
Symmetric-diagonal reductions as preprocessing for
symmetric positive definite generalized eigenvalue solvers

Morad Ahmadnasab∗

Department of Mathematics, Faculty of Science, University of Kurdistan, 66177-15175, Sanandaj,
Iran

Email(s): M.Ahmadnasab@uok.ac.ir

Journal of Mathematical Modeling
Vol. 11, No. 2, 2023, pp. 301–322. Research Article JMM

Abstract. We discuss some potential advantages of the orthogonal symmetric-diagonal reduction in two
main versions of the Schur-QR method for symmetric positive definite generalized eigenvalue problems.
We also advise and use the appropriate reductions as preprocessing on the solvers, mainly the Cholesky-
QR method, of the considered problems. We discuss numerical stability of the methods via providing
upper bound for backward error of the computed eigenpairs and via investigating two kinds of scaled
residual errors. We also propose and apply two kinds of symmetrizing which improve the stability and
the performance of the methods. Numerical experiments show that the implemented versions of the
Schur-QR method and the preprocessed versions of the Cholesky-QR method are usually more stable
than the Cholesky-QR method.

Keywords: Symmetric definite generalized eigenvalue problem, Cholesky-QR method, Schur-QR method, QZ
method, Rounding error analysis.
AMS Subject Classification 2010: 65F15, 15A21, 15A22.

1 Introduction

The symmetric positive definite (SPD) generalized eigenvalue problem (SPDGEVP) Ax = λBx, where
A,B ∈ Rn×n are symmetric and B (or A) is positive definite, arises in many applications in science and
engineering [5]. The QZ algorithm [14] can be used to solve this problem. This method is numerically
stable but, as it destroys the symmetry of the problem, there is no guarantee that the QZ method produces
real eigenpairs in floating point arithmetic.

When A ∈ Rn×n is symmetric and B ∈ Rn×n is SPD, then we can use the Wilkinson’s approach,

∗Corresponding author
Received: 1 February 2023 / Revised: 7 March 2023 / Accepted: 11 March 2023
DOI: 10.22124/JMM.2023.23734.2120

c© 2023 University of Guilan http://jmm.guilan.ac.ir

http://jmm.guilan.ac.ir

302 M. Ahmadnasab

known as the Cholesky-QR method, which solve

Ax = λBx, (1)

via computing the eigendecomposition of the symmetric matrix L−1AL−T , where L is the lower triangular
matrix in the Cholesky factorization of B, i.e., B = LLT [23]. This approach is numerically unstable [23]
and for the most popular versions of this method, the backward error bounds contain the condition
number of B [6].

For a second known approach of Wilkinson [23, page 337], which is known as the Schur-QR method
[5], let us consider the eigendecomposition

B =V DV T , (2)

for the matrix B in (1) where D is a diagonal matrix of eigenvalues and V is a unitary matrix whose
columns are the corresponding eigenvectors. Wilkinson proposed to use the eigendecomposition (2) to
reduce (1) to symmetric standard eigenvalue problem (SSEVP)

Cy = λy, (3)

where
C = D−1/2V T AV D−1/2, and y = D1/2V T x.

Wilkinson also discussed in [23, page 337] the possibility and stability benefit of computing the eigende-
composition (2) by the methods of Jacobi, Givens, or Householder, where we shall have V in the factored
form, and the real symmetric matrix C may be computed from the factors.

The idea of finding the factorization B = SST (via applying Jacobi method on B) and using it to
transform (1) to a SSEVP have been used by Golub on Illiac [17].

It is stated in [23, page 344] that any possible ill-conditioning of B is concentrated in the small
elements of D in (2) and the matrix C in (3) has certain number of rows and columns with large elements.
Therefore, the eigenvalues of the pencil A− λB of normal size are more likely to be preserved. As a
heuristic, if the diagonal entries of D are ordered from smallest to largest (upward sorting), then the
large entries of C in (3) are concentrated in the upper-left corner. Then, the small eigenvalues of C can
be computed without excessive roundoff error contamination [9, page 464]. Also, for preserving the
large eigenvalues of C, we should order the diagonal entries of D from largest to smallest (downward
sorting) [20, page 233 -235].

A technique for the stable deflation of eigenpairs (1) is proposed in [4]. They viewed the problem
as the simultaneous LDLT factorization of the matrices A and B, where L is not necessarily a triangular
matrix.

Iterative refinement, in fixed or extended precision, has been applied successfully in [21] for improv-
ing the forward and backward errors of approximate solutions of problem (1).

Davies et al. in [6] applied the Cholesky-Jacobi method on (1). Using their implementation strategy,
some rigorous backward error bounds have been derived which are significantly smaller than bounds
involving a factor of the condition number of B when B is ill-conditioned [6]. This has another advantage
which, thanks to the Jacobi method, there is no need to think of a heuristic downward (or upward) sorting
suggested in [9] and [20] for the Schur-QR method.

Symmetric-diagonal reductions as preprocessing for SPDGEVPs 303

The methods such as the ones in [1, 6, 7] are designed to improve eigenpairs individually, there-
fore they need O(n4) arithmetic operations when refinement of all eigenpairs are requiered. In [15],
an efficient refinement algorithm (with O(n3) arithmetic operations) for improving the accuracy of all
eigenvectors of real symmetric matrix A has been proposed. To overcome the necessary need to the
initial eigenvalue gap in [15], a new algorithm in [16] has been developed that can refine approximate
eigenvectors corresponding to clustered eigenvalues. As they explained, the results of both [15, 16] are
applicable for SPDGEVPs too.

In this paper, depend on the SPD property of either matrix A or matrix B, we study two main versions
of the Schur-QR method for solving the symmetric generalized eigenvalue problems Ax = λBx. The
first version that we study here is related to the problems whose matrix B is SPD. The second version,
designed likewise but for the symmetric problems Ax = λBx with A being SPD. It is true that this second
group of the problems could be treated via the relations between the eigenpairs of the matrix pencils
P(λ) = A− λB and the reverse matrix pencil revP(λ) = −λP(λ−1) = (B− λA) [12]. Nevertheless,
because we consider and solve some examples whose both matrices A and B are SPD with different con-
dition numbers, we shall classify the above versions as two different versions of the Schur-QR method.

For implementing each of the above versions, we proposes either an appropriate version of orthog-
onal symmetric-diagonal reduction as preprocessing for SPDGEVP solvers (mainly the Cholesky-QR
method) or a reduction to symmetric standard eigenvalue problem. The former (resp., the latter) is the
preprocessed Cholesky-QR method (resp., the Schur-QR method). We shall see that the preprocessed
Cholesky-QR method is theoretically equivalent to the Schur-QR method. One aim of this paper is to
report performance and stability potentials of the Schur-QR method, which to the best of our knowledge
remain uncovered. We will suggest and apply two kinds of symmetrizing in Section 5, which in practice
prevent the preprocessed Cholesky-QR method and the Schur-QR method from being unstable for the
same examples.

Our symmetric-diagonal reductions are different from the one used in [22] and some of its refer-
ences. In [22], as first phase, a non-orthogonal symmetric-diagonal reduction has been used to reduce a
symmetric indefinite matrix pair (A,B) to tridiagonal-diagonal form by congruence transformations.

