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Abstract. In this paper, we consider a fourth order mixed partial differential equation with some initial
and boundary conditions which is unsolvable by classical methods such as Fourier, Fourier-Bircove and
Laplace Transformation methods. For this problem we will apply the contour integral and asymptotic
methods. The convergence of the appeared integrals, existence and uniqueness of solution, satisfying the
solution and holding the given initial and boundary conditions are stablished by complex analysis theory
and related contour integrals. Finally, the form of analytic and approximate solutions are given due to
different cases of eigenvalues distributions in the complex plane.
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1 Introduction

The importance of partial differential equations among the topics of applied mathematics has been rec-
ognized for many years. Initial and boundary value problems including partial differential equations
(PDEs) are appeared in many fields of physical and engineering problems, especially fourth order partial
differential equation see [11,12,18]. For example some of fourth order applicable problems that appears
in science are bending of elastic plate model, biharmonic equation, etc. The equation that we will con-
sider in this paper is a fourth-order partial differential equation which are both second-order in spatial and
second-order in time variables with some initial and boundary conditions. Several methods are applied
to investigate and solve this problems such as Fourier methods and Laplace transformation method. In
the Fourier method, differential equation and boundary conditions must be separated. The Laplace trans-
form method for solving differential equations is well known and has been applied to many problems in
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applied mathematics. In this method, the integrals in expressions of solution must be converged for all
values of λ parameter as long as Laplace line in inverse transformation.

Like other transform methods, Laplace transform has some disadvantages. An approximation of the
inverse Laplace transform has investigated in [1]. Another paper that uses new class of inverse Laplace
method and give asymptotic results has investigated in [8].

In [3] an asymptotic formula has been obtained for a fourth order boundary value problem. Wazwaz
investigated exact solutions for a fourth-order partial differential equation but without mixed term by the
Adomian decomposition method in [16, 17]. Khaliq and Twizell used another method to solve fourth-
order parabolic partial differential equation without mixed term that can separate [10]. An analytic
procedure studied for fourth-order Beam Equation that has no mixed term by using the decomposition
method and compared with modal analysis method and gave same results in [4] by author. In [2] for
fourth order partial differential equation and also in [5–7] for a mixed problem including third order
PDE, for λ -complex parameter dependent have considered and the solutions of the problems was given
in the contour integral form. In [13], a numerical method proposed for singularly perturbed fourth
order differential equations of convection-diffusion type by combines boundary value technique and
asymptotic expansion approximations.

In this paper we consider an initial-boundary value problem in which the partial differential equation
has a term of mixed derivative and we can not separate it. Therefore we can not apply the Fourier method.
On the other hand, we can not apply the Laplace transformation method, because the integrands in the
solution do not converge for all values of the parameter λ . Especially, we can not show satisfication of
the initial and boundary conditions.

This paper is organized into four sections. In the first part, the problem statement and its spec-
tral problem are given. In the sequel, the eigenvalues of the spectral problem and their distribution on
the complex plane are discussed. In the second part, the asymptotic expansions of the integrands are
presented in order to determine the appropriate conditions for the convergence of the integrals and the
existence of the analytical solution. In the next section, the forms of analytical and approximate solution
are given depending on different cases of the eigenvalues distribution. In the final part, the validity of
analytical solution and holding initial and boundary conditions are established.

2 Main problem and its spectral problem

We consider the following fourth-order partial differential equation which is second-order in spatial
variable and second-order in time variable withsome initial and boundary conditions

∂ 4u(x, t)
∂ t2∂x2 +a

∂ 2u(x, t)
∂ t2 +b

∂ 2u(x, t)
∂x2 + cu(x, t) = 0, x ∈ (0,1), t > 0, (1)

∂ ku(x, t)
∂ tk |t=0 = ϕk(t), k = 0,1, x ∈ [0,1], (2)

u(0, t) = u(1, t) = 0, t > 0, (3)

where a > 0,b > 0,c ∈ R. If ũ(x,λ ) is the Laplace transform of u(x, t), then

ũ(x,λ ) =
∫

∞

0
e−λ tu(x, t)dt.
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By applying this transform for Eq. (1) together with initial conditions (2), we obtain∫
∞

0
e−λ t ∂ 2u(x, t)

∂ t2 dt =−[λϕ0(x)+ϕ1(x)]+λ
2ũ(x, t).

