component
q(t) is considered as y(t) = p(t)+q(t), where

T p(t) :=−ε p′′(t)+ f (t, p) = 0 on Ω, (8)

b0 p(0) = b0r(0), b1 p(1) = b1r(1), (9)

T q(t) :=−εq′′(t)+ f (t, p+q)− f (t, p) = 0 on Ω, (10)

b0q(0) = b0(y− p)(0), b1q(1) = b1(y− p)(1). (11)

Theorem 1. For all t ∈ Ω̄,

|p(k)(t)| ≤C, for k = 0,1,2,3, |p(4)(t)| ≤C ε−1/2.

Proof. For convenience, p(t) is further decomposed as p(t) = v̂(t)+ ṽ(t), where v̂(t) is the solution of

−ε v̂ ′′(t) + f (t, v̂) = 0, t ∈Ω, (12)

b0v̂(0) = b0 p(0), b1v̂(1) = b1 p(1), (13)

and ṽ(t) is the solution of

−ε ṽ ′′(t) + f (t, v̂+ ṽ)− f (t, v̂) = 0, t ∈Ω, (14)

b0ṽ(0) = 0, b1ṽ(1) = 0. (15)
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Let t ∈Ω. Using (6) and (12), we get

− ε(v̂− r)′′(t)+a1(t)(v̂− r)(t) = εr′′(t), (16)

where a1(t) =
∂ f
∂y

(t,χ(t)) is the intermediate value. Consider the linear operator

T1z(t) =−εz′′(t)+a1(t)z(t) = εr′′(t), (17)

where z = v̂− r. From (9) and (13) we drive

b0z(0) = 0, b1z(1) = 0. (18)

The operator T1 together with (18) satisfies the maximum principle in [13]. Thus,

|z(t)| ≤Cε. (19)

On differentiating (17) once, we get

T1z′(t) =−εz′′′(t)+a1(t)z′(t) = εr′′′(t)−a′1(t)z(t). (20)

Rearranging (18), we get
z′(0) = z(0), z′(1) =−z(1). (21)

Denoting z′ by h in (20) and (21), we get

T1h(t) =−εh′′(t)+a1(t)h(t) = εr′′′(t)−a′1(t)z(t), (22)

h(0) = z(0), h(1) =−z(1). (23)

Problem (22)-(23) satisfies the maximum principle in [13]. Thus,

|h(t)| ≤Cε. (24)

Rearranging (22) and using (24), we get
|h′′(t)| ≤C. (25)

Using mean-value theorem,
|h′(t)| ≤Cε

1/2. (26)

Differentiating (22) once and rearranging, we get

|h′′′(t)| ≤C(1+ ε
−1/2). (27)

From (19), (24)-(27), we get

|v̂(k)(t)| ≤C, k = 0,1,2,3, |v̂(4)(t)| ≤C(1+ ε
−1/2).

From (14), we get
− ε ṽ ′′(t)+a2(t)ṽ(t) = 0, (28)

where a2(t) =
∂ f
∂y

(t,η(t)) is the intermediate value. Problem (28) together with (15), is similar to the

problem in [13] and hence

|ṽ(k)(t)| ≤C, k = 0,1,2,3, |v̂(4)(t)| ≤C(1+ ε
−1/2).

The bounds for p and its derivatives follow from the bounds of v̂ and ṽ.
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The layer function B(t) related with the solution y(t) of (1)-(2) is defined by

B(t) = B1(t)+B2(t), B1(t) = e−t
√

α/ε , B2(t) = e−(1−t)
√

α/ε , t ∈ Ω̄.

Theorem 2. For any t ∈ Ω̄,

|q(k)(t)| ≤CB(t), k = 0,1,

|q(k)(t)| ≤Cε−
(k−1)

2 B(t), k = 2,3,4.

Proof. From (10), we get
− εq′′(t)+ s(t)q(t) = 0, (29)

where s(t) =
∂ f
∂y

(t,λ (t)) is the intermediate value. Problem (29) together with (11) is similar to the

problem in [13]. Thus the bounds for w and its derivatives hold.

