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Abstract. In this paper, a class of Volterra fractional partial integro-differential equations (VFPIDEs)
with initial conditions is investigated. Here, the well-known method of lines (MOLs) is developed to
solve the VFPIDEs. To this end, the VFPIDE is converted into a system of first-order ordinary differential
equations (ODEs) in time variable with initial conditions. Then the resulting ODE system is solved by
an LN-stable method, such as Radau IIA or Lobatto IIIC. It is proved that the proposed method is LN-
stable. Also, the convergence of the proposed method is proved. Finally, some numerical examples are
given to illustrate the efficiency and accuracy of the proposed method.
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1 Introduction

Fractional calculus is one of the most innovative branches of mathematics which has attracted the interest
of many researchers in recent decades [7]. It is a powerful tool in applied mathematics to study a wide
range of problems from various fields of science and engineering, such as mathematical physics, finance,
hydrology, biophysics, thermodynamics, control theory, statistical mechanics, astrophysics, cosmology
and bioengineering [2]. Since fractional calculations and related modeling have received more attention
from researchers and scientists in mathematics and other sciences, the solution of fractional differential
and integro-differential equations have also been extensively studied.

The fractional integro-differential equation and their applications in heat conduction and electro-
magnetics can be found in [3, 23]. Up to now, many numerical methods have been proposed for solving
fractional integro-differential equations in one and two-dimensional cases, for example: matrix-based
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method [18], operational matrix method [11, 14], finite-difference Fibonacci collocation [12], Legen-
dre wavelets method [15, 19], successive approximations method [20], expansion method [16], and the
Legendre Lobatto collocation scheme [8].

In this paper, we consider the equation

Dα
0tu(x, t)−

∫ t

0

∫ x

0
k(x, t,y,z)u(y,z)dydz = f (x, t), (x, t) ∈ [0,a]× [0,b] , (1)

with 0 < α < 1 and the initial condition

u(x,0) = h0(x), (2)

where f (x, t) and k(x, t,y,z) are given continuous functions and u(x, t) is unknown function. Also, Dα
0t

denotes the time-fractional differential operator, of order α in the Caputo sense.
Here, we focus on the method of lines (MOLs) to solve (1)-(2), a general and well-established nu-

merical procedure to solve partial differential equations (PDEs) [9, 21]. The main purpose of the MOLs
is to replace the derivatives with respect to all variables except one in the PDE with algebraic approx-
imations (by finite differences). Typically, the derivative with respect to time in a physical problem
remains. In other words, only one independent variable remains, and the resulting semi-discrete problem
is a system of coupled ordinary differential equations (ODEs) in time. Thus, to achieve an approximate
solution of the PDE, we can apply an analytical or numerical algorithm to the resulting initial value
ODEs. Therefore, we obtain a semi-discrete (semi-analytical) or fully discrete approximation of PDE.
The semi-analytical formulation of the approximation leads to a straight algorithm with more accurate
results than the other techniques. In the fully discrete formulation, stability and convergence are easily
prepared.

2 Preliminaries

In this section, we give some basic definitions and concepts that we need in the following sections.

2.1 Runge-Kutta Methods

The ODEs according to dependence on time variable are classified into autonomous and non-autonomous
systems. If a system of ODEs does not explicitly depend on the time-independent variable, it is called an
autonomous system or a time-invariant system, otherwise it is called a non-autonomous system.

An autonomous and a non-autonomous system can be displayed as

y′(t) = f (y(t)), t ∈ [t0,b], (3)

and

y′(t) = f (t,y(t)), t ∈ [t0,b], (4)

respectively.
The Runge-Kutta (RK) methods are a set of implicit and explicit techniques designed to estimate

the solution of ODEs. In general, the parameters of an m-stage implicit RK method are the weights
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θ = (θ1,θ2, . . . ,θm)
T ∈ Rm, abscissas (nodes) η = (η1,η2, . . . ,ηm)

T ∈ Rm and the coefficients matrix
Λ = (λi j)

m
i, j=1 ∈ Rm×m which are usually displayed in a table namely Butcher tableau as Table 1 [5]. An

m-stage implicit RK method to solve the equation (4) with initial condition is displayed as the following
general formula

Ri,n = yn +∆t
m

∑
j=1

λi j f (tn +η j∆t,R j,n), i = 1,2, · · · ,m, (5)

yn+1 = yn +∆t
m

∑
j=1

θ j f (tn +η j∆t,R j,n), (6)

where ∆t = tn+l− tn is the step-size.