Therefore, we will have the following spectral problem{
(λ 2 +b)ũ′′(x, t)+(aλ 2 + c)ũ(x, t) = λϕ ′′0 (x)+ϕ ′′1 (x)+aλϕ0(x)+aϕ1(x),
ũ(0,λ ) = ũ(1,λ ) = 0, x ∈ (0,1).

We can rewrite the spectral equation in the following form [15]

ũ′′(x,λ )+
aλ 2 + c
λ 2 +b

ũ(x,λ ) =
( d2

dx2 +a)(λϕ0(x)+ϕ1(x))
λ 2 +b

.

3 Calculating of eigenvalues of the spectral problem

For this, at first, we consider the general solution of associate nonhomogeneous equation as follows

ũ(x,λ ) =C1(x)e
−i
√

aλ2+c
λ2+b

x
+C2(x)e

i
√

aλ2+c
λ2+b

x
,

where C1(x) and C2(x) can be writen as follows

C1(x) = c1−
1

2i
√
(aλ 2 + c)(λ 2 +b)

∫ x

x1

ei
√

aλ2+c
λ2+b

ξ
(

d2

dξ 2 +a)(λϕ0(ξ )+ϕ1(ξ ))dξ ,

and

C2(x) = c2 +
1

2i
√
(aλ 2 + c)(λ 2 +b)

∫ x

x2

e−i
√

aλ2+c
λ2+b

ξ
(

d2

dξ 2 +a)(λϕ0(ξ )+ϕ1(ξ ))dξ .

By imposing the boundary conditions in (2) for arbitary constants c1 and c2 we will have the following
algebraic system

c1 + c2 =
1

2i
√

(aλ 2+c)(λ 2+b)

∫ 1

0
e−i

√
aλ2+c
λ2+b

ξ
(

d2

dξ 2 +a)(λϕ0(ξ )+ϕ1(ξ ))dξ ,

c1 + c2e2i
√

aλ2+c
λ2+b

ξ
= e

i
√

aλ2+c
λ2+b

ξ

2i
√

(aλ 2+c)(λ 2+b)

∫ 1

0
e−i

√
aλ2+c
λ2+b

ξ
(

d2

dξ 2 +a)(λϕ0(ξ )+ϕ1(ξ ))dξ .

The determinant of the coefficient matrix of this system is

∆(λ ) =

∣∣∣∣∣ 1 1

e−i
√

aλ2+c
λ2+b ei

√
aλ2+c
λ2+b

∣∣∣∣∣= ei
√

aλ2+c
λ2+b − e−i

√
aλ2+c
λ2+b .

If this determinant is equal zero, then we have the eigenvalues of this problem:

λkm = (−1)m

√
c− k2π2b
k2π2−a

, m = 1,2,k ∈ Z. (4)

We consider the limit behaviour of eigenvalues as limk−→∞ λkm = ±i
√

b. Therefore, we have infinitely
many eigenvalues and they have two limit points in complex plane, as shown by distributed points in
Figure 1.
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Figure 1: Distribution of eigenvalues in λ − plane.

4 Asymptotic expansions of integrands

We are going to investigate the limit behaviour and asymptotic expansion of the solution u(x, t) with
respect to the parameter λ . We have [9]

u(x, t) =
1

2πi

∫ c0+i∞

c0−i∞
eλ t ũ(x,λ )dλ ,

where

ũ(x,λ ) =
∫ 1

0

( d2

dξ 2 +a)(λϕ0(ξ )+ϕ1(ξ ))

∆(λ )2i
√
(aλ 2 + c)(λ 2 +b)

∣∣∣∣∣∣∣∣∣
e−i

√
aλ2+c
λ2+b

(x−ξ ) e−i
√

aλ2+c
λ2+b

x ei
√

aλ2+c
λ2+b

x

e−i
√

aλ2+c
λ2+b

ξ 1 1

e−i
√

aλ2+c
λ2+b

(1−ξ ) e−i
√

aλ2+c
λ2+b ei

√
aλ2+c
λ2+b

∣∣∣∣∣∣∣∣∣dξ .