3 The Shishkin mesh

A Shishkin mesh with N mesh-intervals is constructed on Ω̄ as follows. Let ΩN = {t j}N
j=1 and Ω̄N =

{t j}N
j=0. The interval Ω̄ is subdivided into 3 sub-intervals [0,τ], (τ,1− τ] and (1− τ,1] such that Ω̄ =

[0,τ]∪ (τ,1− τ]∪ (1− τ,1]. The parameter τ is defined by

τ = min
{

1
4
,

√
ε√
α

ln(N)

}
.

On the outer domain (τ,1−τ] a uniform mesh with N
2 mesh points is placed and on each of the inner

domains [0,τ] and (1− τ,1] a uniform mesh of N
4 mesh points is placed.

4 Discrete problem and error analysis

The discrete BVP associated with (1)-(2) is defined to be

T NY (t j) = − εδ
2Y (t j)+ f (t j,Y (t j)) = 0, for t j ∈Ω

N , (30)

bN
0 Y (0) = b0y(0), bN

1 Y (1) = b1y(1) (31)

where bN
0 = I−D+, bN

1 = I +D−,

D+
Θ(t j) =

Θ(t j+1)−Θ(t j)

h j
, D−Θ(t j) =

Θ(t j)−Θ(t j−1)

h j
,

δ
2
Θ(t j) =

Θ(t j+1)−Θ(t j−1)

2h j
, h j = t j− t j−1.

Theorem 3. For any mesh functions U and Z with bN
0 U(0) = bN

0 Z(0) and bN
1 U(1) = bN

1 Z(1),

|U−Z| ≤C |T N(U−Z)|.
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Proof.

(T N(U−Z))(t j) =− ε δ
2(U−Z)(t j)+ f (t j,U(t j))− f (t j,Z(t j))

=− ε δ
2(U−Z)(t j)+

∂ f
∂y

(t j,M(t j))(U−Z)(t j)

=T N ′(U−Z)(t j),

(32)

where
∂ f
∂y

(t j,M(t j)) is the intermediate value and T N ′ is the Frechet derivative of T N . Since T N ′ is linear

which satisfies the discrete maximum principle in [13]. Hence, on ΩN

|U−Z| ≤C |T N ′(U−Z)| =C |T N(U−Z)|, (33)

which completes the proof.

Theorem 4. Let y be the solution of (1)-(2) and Y be the solution of (30)-(31). Then for t j ∈ Ω̄N ,

|(Y − y)(t j)| ≤ C N−1 ln(N). (34)

Proof. Let t j ∈ ΩN . Since bN
0 Y (0) = b0y(0) and bN

1 Y (1) = b1y(1) from (33), |Y − y| ≤ C |T N(Y − y)|.
Using (30), we get |T NY (t j)| = |(T Ny−T NY )(t j)|. Consider,

|(T Ny−T NY )(t j)|=|T NY (t j)|= |(T Ny−Ty)(t j)|= E|(δ 2−D2)Y (t j)|
≤E(|(δ 2−D2)p(t j)|+ |(δ 2−D2)q(t j)|),

where D2 = d2

dt2 . Since the bounds for p, q, their derivatives and the bounds for the local truncation error
are same as in [13], |(T N(y−Y ))(t j)| ≤CN−1 ln(N). Thus, |(Y − y)(t j)| ≤CN−1 ln(N).

5 The continuation method

An artificial system of nonlinear PDEs corresponding to the system of nonlinear ODEs in (1) is given by

yx(t,x)− ε ytt(t,x)+ f (t,y(t,x)) = 0, (t,x) ∈ (0,1)× (0,X ],

(y− y′)(0,x) = (y− y′)(0),

(y+ y′)(1,x) = (y+ y′)(1), 0 < x≤ X ,

y(t,0) = yinit(t), 0 < t ≤ 1.

(35)

A variant of the continuation method from [3] is used to solve (35) and is given by

D−x Y (t j,xk)− εδ
2
t Y (t j,xk)+ f (t j, Y (t j,xk−1)) = 0,

Y (0,xk) = (y− y′)(0),

Y (1,xk) = (y+ y′)(1),

Y (t j,0) = yinit(t j), t j ∈ Ω̄
N , j = 1, . . . ,N, k = 1, . . .K.