Table 1: Butcher tableau of RK method.

η1 λ11 λ12 · · · λ1m

η2 λ21 λ22 · · · λ2m
...

...
...

. . .
...

ηm λm1 λm2 · · · λmm

θ1 θ2 · · · θm

η Λ

θ T

2.2 AN-Stability and LN-Stability

Numerical stability is a notion and a favorable feature in the study of algorithms and methods used in
the numerically solutions of problems. An algorithm or method is numerically stable if the amount of
error during the solving process does not increase too much. There are different definitions of numerical
stability, among which are AN-stability and LN-stability.

Let q(t) be a continuous complex-valued function with ℜ(q(t)) < 0 for t ∈ [t0,b]. Consider the
non-autonomous test equation

y′ = q(t)y, q(t) ∈ R. (7)

Implementation of any RK method for equation (7) leads to

yk+1 = K(z)yk, (8)

where

z = diag(z1,z2, . . . ,zm),

zi = ∆tq(tn +ηi∆t), i = 1,2, . . . ,m,

K(z) = 1+θ
T z(I−Λz)−1I, I= (1,1, . . . ,1)T , i = 1,2, . . . ,m.
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Definition 1. [24] A numerical method is said to be AN-stable if

| K(z) |< 1, ∀ℜ(zi)≤ 0, i = l,2, . . . ,m, (9)

and A-stable if q(t) is constant and

| K(zI) |< 1, z = q∆t ≤ 0. (10)

Definition 2. [24] An RK method is said to be LN-stable if it is AN-stable and

|K(z)| −−−→
|z|→∞

0. (11)

It also becomes L-stable if it is A-stable and

|K(zI)| −−−→
|z|→∞

0. (12)

2.3 Fractional Calculus

Fractional calculus is a branch of mathematics devoted to the study of integral and differential operators
of non-integer order. In this section, we give some preliminary results about fractional calculus [6, 10,
15, 22].

Definition 3. The α > 0 order Riemann-Liouville fractional integral for a function f ∈ L1[a,b] is denoted
by Jα

0 f and is defined as

Jα
0 f (x) =

1
Γ(α)

∫ x

0
(x− t)α−1 f (t)dt,

J0
0 f (x) = f (x),

where α ∈ R>0, a 6 x 6 b and Γ is Gamma function [22].

Definition 4. The α > 0 order Riemann-Liouville fractional derivative of a function f is defined as

Dα
∗0 f (x) = DnJn−α

0 f (x) =
1

Γ(n−α)

dn

dxn

∫ x

0
(x− t)n−α−1 f (t)dt,

in which n−1 < α 6 n, n ∈ N and x > 0 [6].

Definition 5. The α > 0 order fractional derivative of a function f in the Caputo sense is defined as

Dα
0 f (x) = Jn−α

0 Dn f (x) =
1

Γ(n−α)

∫ x

0
(x− t)n−α−1 dn f (t)

dtn dt, (13)

where n−1 < α 6 n, n ∈ N and x > 0 [6, 10].

Definition 6. The partial Riemann-Liouville fractional integral operator of order α > 0 with respect to
t is defined as

Jα
0t f (x, t) =

1
Γ(α)

∫ t

0
(t− τ)α−1 f (x,τ)dτ, (x, t) ∈ [0,a]× [0,b]

J0
0 f (x) = f (x)

(14)

for n−1 < α 6 n, n ∈ N and x > 0 [15].
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Definition 7. The Riemann-Liouville partial fractional derivative of order α > 0 is defined by

Dα
∗0t f (x, t) =

∂ α

∂ tα
f (x, t) =

∂ n

∂ tn Jn−α

0t f (x, t)

=


1

Γ(n−α)

∂ n

∂ tn

∫ t

0
(t− τ)n−α−1 f (x,τ)dτ, n−1 < α 6 n,

∂ n f (x, t)
∂ tn , α = n ∈ N,

(15)

for n−1 < α 6 n,n ∈ N and x > 0 [15].