This research was motivated by the need for improving the stability and at the same time preserving
or improving the computational efficiency of Schur-QR method for solving a SPDGEVP that enjoys the
structure of the problem. Besides, it is well known that the Cholesky-QR method is advisable whenever
the matrix B is reasonably well conditioned with respect to inversion or when B has a simpler structure
than A, as when B is diagonal, see Section 5.2 in [2].

The rest of the paper is organized as follows. In Section 2, we introduce two versions of an orthogonal
symmetric-diagonal reduction. We also discuss two versions of the Schur-QR method. At the last part of
Section 2, we discuss the equivalency of the presented methods. In Section 3, we analyze the performance
of the algorithms obtained in Section 2. Section 4 is devoted to the rounding error analysis of the methods
where we provide upper bounds for backward errors of the eigenpairs computed by the versions which
do not use any kinds of symmetrizing. Numerical experiments, including a study of scaled residual errors
together with backward errors of computed eigenpairs for some representative examples from literature,
are given in Section 5. In this section, we suggest and apply two kinds of symmetrizing for improving
the stability and the performance of the methods. Conclusions are given in Section 6.

304 M. Ahmadnasab

2 Methods outline

Suppose both A and B are symmetric and B (or A) is positive definite. We shall describe two main
versions of an orthogonal symmetric-diagonal reduction, based on the eigendecomposition of A or B, the
one that is SPD. Each version can be used either as a preprocessing for SPDGEVP solvers or as the first
step to reduce SPDGEVP problem to a SSEVP.

In this section, we merely introduce and explain the theory of the methods. Further technical notes
about performance and stability of these methods will be discussed in Section 3 and Section 4, respec-
tively. Some more modifications for improving the performance and the stability of the methods will be
proposed and used in Section 5.

2.1 Preprocessed Cholesky-QR method

Assume A∈Rn×n is symmetric and B∈Rn×n is SPD. Here, we shall introduce a preprocessed Cholesky-
QR method for solving the problem

Ax = λBx. (4)

Let
B =UΣUT , (5)

be the eigendecomposition of the SPD matrix B, where U is an orthogonal (unitary) n×n matrix and Σ

is a diagonal n×n matrix whose diagonal entries are eigenvalues of B. Using (5), one can rewrite (4) as
follows

Ax = λUΣUT x.

This is equivalent to
AUUT x = λUΣUT x,

which is in turn equivalent to
UT AUUT x = λΣUT x.

Denoting x̂ :=UT x, we see that the eigenvalues of problem (4) are the eigenvalues of

UT AUx̂ = λΣx̂. (6)

This suggests the preprocessing part of the first method for solving problem (4). Problem (6) can be
solved by either of the Cholesky-QR method or the QZ method. But as theoretically UT AU is symmetric
and Σ is diagonal with positive diagonal entries, we mostly opt to use the Cholesky-QR method. In this
case, we shall recover the eigenvectors of problem (4) from those of (6).

To ensure a better stability behaviour of the QR algorithm, we add some upward (resp. downward)
sorting on the entries of matrix Σ when the backward stability of the small (resp. large) eigenvalues of
(4) is the first concern. At this case, we apply appropriate column reorder on the matrix U .

The entire algorithm for computing the eigenpairs of the problem (4), using eigendecomposition of
B and the Cholesky-QR method, is summed up as shown in Algorithm 1. Obviously, calling and using
either of the Cholesky-QR method or the QZ method for solving problem (6) imposes additional and
unnecessary costs and is not recommended in practice. Nevertheless, we have one main aim from such
calls (such as the call in Step 3 of Algorithm 1). The aim is revisiting and investigating the improvement
in the properties (i.e., stability and possibly performance) of the Cholesky-QR algorithm when applying
on problems with simpler (i.e., diagonal) structure matrix B.

Symmetric-diagonal reductions as preprocessing for SPDGEVPs 305

Algorithm 1 Computing the eigenpairs of the problem (4) using preprocessed Cholesky-QR method,
when B is SPD
Inputs: Symmetric matrix A and SPD matrix B.
Outputs: Eigenpairs of problem (4).

1. Compute the eigendecomposition (5) for B. A predicted sorting for the diagonal entries of Σ

followed by the appropriate reordering on the columns of U are to be included,

2. Construct A =UT AU , and assign B = Σ, for U and Σ obtained in the first step.

3. Solve A x̂ = λBx̂ using the Cholesky-QR method.

4. The eigenvalues of problem (4) are the computed eigenvalues in Step 3 and their associated eigen-
vectors are x =Ux̂.

2.2 Reduction to symmetric standard eigenvalue problem when B is SPD

In this section, we explain the Schur-QR method for problems with SPD matrix B. Assume A ∈ Rn×n is
symmetric and B ∈ Rn×n is SPD. If we enrich the Step 2 of Algorithm 1 by the process of transforming
problem (6) to a SSEVP (i.e., by using the same idea as (3)), then instead of applying Cholesky-QR in
Step 3, we need to solve a SSEVP.

Similar to what we have in Section 2.1, and depends on our need, we use upward (resp. downward)
sorting on the entries of matrix Σ and then make appropriate reordering on the columns of matrix U .

In the following, we detail the process of reducing the SPDGEVP problem (6) to the desired SSEVP.
Let

Σs = diag(
√

σ1, . . . ,
√

σn),

and

Σis = Σ
−1
s = diag(1/

√
σ1, . . . ,1/

√
σn), (7)

where σi for i = 1, . . . ,n are the eigenvalues (and at the same time singular values) of the matrix B
which are the diagonal entries of matrix Σ in (5). Considering the facts that x̂ =UT x and Σ2

s = Σ, (6) is
equivalent to

ΣisUT AUΣisΣsUT x = λΣsUT x.

By denoting y = ΣsUT x and S = ΣisUT AUΣis, we get the following SSEVP:

S y = λy. (8)

Eigenvalues of problem (4) are the eigenvalues of (8) and their associated eigenvectors should be com-
puted by x = UΣisy. Algorithm 2 shows the necessary steps for solving problem (4) via the reductions
(6) and (8). To get to the desired SSEVP, we merely exploit the diagonal entries of Σs and Σis to conclude
better performance.

306 M. Ahmadnasab

Algorithm 2 Computing the eigenpairs of the problem (4) via transforming (6) to a SSEVP, when B is
SPD
Inputs: Symmetric matrix A and SPD matrix B.
Outputs: Eigenpairs of problem (4).

1. Compute the eigendecomposition (5) for B. A predicted sorting for the diagonal entries of Σ

followed by the appropriate reordering on the columns of U are to be included.

2. Construct S = ΣisUT AUΣis for U obtained in Step 1 and Σis defined in (7).

3. Solve S y = λy using the symmetric QR method,

4. The eigenvalues of problem (4) are the computed eigenvalues in Step 3 and their associated eigen-
vectors are to be computed by x =UΣisy.

2.3 Orthogonal symmetric-diagonal reduction

Assume that B ∈ Rn×n is symmetric and A ∈ Rn×n is SPD. Instead of introducing a direct reduction on

Ax = λBx, (9)

we can first change the roles of A and B by using the following displacement

T := B, B := A, and A := T. (10)

Then, we shall call Algorithm 1 to solve the new problem Ax = λBx. The eigenvalues of problem (9) are
the reciprocals of the computed eigenvalues by Algorithm 1, and their associated eigenvectors are to be
computed by x =Ux̂. Algorithm 3 shows the overall steps explained above.