(36)
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The initial guess yinit(t) is chosen to be a polynomial in ′t ′ such that, together the polynomial and its first
derivative satisfy both the given boundary conditions. The choices of hx = xk− xk−1 and the number of
iterations K are determined as follows. Define

e(k) = max
1≤ j≤N

(
|Y (t j,xk)−Y (t j,xk−1)|

hx

)
, (37)

for k = 1,2, . . . ,K,. The step size hx is chosen sufficiently small so that

e(k)≤ e(k−1), 1 < k ≤ K. (38)

The number of iterations K is chosen such that

e(K)≤ tol, (39)

where tol is a suitably prescribed small tolerance. The algorithm similar to the one found in [9] is used
to compute the numerical solution.

6 Numerical Illustrations

In this section, three examples are presented. In the first example, Robin boundary conditions without
the perturbation parameter ε are considered. Aforesaid, the problem is solved on a uniform mesh and the
numerical results are presented under the same example. Whereas in the second example the perturba-
tion parameter ε also occurs in the Robin boundary conditions. Neumann boundary conditions without
the perturbation parameter ε are considered in the third example. The continuation method designed in
Section 5 is used to solve the examples. The tolerance “tol” in the continuation algorithm for all nu-
merical examples is taken to be 0.00001. Notations pN , DN and CN

p denote the parameter-uniform rate
of convergence, parameter-uniform maximum pointwise error and parameter-uniform error constant and
respectively and they bear the same meaning as in [3].

Example 1. Consider the nonlinear BVP with Robin boundary conditions

−ε y ′′(t)+ y5(t)+3y(t)−1 = 0, t ∈ (0,1),

with y(0)− y ′(0) = sin(0.5) and y(1)+ y ′(1) = e−0.7.

The maximum pointwise errors and the rate of convergence for the above BVP are presented in
Table 2 for a non-uniform mesh and the same are presented in Table 1 for a uniform mesh. Graph of the
numerical solution for both y(t) and y ′(t) for N = 256 and ε = 2−8,2−10,2−12 are portrayed in Figure
1 and Figure 2 respectively. The log− log plot for the error in the suggested numerical method of the
above BVP is given in Figure 3.

Example 2. Consider the nonlinear BVP with Robin boundary conditions which include
√

ε

−ε y ′′(t)+ y5(t)+3y(t)−1 = 0, t ∈ (0,1),

with y(0)−
√

ε y ′(0) = sin(0.5) and y(1)+
√

ε y ′(1) = e−0.7.
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The maximum pointwise errors and the rate of convergence for the above BVP are presented in
Table 3 and graph of the numerical solution for both y(t) and y ′(t) for N = 256 and ε = 2−8,2−10,2−12

are portrayed in Figure 4 and Figure 5 respectively. The log− log plot for the error in the suggested
numerical method of the above BVP is given in Figure 6.

Example 3. Consider the nonlinear BVP with Neumann boundary conditions

−ε y ′′(t)+ y5(t)+3y(t)−1 = 0, t ∈ (0,1),

with y ′(0) = sin(0.5) and y ′(1) = e−0.7.

The maximum pointwise errors and the rate of convergence for the above BVP are presented in
Table 4 and graph of the numerical solution for both y(t) and y ′(t) for N = 256 and ε = 2−8,2−10,2−12

are portrayed in Figure 7 and Figure 8 respectively. The Log− log plot for the error in the suggested
numerical method of the above BVP is given in Figure 9.

Table 1: Values of DN , pN and CN
p for α = 2.9 on a uniform mesh in Example 1.