Definition 8. The Liouville-Caputo partial fractional derivative of order α > 0 is defined by

Dα
0t f (x, t) =

∂ α

∂ tα
f (x, t) = Jn−α

0t
∂ n

∂ tn f (x, t)

=


1

Γ(n−α)

∫ t

0
(t− τ)n−α−1 ∂ n f (x,τ)

∂τn dτ, n−1 < α 6 n,

∂ n f (x, t)
∂ tn , α = n ∈ N,

(16)

for n−1 < α 6 n,n ∈ N and x > 0 [15].

In the following, some important properties of fractional calculations are listed [6]

• Jα
0 Jβ

0 f (x) = Jβ

0 Jα
0 f (x) = Jα+β

0 f (x),

• Dα
0rJ

α
0t f (x, t) = f (x, t),

• Jα
0 xv = Γ(v+1)

Γ(α+v+1)x
α+v,

where f ∈ L1[a,b], α,β > 0 and ν >−1.

3 The proposed method

As mentioned previously, we will extend the MOLs to solve FPIDE (1) - (2):

Dα
0tu(x, t) = f (x, t)+

∫ t

0

∫ x

0
k(x, t,y,z)u(y,z)dydz,

u(x,0) = h0(x),
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where (x, t) ∈ [0,a]× [0,b] and 0 < α < 1. Using the fractional calculations rules and changing the order
of integration, we have

Dα
0tu(x, t) = f (x, t)+Dα

0tJ
α
0t

∫ t

0

∫ x

0
k(x, t,y,z)u(y,z)dydz,

= f (x, t)+
1

Γ(α)
Dα

0t

∫ t

0
(t− s)α−1

∫ s

0

∫ x

0
k(x,s,y,z)u(y,z)dydzds

= f (x, t)+
1

Γ(α)
Dα

0t

∫ t

0

∫ x

0

∫ t

z
(t− s)α−1k(x,s,y,z)u(y,z)dsdydz,

= f (x, t)+Dα
0t

∫ t

0

∫ x

0
Jα

zt

(
k(x, t,y,z)

)
u(y,z)dydz,

and setting
Jα

zt

(
k(x, t,y,z)

)
= α(x, t)β (y,z), (17)

and
p(x, t) =

∫ t

0

∫ x

0
β (y,z)u(y,z)dydz, (18)

implies
Dα

0tu(x, t) = f (x, t)+Dα
0t

(
α(x, t)p(x, t)

)
,

or
u(x, t) = Jα

0t f (x, t)+α(x, t)p(x, t)+u(x,0)−α(x,0)p(x,0).

Since p(x,0) = 0 and u(x,0) = h0(x), thus

u(x, t) = g(x, t)+α(x, t)p(x, t), (19)

where
g(x, t) = h0(x)+

1
Γ(α)

∫ t

0
(t− s)α−1 f (x,s)ds. (20)

We also have
∂

∂ t
p(x, t) =

∫ x

0
β (y, t)u(y, t)dy, (21)

and finally substituting from (19) into (21), yields

∂

∂ t
p(x, t) =

∫ x

0
β (y, t)g(y, t)dy+

∫ x

0
α(y, t)β (y, t)p(y, t)dy. (22)

Now, by applying the MOLs to the VIDE (22), we convert it to a system of ODEs. To this end, consider
the uniformly distributed points xi = i a

N = ih, i = 0,1, . . . ,N of [0,a] and t j = j b
M = jk, j = 0,1, . . . ,M of

[0,b]. Setting x = xi for i = 1,2, . . . ,N, in the equation (22), yields

∂

∂ t
p(xi, t) =

∫ xi

0
β (y, t)g(y, t)dy+

∫ xi

0
α(y, t)β (y, t)p(y, t)dy. (23)

In order to compute the integral term of the above equation, we apply the following rule

S2n =
1
3
(Tn +2Mn) ,
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in which S2n, Tn and Mn refer to Simpson’s, trapezoidal and midpoint quadrature rules, respectively,
where

S2n :=
∫ x2n

0
f (x)dx =

h
3

(
f (0)+ f (x2n)+2

n−1

∑
i=1

f (x2i)+4
n

∑
i=1

f (x2i−1)

)
,

Tn :=
∫ xn

0
f (x)dx = h

(
1
2
( f (0)+ f (xn))+

n−1

∑
i=1

f (xi)

)
,

Mn :=
∫ xn

0
f (x)dx = h

n−1

∑
i=0

f (
xi + xi+1

2
).