Algorithm 3 Computing the eigenpairs of the problem (9) using preprocessed Cholesky-QR method,
when A is SPD
Inputs: SPD matrix A and symmetric matrix B.
Outputs: Eigenpairs of problem (9).

1. Do the displacement (10),

2. Solve the new problem Ax = λBx by Algorithm 1,

3. The eigenvalues of problem (9) are the reciprocals of the computed eigenvalues in Step 2, and their
associated eigenvectors are the same as what computed in Step 2.

2.4 Reduction to symmetric standard eigenvalue problem when A is SPD

Assume that B ∈ Rn×n is symmetric and A ∈ Rn×n is SPD. This section for problem (9) is similar to
Section 2.2 for problem (4). Similar to Section 2.3, we first use displacment (10). Then we call Algo-
rithm 2 to solve the new problem Ax = λBx. The eigenvalues of problem (9) are the reciprocals of the

Symmetric-diagonal reductions as preprocessing for SPDGEVPs 307

computed eigenvalues by Algorithm 2 and their associated eigenvectors are the same as those computed
by Algorithm 2. Algorithm 4 illustrates the necessary steps for solving the problem (9).

Algorithm 4 Computing the eigenpairs of problem (9) via transforming to a SSEVP when A is SPD
Inputs: Symmetric matrix B and SPD matrix A.
Outputs: Eigenpairs of the problem (9).

1. Do the displacments (10).

2. Solve the new problem Ax = λBx by Algorithm 2.

3. The eigenvalues of problem (9) are the reciprocals of the computed eigenvalues in Step 2 and their
associated eigenvectors are the same as those computed in Step 2.

2.5 The equivalency of the presented methods

The idea of the Algorithm 1 (resp. 3) theoretically is the same as those of the Algorithm 2 (resp. 4).
These uncover the following interesting facts.

Theorem 1. a) The preprocessed Cholesky-QR method (Algorithm 1) is theoretically equivalent to the
Schur-QR method (Algorithm 2). b) Algorithm 3 is theoretically equivalent to Algorithm 4.

Proof. To prove case a), we can see that Step 3 of the Algorithm 1 includes two sub-steps: First is
computing Cholesky decomposition of B = ΣsΣ

T
s . Second is computing the matrix S as what it is in

Step 2 of Algorithm 2. This means that both Algorithm 1 and Algorithm 2 reduce the main problem to
an identical standard eignevalue problem with the same way of eigenvector recovery.

For the case b), we should follow the same way as what we do for the case a), so we do not explain
it.

3 Performance of the algorithms

Here we shall analyze the complexity of Algorithms 1. Algorithm 3 has the same complexity, except that
in Step 3 it needs n more divisions. Algorithm 2 and Algorithm 4 have almost the same complexity as
those of Algorithm 1 and Algorithm 3 respectively, but in both Algorithm 2 and Algorithm 4, the unnec-
essary operations in computing Cholesky factorization are avoided, so we expect better performance for
them.

The process of computing eigenpairs of problem (4) by Algorithm 1 has four main steps. Below, the
necessary operations for each step of Algorithm 1 are shown:

Step 1 involves

1-1. ∼ 20
3 n3 +n2 flops for eigendecompostion,

1-2. ∼ nlog(n) flops for sorting eigenvalues,

308 M. Ahmadnasab

1-3. and 2n2 +n memory locations for A, U and Σ.

Step 2 including matrix multiplications, requires

2-1. 4n3−2n2 (or ∼ n2.807 in the case of using Strassen’s algorithm) flops, for computing UT AU .

Step 3 Cholesky-QR needs

3-1. ∼ 12n3 flops for computing eigenpairs of (6),

3-2. and n memory locations for eigenvalues (the associated eigenvectors can be stored in place
of the columns of matrix Σ).

Step 4 needs

4-1. 2n3−n2 flops for xi =Ux̂i, i = 1, . . . ,n (xi is the eigenvector associated with the eigenvalue
λi).

According to this analysis and considering the similar steps in Algorithm 1 and Algorithm 3, the total
number of flops required by Algorithm 1 (resp., by Algorithm 3), when we consider 4n3−2n2 flops for
the involved matrix multiplications, is asymptotic to 74

3 n3−2n2 (resp., to 74
3 n3−2n2 +n). The number

of memory locations in each one of Algorithm 1 and Algorithm 3 is 2n2 +2n.
On the other side, the QZ method (which does not use the symmetry and symmetric definiteness of

the involved matrices) needs about 46n3 flops [2] for solving either of problem (4) or problem (9). For
problem (4), the Cholesky-QR method takes approximately 12n3 flops [9]. These facts are supported by
the numerical experiments in Section 5.

4 Numerical stability

We discuss numerical stability of Algorithm 1. Almost the same (with reverse roles for A and B) is true
for Algorithm 3. We expect the stability behaviour of Algorithm 2 (resp., Algorithm 4) to be very close
to those of Algorithm 1 (resp., Algorithm 3), and hence we do not analyze them separately.

To discuss the numerical stability of Algorithm 1, we first analyze the rounding errors of the decom-
position and the reduction introduced during the Steps 1 and 2 of Algorithm 1. Then, by analyzing the
rounding errors of Steps 3 and 4 of the algorithm, we give upper bound on the backward error of the
computed eigenpairs. We use the standard model of floating point arithmetic [11]:

f l(x op y) = (x op y)(1+δ), |δ | ≤ u, op =+,−,∗,/,

where u is the unit roundoff. In what follows, by ‖ · ‖∞ and ‖ · ‖2 we mean ∞-norm, and 2-norm vector
norm (or their corresponding subordinate matrix norm), respectively. By the condition number of matrix
X , we mean k(X) = ‖X‖∞‖X−1‖∞.

Let Ũ Σ̃ŨT be the computed eigendecomposition in (5). Then, following the backward error analysis
introduced in [3] for eigenvalue decomposition of real symmetric matrices based on orthogonal decom-
positions, we denote the residual associated with the computed decomposition Ũ Σ̃ŨT by

µR = ‖BŨ−Ũ Σ̃‖2,

Symmetric-diagonal reductions as preprocessing for SPDGEVPs 309

and the departure from orthogonality by

µO = ‖I−ŨTŨ‖2.

We define a backward error ∆B by
B+∆B = Ũ Σ̃ŨT . (11)

As we have [3]
‖∆B‖∞ ≤ µR‖Ũ‖∞ +µO‖B‖∞,

therefore ‖∆B‖∞ might be small if both µR and µO are small. Let us factor Ũ = WZ for orthogonal W .
Using this, we can define a symmetric backward error ∆BW via

B+∆BW =W Σ̃W T .

Let us denote
µ

W
R = ‖BW −W Σ̃‖∞, µ

W
O = ‖Ũ−W‖∞.