ε
Number of mesh points N

32 64 128 256 512 1024
2−2 8.7208e-04 4.2972e-04 2.1327e-04 1.0623e-04 5.3017e-05 2.6484e-05
2−4 1.1572e-03 5.5520e-04 2.7150e-04 1.3420e-04 6.6710e-05 3.3257e-05
2−6 1.5298e-03 6.8780e-04 3.2228e-04 1.5554e-04 7.6350e-05 3.7819e-05
2−8 2.0284e-03 8.7619e-04 3.8168e-04 1.7427e-04 8.2791e-05 4.0295e-05
2−10 2.3632e-03 1.1176e-03 4.8762e-04 2.0802e-04 9.2385e-05 4.3050e-05
2−12 2.4426e-03 1.2318e-03 5.9409e-04 2.6660e-04 1.1336e-04 4.9045e-05
2−14 2.4539e-03 1.2531e-03 6.2915e-04 3.0807e-04 1.4297e-04 6.1843e-05
2−16 2.4553e-03 1.2559e-03 6.3467e-04 3.1799e-04 1.5720e-04 7.5080e-05
2−18 2.4555e-03 1.2563e-03 6.3539e-04 3.1940e-04 1.5986e-04 7.9459e-05
2−20 2.4555e-03 1.2563e-03 6.3547e-04 3.1958e-04 1.6022e-04 8.0150e-05
2−22 2.4555e-03 1.2563e-03 6.3549e-04 3.1960e-04 1.6026e-04 8.0239e-05
2−24 2.4555e-03 1.2563e-03 6.3549e-04 3.1960e-04 1.6027e-04 8.0250e-05
2−26 2.4555e-03 1.2563e-03 6.3549e-04 3.1960e-04 1.6027e-04 8.0251e-05
DN 2.4555e-03 1.2563e-03 6.3549e-04 3.1960e-04 1.6027e-04 8.0251e-05
pN 9.6683e-01 9.8326e-01 9.9159e-01 9.9578e-01 9.9789e-01
CN

p 1.4342e-01 1.4342e-01 1.4180e-01 1.3939e-01 1.3662e-01 1.3371e-01

7 Conclusion

From Figures 1 and 7, we observe that due to the absence of singular perturbation parameter in the
boundary conditions, the solution y has weak boundary layers and its derivative y ′ has strong boundary
layers. Whereas, from Figure 3, we note that the the solution y itself has strong boundary layers due to
the presence of perturbation parameter in the boundary conditions.

Thus from the figures, it is evident that in the absence of the perturbation parameter ε in the boundary
conditions at t = 0 and t = 1, the boundary layers are weak. Hence in this case one may obtain parameter
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Table 2: Values of DN , pN and CN
p for α = 2.9 on a non-uniform mesh in Example 1.

ε
Number of mesh points N

64 128 256 512 1024 2048
2−2 4.2972e-04 2.1327e-04 1.0623e-04 5.3017e-05 2.6484e-05 1.3236e-05
2−4 5.0890e-04 2.5071e-04 1.2441e-04 6.1964e-05 3.0922e-05 1.5446e-05
2−6 5.9907e-04 2.8992e-04 1.4251e-04 7.0636e-05 3.5163e-05 1.7543e-05
2−8 3.3439e-04 1.9331e-04 1.1018e-04 6.3429e-05 3.7819e-05 1.8820e-05
2−10 1.7364e-04 1.0028e-04 5.7105e-05 3.2167e-05 1.8820e-05 9.9234e-06
2−12 8.8396e-05 5.1073e-05 2.9077e-05 1.6375e-05 9.9234e-06 5.0504e-06
2−14 4.4557e-05 2.5764e-05 1.4671e-05 8.2618e-06 5.0504e-06 2.5478e-06
DN 5.9907e-04 2.8992e-04 1.4251e-04 7.0636e-05 3.7819e-05 1.8820e-05
pN 1.0471 1.0246 1.0126 0.990131 1.0068
CN

p 5.4742e-02 4.9481e-02 4.5428e-02 4.2056e-02 4.2056e-02 3.9090e-02
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Figure 1: Numerical approximations of y(t) in
Example 1.
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Figure 2: Numerical approximations of y ′(t) in
Example 1.
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Table 3: Values of DN , pN and CN
p for α = 2.9 in Example 2.