The terms without |x−ξ | are continous functions. The terms containing |x−ξ |may be are discontinuous,
so these terms are expanded as follows

−1

2i
√

(aλ 2 + c)(λ 2 +b)

∫ x

0
e−i

√
aλ2+c
λ2+b

(x−ξ )
(

d2

dξ 2 +a)(λϕ0(ξ )+ϕ1(ξ ))dξ

+
−1

2i
√
(aλ 2 + c)(λ 2 +b)

∫ x

1
e−i

√
aλ2+c
λ2+b

(x−ξ )
(

d2

dξ 2 +a)(λϕ0(ξ )+ϕ1(ξ ))dξ

=
−1

2i
√

(aλ 2 + c)(λ 2 +b)

∫ x

0
e−i

√
aλ2+c
λ2+b

(x−ξ ) d2

dξ 2 (λϕ0(ξ )+λϕ1(ξ ))dξ (I)

− a

2i
√
(aλ 2 + c)(λ 2 +b)

∫ x

0
e−i

√
aλ2+c
λ2+b

(x−ξ )
(λϕ0(ξ )+ϕ1(ξ ))dξ (II)

+
1

2i
√
(aλ 2 + c)(λ 2 +b)

∫ x

1
e−i

√
aλ2+c
λ2+b

(ξ−x) d2

dξ 2 (λϕ0(ξ )+ϕ1(ξ ))dξ (III)

+
a

2i
√
(aλ 2 + c)(λ 2 +b)

∫ x

1
e−i

√
aλ2+c
λ2+b

(ξ−x)
(λϕ0(ξ )+ϕ1(ξ ))dξ . (IV)
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Now, the last four integrals are calculated using integration by parts. We have

I =
∫ x

0
e−i

√
aλ2+c
λ2+b

(x−ξ ) d2

dξ 2 (λϕ0(ξ )+ϕ1(ξ ))dξ

=
d
dx

(λϕ0(x)+ϕ1(x))− e−i
√

aλ2+c
λ2+b

x d
dξ

(λϕ0(x)+ϕ1(x))|xξ=0

− i

√
aλ 2 + c
λ 2 +b

[λϕ0(x)+ϕ1(x)][e
−i
√

aλ2+c
λ2+b

x
λϕ0(0)+ϕ1(0)]

− (
aλ 2 + c
λ 2 +b

)
∫ x

0
e−i

√
aλ2+c
λ2+b

(x−ξ )
(λϕ0(ξ )+ϕ1(ξ ))dξ .

Similarly, if we expand the second and third integrals, we have the following expansions

∫ x

1
e−i

√
aλ2+c
λ2+b

(ξ−x) d2

dξ 2 (λϕ0(ξ )+ϕ1(ξ ))dξ

= e−i
√

aλ2+c
λ2+b

(ξ−x) d
dξ

(λϕ0(ξ )+ϕ1(ξ ))|xξ=1

+ i

√
aλ 2 + c
λ 2 +b

∫ x

1
e−i

√
aλ2+c
λ2+b

(ξ−x) d
dξ

(λϕ0(ξ )+ϕ1(ξ ))dξ

= (λϕ0(ξ )+ϕ1(ξ ))
′− e−i

√
aλ2+c
λ2+b

(1−x) d
dξ

(λϕ0(ξ )+ϕ1(ξ ))|xξ=1

+ i

√
aλ 2 + c
λ 2 +b

e−i
√

aλ2+c
λ2+b

(ξ−x)
(λϕ0(ξ )+ϕ1(ξ ))|xξ=1

− (
aλ 2 + c
λ 2 +b

)
∫ x

1
e−i

√
aλ2+c
λ2+b

(ξ−x)
(λϕ0(ξ )+ϕ1(ξ ))dξ

=
1

2i
√

aλ 2+c
λ 2+b

{(a− aλ 2 + c
λ 2 +b

)
∫ x

1
e−i

√
aλ2+c
λ2+b

(ξ−x)
(λϕ0(ξ )+ϕ1(ξ ))dξ}

+(λϕ0(x)+ϕ1(x))′+ i

√
aλ 2 + c
λ 2 +b

(λϕ0(x)+ϕ1(x)).

Now, if we set the conditions

ϕ0(0) = ϕ1(0) = ϕ
′
0(0) = ϕ

′
1(0) = 0,

ϕ0(1) = ϕ1(1) = ϕ
′
0(1) = ϕ

′
1(1) = 0,

then the most parts of above relations are eliminated and we have only the term

λϕ0(x)+ϕ1(x)
2(λ 2 +b)

.
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Figure 2: Γν closed curves.