Then the decomposition Ũ Σ̃ŨT is close to an eigenvalue decomposition of some symmetric matrix if µW
O

is small, because ‖∆B−∆BW‖∞ ≤ µW
O ‖Σ̃‖∞(1+ ‖Ũ‖∞) [3]. To ensure small µW

O for almost orthogonal
matrices, we should use either of the polar factorization of Ũ or QR decompositon of appropriately
scaled Ũ [3]. When µW

R is also small, then Ũ and Σ̃ are close to an eigenvalue decomposition of a nearby
symmetric matrix [3].

When we compute A in the second step of Algorithm 1, we get

˜A = ŨT (A+∆A1)Ũ (12)

instead. Considering (11) and applying standard results [9] on the product of matrices, after some alge-
braic simplifications, we get

‖∆A1‖∞ ≤ anuk(Ũ){‖A‖∞ +(µR‖Ũ‖2 +µO‖B‖2)}+O(u2). (13)

When µR and µO are small enough, the most effective role for the upper bound in (13) goes to its first
term, i.e., to anuk(Ũ)‖A‖∞.

Now, the same analysis as those in [6] could be considered when the Cholesky-QR method is used
for solving the problem

˜A x̂ = λB̃x̂, (14)

with ˜A in (12) and B̃ = Σ̃ in (11). To this end, let

B̃ = LsLT
s , (15)

be computed Cholesky factorization of matrix B̃. As it is shown in [6], when we use a normwise
backward stable eigensolver within the Cholesky-QR method for (14), we get a computed eigensystem
which is the exact eigensystem of

L−1
s (˜A +∆ ˜A)L−T

s ,

which for g1(n), a polynomial in n,

‖∆ ˜A ‖∞ ≤ g1(n)uk(B̃)‖ ˜A ‖∞. (16)

310 M. Ahmadnasab

Considering (12), (13) and (16), and denoting ∆A = ∆A1 +Ũ−T ∆ ˜A Ũ−1, we get

L−1
s (˜A +∆ ˜A)L−T

s = L−1
s ŨT (A+∆A)ŨL−T

s ,

where

‖∆A‖∞ ≤ anuk(Ũ)
(
‖A‖∞ +µR‖Ũ‖2 +µO‖B‖2

)
+g1(n)uk(Ũ)2k(B̃)‖A‖∞ +O(u2). (17)

This shows that upper bound on the backward error of the computed eigenpairs by the preprocessed
Cholesky-QR method given in Algorithm 1 includes uk(B̃)‖A‖∞, almost the same as those for the
Cholesky-QR method [6].

Nevertheless, experimental results together with a study of scaled residual errors in section 5 show
that, in finite precision arithmetic, the implementation of the studied algorithms which consists of some
symmetrizing suggested in Section 5 are more stable than the Cholesky-QR method.

5 Numerical properties of the methods and some possible improvements

In the first part of this section, the scaled residual errors produced by the studied methods are used to
explain more on their better stabilities (compared with the Cholesky-QR method). In the second part,
the formula of normwise backward errors and the formula of mean of backward errors for computed
eigenpairs will be presented. In the third part, we suggest two kinds of symmetrizing to be used in the
appropriate implemented versions of the studied methods. The fourth part of this section consists of 5
different examples to assess and support the results and the suggestions of the previous sections. The
experiments were performed in MATLAB 9, where the roundoff is u = 2−53 ≈ 1.1×10−16.

From now on, by the Cholesky-QR method (CQR) we mean the eig function in MATLAB with the
option chol and by the QZ method we mean the eig function in MATLAB with the option qz. We
denote by OSDR1, RSSEP1, OSDR2, and RSSEP2 the implementations of Algorithm 1, Algorithm 2,
Algorithm 3, and Algorithm 4, respectively.

In what follows, all the values on X-axis and Y-axis of the figures are in basis-10 logarithmic scale.

5.1 Scaled residual errors

In this section, considering the matrix pair of the problem (4), we are interested in the scaled residual
errors related to the transformation matrix of the OSDR1 method when we compare them with those from
the CQR method. The explanation and property of the scaled residual errors produced by the OSDR1
method and the RSSEP1 method are almost the same, so we do not discuss here those from the RSSEP1
method.

As it is seen in Algorithm 1, the OSDR1 method consists of two reductions. The first reduction is
done by using Step 1 and Step 2 of the algorithm which provides the symmetric-diagonal matrix pair

(A ,B) from (A,B). (18)

The second reduction is done in the first part of the Step 3 of the algorithm. This second reduction is
what actually the CQR method does on every SPD generalized eigenvalue problem A x = λBx with
symmetric matrix A and SPD matrix B, i. e., transferring the matrix pair

(A ,B) to the matrix pair (Cs,In), (19)

Symmetric-diagonal reductions as preprocessing for SPDGEVPs 311

which corresponds to a symmetric standard eigenvalue problem Csx̂ = λ̂Inx̂ for n-by-n identity matrix
In. This analysis gives us more insight into the behavior of the OSDR1 methods and the CQR method.

It is simple to see that the overall transformation matrix in the OSDR1 method, including both re-
ductions in (18) and (19), is

Ms =UL−T
s , (20)

where U is the unitary matrix computed in (5) and Ls is in general the lower triangular (but here is
a diagonal) matrix obtained in (15). This means that the symmetric-diagonal matrix pair (Cs,In) is
congruent to the pair (A,B), where Cs = MT

s AMs and In = MT
s BMs.

On the other hand, when we use the CQR method for solving the problem (4), the symmetric-diagonal
matrix pair (C ,In) = (L−1AL−T ,In), for the lower triangular matrix L in the Cholesky factorization
B = LLT , becomes congruent to the pair (A,B), where for the transformation matrix

M = L−T , (21)

we have C = MT AM and In = MT BM.
Suppose Mi for i = 1,2, be the transformation matrices in (20), and (21) respectively. Also, suppose

(Si,Di) for i = 1,2 be the symmetric-diagonal matrix pairs produced using Mi for i = 1,2 respectively.
We compute the following quantities:

• the scaled residual error related to A produced by each method,

SREAi =
‖MT

i AMi−Si‖
‖A‖‖Mi‖2 , i = 1,2. (22)

• the scaled residual error related to B produced by each method,

SREBi =
‖MT

i BMi−Di‖
‖B‖‖Mi‖2 , i = 1,2. (23)

• the condition number of the transformation matrices, k(Mi), i = 1,2.

We have computed the scaled residual errors (22) and (23) for all the problems in Examples 1-5 of
Section 5.4. The explanation associated with the results are as follows:

• The global results for SREAi, i = 1,2, for all considered problems, are almost the same. In these
problems, the values of SREA1 are smaller than the values of SREA2 when k(B)> 1e3.

• The global results for SREBi, i= 1,2, for all considered problems, are almost the same. The values
of SREB2 are smaller than the values of SREB1 at almost all the considered problems.

• In all the problems, the condition numbers k(M1) and k(M2) are almost equal and they increase as
k(B) varies between the interval used in each example.

We know that, in practice, Di for both i = 1 and i = 2, would be considered as the identity matrix. And
this means that SREBi, i = 1,2 are not as important as SREAi, i = 1,2.

We detail, as representative, SREAi, i = 1,2 and SREBi, i = 1,2 for the problems in Example 4 of
Section 5.2 with n = 100 and MODE = 3. Figure 1 (a) (resp. Figure 1 (b)) illustrates SREAi, i = 1,2
(resp. SREBi, i = 1,2) versus k(B) for n = 100, respectively.