ε
Number of mesh points N

64 128 256 512 1024 2048
2−2 5.6375e-04 2.8067e-04 1.4003e-04 6.9937e-05 3.4949e-05 1.7468e-05
2−4 1.0576e-03 5.2622e-04 2.6240e-04 1.3102e-04 6.5462e-05 3.2719e-05
2−6 2.1260e-03 1.0551e-03 5.2506e-04 2.6185e-04 1.3074e-04 6.5327e-05
2−8 2.1701e-03 1.2936e-03 7.5053e-04 4.3653e-04 2.6185e-04 1.3074e-04
2−10 2.1687e-03 1.2935e-03 7.5052e-04 4.2732e-04 2.3984e-04 1.3307e-04
2−12 2.1654e-03 1.2931e-03 7.5050e-04 4.2732e-04 2.3984e-04 1.3307e-04
2−14 2.1618e-03 1.2924e-03 7.5042e-04 4.2731e-04 2.3984e-04 1.3307e-04
DN 2.1701e-03 1.2936e-03 7.5053e-04 4.3653e-04 2.6185e-04 1.3307e-04
pN 0.74641 0.78539 0.78180 0.73738 0.97653
CN

p 1.1643e-01 1.1571e-01 1.1192e-01 1.0852e-01 1.0852e-01 9.1947e-02
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Figure 4: Numerical approximations of y(t) in
Example 2.
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Figure 5: Numerical approximations of y ′(t) in
Example 2.
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Figure 6: log-log plot for the error in Example 2.
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Table 4: Values of DN , pN and CN
p for α = 2.9 in Example 3.

ε
Number of mesh points N

64 128 256 512 1024 2048
2−2 1.7585e-03 8.7242e-04 4.3448e-04 2.1681e-04 1.0830e-04 5.4120e-05
2−4 2.0122e-03 9.8632e-04 4.8821e-04 2.4287e-04 1.2112e-04 6.0484e-05
2−6 2.0989e-03 1.0098e-03 4.9493e-04 2.4497e-04 1.2186e-04 6.0774e-05
2−8 1.0907e-03 6.2840e-04 3.5746e-04 2.0556e-04 1.2248e-04 6.0930e-05
2−10 5.4491e-04 3.1416e-04 1.7872e-04 1.0062e-04 6.0930e-05 3.1024e-05
2−12 2.7202e-04 1.5703e-04 8.9356e-05 5.0308e-05 3.1024e-05 1.5512e-05
2−14 1.3577e-04 7.8471e-05 4.4673e-05 2.5153e-05 1.5512e-05 7.7560e-06
DN 2.0989e-03 1.0098e-03 4.9493e-04 2.4497e-04 1.2248e-04 6.0930e-05
pN 1.0556 1.0288 1.0146 1.0000 1.0074
CN

p 2.6869e-01 2.5854e-01 2.5344e-01 2.5089e-01 2.5089e-01 2.4962e-01
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Figure 7: Numerical approximations of y(t) in
Example 3.
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Figure 8: Numerical approximations of y ′(t) in
Example 3.
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Figure 9: log-log plot for the error in Example 3.
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uniform convergent numerical solutions even by using classical finite difference operators on uniform
meshes. On the other hand, in the same situation, the derivative changes rapidly at both the boundaries
t = 0 and t = 1, as the perturbation parameter ε tends to zero; in such a case classical finite difference
operators on uniform meshes render their uselessness. Whereas the presence of the parameter ε at the
boundary conditions at t = 0 and t = 1, increase the significance of the boundary layers at both the
boundaries t = 0 and t = 1. The numerical technique reported in the present article helps to resolve all
the above mentioned problems.

From the tables we find that the maximum pointwise errors decrease through the diagonal and the
proposed method is almost first order parameter-uniform convergent. Further, from the tables we also
observe that the paramter-uniform error constant decreases monotonically.

Moreover from the graphs of the Log− log plot, it is easy to spot that the errors are bounded by
O(N−1 ln(N)).

It should be noted that the present computational technique is both robust and layer-resolving. Fur-
ther, it is worth observing that the present computational technique for problems with boundary layers is
also applicable to problems with a much wider class of singularities.
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