By substituting the asymptotic expansion we get

λϕ0(x)+ϕ1(x)
2(λ 2 +b)

=
1

λ + b
2

ϕ0(x)+
ϕ1(x)
λ 2 +b

=
ϕ0(x)

λ
− bϕ0(x)

λ 3 +
b2ϕ0(x)

λ 5 +O(λ−7)

+
ϕ1(x)

λ 2 −
bϕ1(x)

λ 4 +
b2ϕ1(x)

λ 6 +O(λ−8).

So, the asymptotic expansion of ũ(x,λ ) can be written as

ũ(x,λ ) =
ϕ0(x)

λ
+

ϕ1(x)
λ 2 +O(λ−3). (5)

According to this asymptotic expansion, we can show that the initial and boundary conditions hold.
Concerning the initial conditions, we have

u(x, t) =
1

2πi

∫
Γ

eλ t ũ(x,λ )dλ , (6)

where Γ is the union of closed curves Γν (contour integrals) shown in the Figure 2. So we have

u(x,0) =
1

2πi
lim

ν−→∞

∫
Γν

ũ(x,λ )dλ =
ϕ0(x)
2πi

lim
ν−→∞

∫
Γν

dλ

λ
= ϕ0(x), (7)

∂u(x, t)
∂ t

∣∣∣
t=0

=
1

2πi
lim

ν−→∞

∫
Γν

(ϕ0(x)+ϕ1(x)
1
λ
)dλ = ϕ1(x).

For satisfying boundary condition (3), we consider

u(0, t)−u(1, t) =
1

2πi
lim

ν−→∞

∫
Γν

eλ t [ũ(0,λ )− ũ(1,λ )]dλ = 0. (8)
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In the next part, we will consider the forms of analytical and numerical solutions of the problem. For this
we need to have the following theorem.

Theorem 1. ( [14, Page 160]) Suppose that F(λ ) = L { f (t)} has infinitely many poles at λ1,λ2, . . . ,λ∞

all to the left of the Res(λ ) = c0 > 0. Choose a sequence of contours Γn = Cn ∪ [c0− i∞,c0 + i∞] like
Figure 2 enclosing the first n poles λ1,λ2, . . . ,λn. Then by the Cauchy residue theorem,

f (t) =
1

2πi

∫ c+i∞

c−i∞
eλ tF(λ )dλ =

∞

∑
k=1

Res(zk).

5 The form of analytic and approximate solutions of main problem

In this section, we are going to give the general form of the analytic and approximate solutions over some
contour integrals. To do this, we need to give and prove the following theorem.

Theorem 2. Let the following conditions hold for the initial-boundary value problem (1)-(3) with ϕ0(x),
ϕ1(x) ∈ C2(0,1) {

ϕ0(0) = ϕ1(0) = ϕ ′0(0) = ϕ ′1(0) = 0,
ϕ0(1) = ϕ1(1) = ϕ ′0(1) = ϕ ′1(1) = 0.

Then the initial-boundary value problem (1-3) has a unique analytic solution of the form (6) and its
approximate solution takes the following form

u(x, t)≈
N

∑
k=0

eλkt ũ(x,λk).

Proof. Regarding that some parts of the proof of this theorem are similar to Theorem 1 in [5, 6], the
proof of satisfing the initial conditions and boundary conditions and the form of analytical and numerical
solutions are given. Finally, using the asymptotic expansion of u(x, t) given by Eq. (5) and Theorem
1, we show that the solution of u(x, t) satisfies the initial and boundary condition of the main problem
(1)-(3). We have

u(x, t) =
1

2πi

∫ c0+i∞

c0−i∞
eλ t ũ(x,λ )dλ =

∞

∑
k=1

Res(zk) =
1

2πi

∫ c0+i∞

c0−i∞
eλ t
(

ϕ0(x)
λ

+
ϕ1(x)

λ 2

)
dλ .

So by the use of Theorem 1, we will have

u(x, t) = ϕ0(x)+ϕ1(x)t.

From relations (7)-(8), the inital condition (2) and boundary conditions (3) are hold, that is
u(0, t) = u(1, t) = 0,
u(x,0) = ϕ0(x),
∂

∂ t u(x,0) = ϕ1(x).