312 M. Ahmadnasab

2 4 6 8 10 12

−16

−15.8

−15.6

−15.4

−15.2

−15

−14.8

−14.6

k(B)

S
R

E
A

i,
i=

1
,2

CQR

OSDR1

(a) SREAi, i = 1,2

2 4 6 8 10 12
−17

−16.8

−16.6

−16.4

−16.2

−16

−15.8

−15.6

−15.4

k(B)

S
R

E
B

i,
i=

1
,2

CQR

OSDR1

(b) SREBi, i = 1,2

Figure 1: Scaled residual errors versus k(B).

5.2 Backward errors of the computed eigenpairs

To evaluate relative normwise backward error of the computed eigenpair (x̃, λ̃), we use the following
explicit expression ([8], [10])

η(x̃, λ̃) =
‖r̃‖

(|λ̃ | ‖B‖+‖A‖)‖x̃‖
,

where r̃ = λ̃Bx̃−Ax̃ is the residual of the pair (x̃, λ̃). We denote the mean of backward errors of the
computed finite eigenvalues as follows

ηMean = Mean{η(x̃i, λ̃i) : i = 1, . . . ,n}.

We use the MATLAB function isspd from [18] to check the positive definiteness of the matrices. It is
known that for accurate computation of small eigenvalues of (4), descending sorting (downward grading)
of eigenvalues is effective [20]. This is because, the resulting matrix becomes graded, and the QR method
is known to have good performance on graded matrices. The same is true for accurate computation of
small eigenvalues of (9). See Examples 1-4 below. Also for accurate computation of large eigenvalues,
ascending sorting (upward grading) of eigenvalues is effective [20]. Example 4 provides a case with one
large eigenvalue that needs ascending sorting (not descending sorting) for eigenvalues.

To apply descending (resp. ascending) sorting of eigenvalues on the matrix UΣUT in (5), we simply
use the appropriate descending (resp. ascending) sorting on the diagonal entries of the matrix Σ. Then
we do the same reordering (permutation) on the columns of the associated matrix U .

5.3 Symmetrizing

In finite precision computation, the symmetry of the matrix UT AU in Algorithm 1 is not guaranteed. For
this reason and as we prefer to solve the reduced problems by the CQR method, we suggest to use the

Symmetric-diagonal reductions as preprocessing for SPDGEVPs 313

perturbation (i.e., symmetrizing)

A (j, i) := A (i, j), for i = 2, . . . ,n, and j = 1, . . . , i−1, (24)

on A (before starting the Step 3 of Algorithm 1) to make it exactly symmetric. We also suggest to use
the following perturbation (i.e., symmetrizing) on the matrices S ,

S (j, i) := S (i, j), for i = 2, . . . ,n, and j = 1, . . . , i−1, (25)

before Step 3 of Algorithm 2.
The experiments, reported in Section 5.4, are usually the ones that involve the perturbations (24) and

(25). But we have also checked with the ones that do not involve the above perturbations. The results are
listed as follows.

1. When we apply the OSDR1 method (resp., the OSDR2 method) without the perturbation (24), its
algorithm in Step 3 (resp., sub-Step 2-3) automatically switch to use the QZ method instead of the
CQR method. This (at the cost of some performance) results in a preprocessed version of the QZ
method with similar or better stability compared with those obtained directly from the QZ method.

2. When we use an implementation of the OSDR1 method (resp., the OSDR2 method) which does
not use the perturbation (24) and does not switch to use the QZ method in Step 3 (resp., sub-Step
2-3), then we see almost the same stability property as those in the OSDR1 method (resp., the
OSDR2 method) which uses (24).

Anyway, for exploiting the structure of problem and getting a reasonable performance, one should
use the perturbation (24) in the implementation of both the OSDR1 method and the OSDR2
method.

3. We also found that, in all considered cases, the perturbation (25) not only improves the perfor-
mance of the RSSEP1 method and the RSSEP2 method but also is essential in the stability of these
methods. See Example 3 for a representative of the cases that the perturbation (25) is not used.

5.4 Numerical Examples

We introduce five groups of examples to support the discussions of the prevoius sections and to show the
improvements achieved using the reductions and the symmetrizings used in this work.

Example 1. We consider a group of examples from Matrix Market collection [19]. A brief description
of the selected matrix pairs are given in Table 1. The structures of the matrices A and B are noted in the
third and fourth columns of the Table 1, respectively. We use the abbreviation ‘rspd’ for the structure
of a matrix to indicate that is a real symmetric positive definite matrix. Likewise, the abbreviation
‘rspsd’ for a matrix means that is real symmetric positive semi-definite. For the matrix pairs (A,B) in
BCSST07 and BCSST19, both A’s and B’s are rspd. But, as in both of these problems k(B) < k(A),
we report on the solutions obtained by applying the considered methods for solving both Ax = λBx and
Bx = λAx. The CQR method cannot be used directly for BCSST01, BCSST04, and BCSST13, because,
for these problems, A’s are rspd and B’s are rspsd. For the above reasons and because we want to provide

314 M. Ahmadnasab

some direct test problems, we use the matrix pairs in BCSST01, BCSST04, BCSST07, BCSST13, and
BCSST19 to make the following matrix pairs

(Â, B̂) := (B,A).

Now, our aim is to solve the problems BCSST07, and BCSST19, together with the problems

Â(i)x = λ B̂(i)x, (26)

for i = 01,04,07,13 and 19 to remind the original of Â and B̂. Here by BCSST07 and BCSST19, we
mean these problems with their exact matrices A and B.

Table 2 displays the mean of backward errors of the eigenpairs resulted from solving the problems
in (26) and the problems BCSST07 and BCSST19 by the OSDR1 method, the RSSEP1 method, the
QZ method and the CQR method. Second column of Table 2 shows the condition number of B’s or B̂’s
depend on the type and the name of the problems. Table 3 shows CPU-times for solving the problems
introduced in Table 2.

Table 1: Matrix pairs from the Matrix Market collection.

Name n A B Brief description
BCSST01 48 rspd rspsd Small test problem
BCSST04 132 rspd rspsd Oil rig – not condensed
BCSST07 420 rspd rspd Medium test problem – consistent mass
BCSST13 2003 rspd rspsd Fluid flow generalized eigenvalues
BCSST19 817 rspd rspd Part of a suspension bridge

Example 2. We consider an example from [6]. Let

A =


1 α 0 δ

α 2 0 0
0 0 3 0
δ 0 0 ε

 , and B = diag(ε,1,ε,1), α, δ > 0, 0 < ε < 1.

For α = 1, δ = 1e-3 and a range of ε from 1e-10 to 1e-18, we have 9 problems. We solve the problems
by the OSDR1 method, the RSSEP1 method, the QZ method, and the CQR method. The CQR method is
unstable for almost all cases, while the QZ method displays almost the best stability and both the OSDR1
method and the RSSEP1 method obtain backward errors smaller than unit roundoff for each value of ε .
Figure 2 (a) and Figure 2 (b) illustrate mean of backward errors versus k(B) for the eigenvalues of
minimal absolute (λMin = min{|λi|, i = 1,4}) and for the finite eigenvalues (λfinite = {λ , |λ |< ∞}) of the
problems, respectively. For the problems solved in this example CPU-times of the OSDR1 method and
the RSSEP1 method are more than those of the CQR method and the QZ method.

Symmetric-diagonal reductions as preprocessing for SPDGEVPs 315

Table 2: Means of backward errors of the computed eigenpairs (x̂, λ̂) for the problems in (26), BCSST07
and BCSST19.

Problem k(B) or k(B̂) ηOSDR1
Mean ηRSSEP1

Mean η
QZ
Mean η

CQR
Mean

Â(01)x = λ B̂(01)x 8.82e+5 4.54e-15 1.98e-15 9.45e-17 2.08e-12
Â(04)x = λ B̂(04)x 2.29e+6 1.81e-14 2.20e-14 1.28e-16 2.32e-12
BCSST07 7.61e+3 2.49e-16 2.44e-16 3.27e-15 1.49e-16
Â(07)x = λ B̂(07)x 7.57e+6 2.98e-16 2.96e-16 1.95e-15 1.38e-15
Â(13)x = λ B̂(13)x 1.09e+10 1.96e-16 1.98e-16 1.62e-16 2.26e-14
BCSST19 2.34e+5 2.00e-17 2.01e-17 7.00e-16 1.77e-16
Â(19)x = λ B̂(19)x 1.34e+11 1.22e-16 1.21e-16 2.31e-16 1.15e-13

Table 3: CPU- times for solving the problems introduced in Table 2.

Problem tOSDR1 tRSSEP1 tQZ tCQR

Â(01)x = λ B̂(01)x 3.10e-3 2.70e-3 3.30e-3 1.50e-3
Â(04)x = λ B̂(04)x 2.98e-2 2.48e-2 1.79e-2 4.90e-3
BCSST07 2.15e-1 2.46e-1 7.18e-1 1.30e-1
Â(07)x = λ B̂(07)x 2.68e-1 2.43e-1 7.43e-1 1.48e-1
Â(13)x = λ B̂(13)x 1.20e+1 1.28e+1 8.38e+1 4.60e+0
BCSST19 1.07e+0 9.61e-1 7.08e+0 6.67e-1
Â(19)x = λ B̂(19)x 1.38e+0 1.24e+0 7.23e+0 6.38e-1

Example 3. This example was discussed in [13]. Let A,B ∈ Rn×n and

A =



5 −4 1
−4 6 −4 1
1 −4 6 −4 1

.
1 −4 6 −4 1

1 −4 6 −4
1 −4 5


, and B(i, j) =

232792560
i+ j−1

,

for i, j = 1, . . . ,n. We consider 9 problems with 9 different sizes, n = 2, . . . ,10. Condition number, k(B),
is an increasing function of n. Both set of matrices A and matrices B in these examples are SPD.

Figure 3 (a) displays mean of backward errors of the computed eigenpairs versus k(B) when the
problems are solved by the OSDR1 method, the RSSEP1 method, the OSDR2 method, the RSSEP2
method, the QZ method, and the CQR method. When k(B) changes from its minimum to its maximum,
the mean of backward errors of the solutions produced by the CQR method is increasing but the mean of
backward errors of the solutions produced by the other methods stay near to unit roundoff.

Figure 3 (b) displays mean of backward errors of the computed eigenpairs versus k(B) when the prob-
lems are solved by the RSSEP1 method, the NSRSSEP1 method, the RSSEP2 method, the NSRSSEP2

316 M. Ahmadnasab

10 11 12 13 14 15 16 17 18
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

k(B)

M
ea

n
 o

f
b

ac
kw

ar
d

 e
rr

o
r

OSDR1

RSSEP1

QZ

CQR

(a) η
λMin
Mean

10 11 12 13 14 15 16 17 18

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

k(B)

M
ea

n
 o

f
b

ac
kw

ar
d

 e
rr

o
r

OSDR1

RSSEP1

QZ

CQR

(b) η
λfinite
Mean

Figure 2: ηMean versus k(B).

2 4 6 8 10 12
−16.5

−16

−15.5

−15

−14.5

−14

−13.5

−13

−12.5

k(B)

M
ea

n
of

 b
ac

kw
ar

d
er

ro
r

OSDR1

RSSEP1

OSDR2

RSSEP2

QZ

CQR

(a) Symmetrized using (24)

2 4 6 8 10 12

−16

−15

−14

−13

−12

−11

−10

−9

−8

−7

−6

RSSEP1

NSRSSEP1

RSSEP2

NSRSSEP2

QZ

CQR

(b) Not symmetrized

Figure 3: ηMean versus k(B).

method, the QZ method, and the CQR method. Here NSRSSEP1 (resp. NSRSSEP2) stands for not
symmetrized RSSEP1 (resp. RSSEP2) respectively, that is, a version of RSSEP1 (resp. RSSEP2) with-
out the perturbation (25). As we can see, mean of backward errors of the eigenpairs computed by the
NSRSSEP2 method are about one order larger than those computed by the RSSEP2 method. Also, the
NSRSSEP1 method behaves unstably. CPU-times of the NSRSSEP1 method (resp. the NSRSSEP2
method) are more than CPU-times of the RSSEP1 method (resp. the RSSEP2 method).

This example (as representative of the other examples) shows the important roles of the perturbation
(25) in the stability and in the performance of the RSSEP1 method and the RSSEP2 method. Also,
CPU-times of the CQR method and the QZ method for this example are less than those of the other
methods.

Example 4. Here we use some families of random matrices for A and B in (4). Specifically, we use
MATLAB codes,

A = randn(n); A = (A+AT)/2; (27)

for generating A, and
B = gallery(′randsvd′,n, -1ek,MODE); (28)

for generating B where k belongs to a selection of {2,4,6,8,10,12}. Here the function ’randn’ generates

Symmetric-diagonal reductions as preprocessing for SPDGEVPs 317

2 4 6 8 10 12
−16.4

−16.2

−16

−15.8

−15.6

−15.4

−15.2

−15

−14.8

−14.6

−14.4

k(B)

M
ea

n
of

 b
ac

kw
ar

d
er

ro
r

OSDR1

RSSEP1

QZ

CQR

(a) Ascending sorting

2 4 6 8 10 12
−16.6

−16.4

−16.2

−16

−15.8

−15.6

−15.4

−15.2

−15

−14.8

k(B)

M
ea

n
of

 b
ac

kw
ar

d
er

ro
r

OSDR1

RSSEP1

QZ

CQR

(b) Descending sorting

Figure 4: ηMean versus k(B) for matrices B with MODE = 1 and n = 100.

a random matrix with entries normally distributed in [−1, 1]. Higham’s test matrix,

gallery(′randsvd′,n, -1ek,MODE),

is mostly SPD with condition ≈ 1e+k [11]. MODE may be one of the following values:
1: one large singular value,
2: one small singular value,
3: geometrically distributed singular values,
4: arithmetically distributed singular values,
5: random singular values with uniformly distributed logarithm.
If omitted, MODE defaults to 3.
In our experiments, a vast number of examples, with sizes ranging from n = 10 to n = 2000, have

been considered. In almost all cases, backward errors of eigenpairs computed by the OSDR1 method
and the RSSEP1 method are much less sensitive to the variations of k(B) than what backward errors of
eigenpairs computed by the CQR method are. Also the QZ method shows the best stability behavior in
almost all the cases.