For the form of the approximate solution (2), we give the proof of this theorem for different cases. For
this, according to the distribution of the eigenvalues (4) in the complex plane, if the eigenvalues lie in the
left-hand side of the Laplace line L = (c0− i∞,c0 + i∞) , where c0 > 0, then we have two cases.
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If the eigenvalues are distributed according to Figure 2, then by choosing a suitable closed contour
which includes finite eigenvalues in left-hand side of Laplace line, we compute the solution by using
rsidual theory in complex analysis. If the closed contour Γν = [aν ,bν ]∪ cν according to Figure 2, where
[aν ,bν ]⊂ (c0− i∞,c0 + i∞),ν ∈ N, then the analytic solution will be

u(x, t) =
∫

L
eλ t ũ(x,λ )dλ = lim

ν→∞

∫
Γν

eλ t ũ(x,λ )dλ =
∞

∑
k=0

eλkt ũ(x,λ ), (9)

and the approximate solution is computed via contour integral method by choosing finite number of

Figure 3: Closed contours in the left-hand of Laplace line.

series solution (9)

u(x, t)≈
N

∑
k=0

eλkt ũ(x,λ ).

Now, we choose contour Mν such that there is no eigenvalue between this contour and the Laplace line,
Figure 4. If the eigenvalues are distributed in the left-hand side of Laplace line and the contour Mν , in
this case, we can compute the solution over contour Mν and the approximate solution can be calculated
by Laplace transformation method. As Bν is a closed contour by the Cauchy integral theorem we have
As Bν is a closed contour by the Cauchy integral theorem we have∫

Bν

eλ t ũ(x,λ )dλ = 0. (10)

Consider the following closed contours Bν
Bν1 = Lν1 ∪Cν1 ∪Dν1 ∪Mν1 ,

Bν2 = Lν2 ∪Cν2 ∪Dν2 ∪Mν2 ,
...

Bνi = Lνi ∪Cνi ∪Dνi ∪Mνi .
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Figure 4: Closed contours in the left-hand of Laplace line.

Now according to the (10), we have

0 =
∫

Bνi

eλ t ũ(x,λ )dλ =
∫

Lνi

eλ t ũ(x,λ )dλ +
∫

Cνi

eλ t ũ(x,λ )dλ +
∫

Dνi

eλ t ũ(x,λ )dλ

+
∫

Mνi

eλ t ũ(x,λ )dλ ,

note that the curves Cνi and Dνi have opposite directions, so we have∫
Cνi

eλ t ũ(x,λ )dλ =−
∫

Dνi

eλ t ũ(x,λ )dλ ,

therefore∫
Lνi

eλ t ũ(x,λ )dλ =−
∫
−Mνi

eλ t ũ(x,λ )dλ =
∫

Mνi

eλ t ũ(x,λ )dλ ⇒
∫

Lν

eλ t ũ(x,λ )dλ =
∫

Mν

eλ t ũ(x,λ )dλ .

So we have

u(x, t) =
∫ c0+i∞

c0−i∞
eλ t ũ(x,λ )dλ = lim

νi→∞

∫
Lνi

eλ t ũ(x,λ )dλ ≈
∫

Lν

eλ t ũ(x,λ )dλ =
∫

Mν

eλ t ũ(x,λ )dλ .

This completes the proof.

At the end, some examples are presented according to the place of distribution of eigenvalues.

Example 1. If in the spectral problem (2), we put c= a= b= 1 with the coefficients of the main problem
(1)-(3), a > 0, b > 0, c ∈ R and k ∈ Z, then the eigenvalues will be on the imaginary axis, as Figure 5,
and we can write the analytic solution and related approximate solution by choosing a closed contour
integral, see [6].

Example 2. If we put a = b = 1 and c = 5 in the spectral problem (2) with the coefficients of the main
problem (1), then the eigenvalues will be on the imaginary and real axis in the complex plane C, see
Figure 6. Now, we can write the analytic solution and related approximate solution by choosing a closed
contour integral, see [6].
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Figure 5: The eigenvalues lie on imaginary axis.

Figure 6: The eigenvalues lie on imaginary and real axes.

6 Conclusion

In this paper, first the eigenvalues of the related spectral problem of the main initial-boundary value
problem including a forth order partial differential equation were calculated. Then the existence of ana-
lytical solution and approximate solutions were presented by using complex analysis and contour integral
method. The presentation of solutions were given due to different cases of eigenvalues distributions on
the complex plane with respect to the Laplace line. Finally two examples were illustrated the results of
solutions.
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