Figures 4-7 show the results of solving problems (4) with A and B defined in (27) and (28) for
different values of MODE and when n = 100. For solving the problems with MODE = 1, we separately
use both ascending and descending sorting in Step 1 of the Algorithm 1. Figure 4 shows that for these
problems (which have some large eigenvalues) ascending sorting results in better stability.

As expected, the CQR method at almost all cases needs the minimum CPU-time between the three
considered methods. When n≤ 20, the QZ method is cheaper than the OSDR1 method and the RSSEP1
method. When 20 < n≤ 50, the OSDR1 method, the RSSEP1 method and the QZ method show almost
the same performance. When 50 < n ≤ 100, the performance of the OSDR1 method and the RSSEP1
method are better than the QZ method at almost all cases. When n≥ 100, the CPU-times of the OSDR1
method and the RSSEP1 method are much closer to the CPU-times of the CQR method than those of
the QZ method. Table 4 illustrate the overall of the relationship between CPU-times consumed by the
methods and the size of the problems. Figure 8 (a) (resp., Figure 8 (b)) illustrates CPU-times of the
methods for solving the problems with n = 100 (resp., with n = 500) where MODE = 3.

Example 5. In this example, for each value of n in {50,100,150,200,250,300} (as size of the problem),
we consider 64 different problems. These problems are constituted by 8 different matrices A and 8

318 M. Ahmadnasab

2 4 6 8 10 12

−15

−14.8

−14.6

−14.4

−14.2

−14

−13.8

−13.6

−13.4

−13.2

−13

k(B)

M
ea

n
of

 b
ac

kw
ar

d
er

ro
r

OSDR1

RSSEP1

QZ

CQR

Figure 5: ηMean versus k(B) for matrices B with MODE = 2 and n = 100.

2 4 6 8 10 12
−15.2

−15

−14.8

−14.6

−14.4

−14.2

−14

−13.8

−13.6

−13.4

−13.2

k(B)

M
ea

n
of

 b
ac

kw
ar

d
er

ro
r

OSDR1

RSSEP1

QZ

CQR

(a) First representative

2 4 6 8 10 12
−15.2

−15.1

−15

−14.9

−14.8

−14.7

−14.6

−14.5

k(B)

M
ea

n
 o

f
b

ac
kw

ar
d

 e
rr

o
r

OSDR1

RSSEP1

QZ

CQR

(b) Second representative

Figure 6: ηMean versus k(B) for matrices B with MODE = 4 and n = 100.

2 4 6 8 10 12
−15.8

−15.6

−15.4

−15.2

−15

−14.8

−14.6

−14.4

−14.2

k(B)

M
ea

n
of

 b
ac

kw
ar

d
er

ro
r

OSDR1

RSSEP1

QZ

CQR

(a) MODE = 3

2 4 6 8 10 12
−15.8

−15.6

−15.4

−15.2

−15

−14.8

−14.6

−14.4

k(B)

M
ea

n
of

 b
ac

kw
ar

d
er

ro
r

OSDR1

RSSEP1

QZ

CQR

(b) MODE = 5

Figure 7: ηMean versus k(B) for matrices B with MODE = 3 and or MODE = 5 for n = 100.

Table 4: CPU-time of the methods versus n.

Problem size (n) n≤ 20 20 < n < 50 50≤ n < 100 100≤ n
Smallest CPU-time tCQR tCQR tCQR tCQR
2nd smallest CPU-time tQZ tQZ ≈ tOSDR1 tOSDR1 or tRSSEP1 tOSDR1

(≈ tRSSEP1) (at almost all cases) (or tRSSEP1)

Symmetric-diagonal reductions as preprocessing for SPDGEVPs 319

2 4 6 8 10 12
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

k(B)

C
P

U
−t

im
e

OSDR1

RSSEP1

QZ

CQR

(a) Representative for n = 100

2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

k(B)

C
P

U
−t

im
e

OSDR1

RSSEP1

QZ

CQR

(b) Representative for n = 500

Figure 8: CPU-time versus k(B) for matrices B with sizes n = 100 and n = 500 when MODE = 3.

Table 5: NOSDR1, NRSSEP1, NOSDR2, NRSSEP2, NCQR, and NQZ versus n.

Problem size (n) NOSDR1 NRSSEP1 NOSDR2 NRSSEP2 NCQR NQZ

50 12 8 5 9 5 25
100 11 10 14 14 7 8
150 16 10 17 11 8 2
200 12 14 13 17 8 0
250 10 11 18 17 8 0
300 13 10 18 15 8 0

different matrices B both generated by (28) when MODE = 3. The condition numbers of the matrices
ranges from about 1e+1 to about 1e+15.

We solve each problem with fixed A and B (each one of the 64 problems) by the OSDR1 method,
the RSSEP1 method, the OSDR2 method, the RSSEP2 method, the CQR method, and the QZ method.
Then, we compute

η
Min
Mean = min{ηOSDR1

Mean ,ηRSSEP1
Mean ,ηOSDR2

Mean ,ηRSSEP2
Mean ,ηCQR

Mean,η
QZ
Mean}. (29)

For each group of the problems with a specific size, n, and a range of condition numbers from about
1e+1 to about 1e+15 (for As and Bs), the number of times that the ηmethodname

Mean in (29) gives ηMin
Mean is

denoted by Nmethodname. Table 5 reports on NOSDR1, NRSSEP1, NOSDR2, NRSSEP2, NCQR, and NQZ versus
n. When n changes from 50 to 300, NCQR does not experience a meaningful change and NQZ decreases
from 25 to 0. At the same time, NOSDR1 and NRSSEP1 (resp. NOSDR2 and NRSSEP2) show a competitive
behaviors respectively.

For the problems considered in this example, we have the following results:

• when k(B)≤ 1e3, usually η
CQR
Mean outperforms those of the other compared methods.

• when k(B)> 1e3, and k(A)> k(B), either ηOSDR1
Mean or ηRSSEP1

Mean provides ηMin
Mean.

• when k(B)> 1e3, and k(A)≤ k(B), either ηOSDR2
Mean or ηRSSEP2

Mean provides ηMin
Mean.

320 M. Ahmadnasab

It should be noted that, the problems in Example 4 (with respect to the condition numbers of the matrices)
are almost particular cases of the problems in Example 5. The problems of Example 4 are very close to
the cases in Example 5 where 1e1≤ k(A)≤ 1e3.

6 Conclusions

We have discussed and analyzed two main versions of the Schur-QR method (i.e., the RSSEP1 method
and the RSSEP2 method) for solving SPDGEVP. The first version (resp., the second version) of the
Schur-QR method has been organized for the problems with symmetric matrix A (resp., B) and SPD
matrix B (resp., A). Each one of these versions, at the first phase, enjoys an appropriate orthogonal
symmetric-diagonal reduction. We used this phase of each version of the Schur-QR method to introduce
an idea for making the preprocessed CQR method, i.e., the OSDR1 method (resp., the OSDR2 method),
for the problems whose matrices B (resp., A) are SPD. The possibility of making the preprocessed QZ
methods was examined in some of the experiments.

The orthogonal symmetric-diagonal reduction phase together with appropriate upward or downward
eigenvalue sorting and two specified symmetrizings improve the numerical stability of the methods.
Based on the experimental results, the backward errors of the eigenpairs computed by the considered
four methods (i.e., shortly, OSDR1, RSSEP1, OSDR2, and RSSEP2) receive negligible effects from the
changes in k(B) (resp. k(A)) for the problems in (4) (resp. in (9)). For the problems which can be solved
by either of these methods and the CQR method, usually OSDR1, RSSEP1, OSDR2, and RSSEP2 act
more stable than the CQR method.

Studying of the scaled residual errors, and especially SREAi, i = 1,2, uncovers one of the main
reasons responsible for the superiority seen in the stability of the mentioned methods compared with
those of the CQR method. The modifications suggested in (24) and (25) improve the performances of
the discussed methods. The modification (25) have also essential role in the statbilty of the RSSEP1
method and the RSSEP2 method.

Our experiments support the performance analysis in Section 3 and indicate that the CQR method is
the cheapest method between the compared methods in this study. For n≤ 20, usually CPU-times of four
methods are larger than those of the QZ method and the CQR method. For 20 < n < 50, the considered
four methods become faster and need comparable CPU-times. For the problems with sizes 50≤ n < 100,
(at almost all cases), CPU-times necessary by the considered four methods are less than those of the QZ
method and larger than those of the CQR method. In fact, for the problems with sizes n > 50, the growth
rate of the CPU-times of the QZ method is much more than those of the considered four methods as n
increases. Therefore, for the problems with sizes n > 100, CPU-times of the considered four methods
stay much closer to the CPU-times of the CQR method than those of the QZ method.

The main contributions of this paper includes
1. revisiting and discussing two versions of the Schur-QR method for SPDGEVPs,
2. suggesting and studying the preprocessed versions of the CQR method and the QZ method,
3. proving that the Schur-QR method is theoretically equivalent to the preprocessed Cholesky-QR

method,
4. analyzing the performance of the studied methods,
5. analyzing the stability of the studied methods by bounding backward errors of the computed

eigenpairs and also by the scaled residual errors,

Symmetric-diagonal reductions as preprocessing for SPDGEVPs 321

6. suggesting and applying some symmetrizings which improve the performance and stability of the
considered methods,

7. providing some detailed numerical experiments with considerable comparisons and visualizations,
8. introducing a family of problems (in Example 5) where at most of the cases one of the two versions

of the Schur-QR method or the two preprocessed versions of the CQR method behave more stable than
both of the CQR method and the QZ method.

Optimized and efficient implementation of the proposed Algorithms is a direction for future work.

Acknowledgments

The author would like to thank the editor and anonymous referees. Special thanks goes to Professor
Siegfried M. Rump who reviewed the earlier version of this manuscript and provided valuable sugges-
tions.

References

[1] M. Ahuesa, A. Largillier, F.D. D´Almeida, P.B. Vasconcelos, Spectral refinement on quasi-diagonal
matrices, Linear Algebra Appl. 401 (2005) 109–117.

[2] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst, Templates for the Solution of Algebraic
Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000.

[3] S. Chandrasekara, I.C.F. Ipsen, Backward errors for eigenvalue and singular value decompositions,
Numer. Math. 68 (1994) 215–223.

[4] S. Chandrasekara, An efficient and stable algorithm for the symmetric-definite generalized eigen-
value problem, SIAM J. Matrix Anal. Appl. 21 (2000) 1202–1228.

[5] B.N. Datta, Numerical Linear Algebra and Applications, Brooks/Cole, Pacific Grove, CA, 1995.

[6] P.I. Davies, N.J. Higham, F. Tisseur, Analysis of the Cholesky method with iterative refinement for
solving the symmetric definite generalized eigenproblem, SIAM J. Matrix Anal. Appl. 23 (2001)
472–493.

[7] J.J. Dongarra, C.B. Moler, J.H. Wilkinson, Improving the accuracy of computed eigenvalues and
eigenvectors, SIAM J. Numer. Anal. 20 (1983) 23–45.

[8] V. Frayssé, V. Toumazou, A note on the normwise perturbation theory for the regular generalized
eigenproblem, Numer. Linear Algebra Appl. 5 (1998) 1–10.

[9] G.H. Golub, C.F. Van Loan, Matrix Computations (3rd edition). The Johns Hopkins University
Press, Baltimore, 1996.

[10] D.J. Higham, N.J. Higham, Structured backward error and condition of generalized eigenvalue
problems, SIAM J. Matrix Anal. Appl. 20 (1998) 493–512.

322 M. Ahmadnasab

[11] N.J. Higham, Accuracy and Stability of Numerical Algorithms (Second edition). SIAM, Philadel-
phia, 2002.

[12] P. Lancaster, Linearization of regular matrix polynomials, Electron. J. Linear Algebra 17 (2008)
21–27.

[13] S. Miyajima, T. Ogita, S.M. Rump, S. Oishi, Fast verification for all eigenpairs in symmetric posi-
tive definite generalized eigenvalue problems, Reliab. Comput. 14 (2010) 24–45.

[14] C.B. Moler, G.W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J.
Numer. Anal. 10 (1973) 241–256.

[15] T. Ogita, K. Aishima, Iterative refinement for symmetric eigenvalue decomposition, Japan J. Indust.
Appl. Math. 35 (2018) 1007–1035.

[16] T. Ogita, K. Aishima, Iterative refinement for symmetric eigenvalue decomposition II: clustered
eigenvalues, Japan J. Indust. Appl. Math. 36 (2019) 435–459.

[17] G. Peters, J.H. Wilkinson, Ax = λBx and the generalized eigenproblem, SIAM J. Numer. Anal. 7
(1970) 479–492.

[18] S.M. Rump, Verification of positive definiteness, BIT 46 (2006) 433–452.

[19] R. Boisvert, R. Pozo, K. Remington, R. Barrett, J. Dongarra, Matrix Market, NIST.

[20] G. W. Stewart, Matrix Algorithms, Volume II: Eigensystems, SIAM, Philadelphia, 2001.

[21] F. Tisseur, Newton’s method in floating point arithmetic and iterative refinement of generalized
eigenvalue problems, SIAM J. Matrix Anal. Appl. 22 (2001) 1038–1057.

[22] F. Tisseur, Tridiagonal-Diagonal reduction of symmetric indefinite pairs, SIAM J. Matrix Anal.
Appl. 26 (2004) 215–232.

[23] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, UK, 1965.

http://math.nist.gov/MatrixMarket

	1 Introduction
	2 Methods outline
	2.1 Preprocessed Cholesky-QR method
	2.2 Reduction to symmetric standard eigenvalue problem when B is SPD
	2.3 Orthogonal symmetric-diagonal reduction
	2.4 Reduction to symmetric standard eigenvalue problem when A is SPD
	2.5 The equivalency of the presented methods

	3 Performance of the algorithms
	4 Numerical stability
	5 Numerical properties of the methods and some possible improvements
	5.1 Scaled residual errors
	5.2 Backward errors of the computed eigenpairs
	5.3 Symmetrizing
	5.4 Numerical Examples

	6 Conclusions