On the other hand, the interpolation polynomial of f (x) at data points (xi, f (xi)), i = 0,1, . . . ,n in the
Lagrange form is as following

L(x) =
n

∑
i=0

f (xi)ln,i(x), ln,i(x) = ∏
0≤m≤n

m6=i

x− xm

xi− xm
.

Now we replace f (
xi + xi+1

2
) with L(

xi + xi+1

2
), thus

M̃n :=h
n−1

∑
i=0

L(
xi + xi+1

2
)

S̃2n :=
1
3
(
Tn +2M̃n

)
=

2
3

h

[
n−1

∑
j=1

(1
2
+

n−1

∑
k=0

ln, j(
xk + xk+1

2
)
)

f (x j)+
(1

4
+

n−1

∑
k=0

ln,0(
xk + xk+1

2
)
)

f (x0)

+
(1

4
+

n−1

∑
k=0

ln,n(
xk + xk+1

2
)
)

f (xn)

]
=

N

∑
j=0

wn, j f (x j),

where

wn, j =
2
3

h

(
1
2
+

n−1

∑
k=0

ln, j(
xk + xk+1

2
)

)
, j = 1,2, . . . ,n−1

wn, j =
2
3

h

(
1
4
+

n−1

∑
k=0

ln, j(
xk + xk+1

2
)

)
, j = 0,n,

wn, j =0, j = n+1,n+2, . . . ,N.

According to the above results, we obtain the following system of ODEs for nodal unknowns p(x j, t) and
rewrite the equation (23) as follow

∂ p
∂ t

(xi, t) =
∫ xi

0
β (y, t)g(y, t)dy+

i

∑
j=0

wi, jα(x j, t)β (x j, t)p(x j, t), i = 1,2, . . . ,N. (24)

Since p(x0, t) = 0, we have

∂ p
∂ t

(xi, t) =
∫ xi

0
β (y, t)g(y, t)dy+

i

∑
j=1

wi, jα(x j, t)β (x j, t)p(x j, t), i = 1,2, . . . ,N, (25)
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which can be written in matrix form as

p′(t) = A(t)p(t)+b(t),
p(0) = 0,

(26)

where

Ai, j(t) =


wi, jα(x j, t)β (x j, t), j = 1,2, · · · , i,

0, o.w,

i = 1,2, . . . ,N,

b(t) =
(∫ x1

0
β (y, t)g(y, t)dy,

∫ x2

0
β (y, t)g(y, t)dy, . . . ,

∫ xN

0
β (y, t)g(y, t)dy

)T

,

p(t) =
(

p(x1, t), p(x2, t), . . . , p(xN , t)
)T

.

Now, equation (26) should be solved. It can be solved by an analytical or a numerical method to obtain a
semi-analytical or an approximate solution, respectively. These two cases are described in the following
two subsections.

The existence and uniqueness of the solution of the ODEs are given in the following theorem.

Theorem 1. [1] Suppose that the n×n matrix function A(t) and the n×1 matrix function b(t) are both
continuous on an interval I in R and t0 ∈ I. Then, for every choice of the vector p0, the initial value
problem

p′(t) = A(t)p(t)+b(t),
p(t0) = p0,

has a unique solution p(t) which is defined on the same interval I.

3.1 Semi-analytical solution

The system (26) can be solved analytically as follows [1]:

p(t) = e
∫ t

0 A(z)dzp0 + e
∫ t

0 A(z)dz
∫ t

0
e−

∫ s
0 A(z)dzb(s)ds, (27)

or
p(t) = e

∫ t
0 A(z)dzp0 +

∫ t

0
R(t,s)b(s)ds, (28)

where R(t,s) = e
∫ t

s A(z)dz is the resolvent kernel of the system (26). Now, setting x = xi in (19) yields

u(xi, t) = g(xi, t)+α(xi, t)p(xi, t), i = 1,2, . . . ,N, (29)

which is a semi-analytical solution of (19) and in matrix-vector form can be written as

u(t) = g(t)+B(t)p(t), (30)
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where

u(t) =
(

u(x1, t),u(x2, t), . . . ,u(xN , t)
)T

, (31)

g(t) =
(

g(x1, t),g(x2, t), . . . ,g(xN , t)
)T

, (32)

B(t) = diag
(

α(x1, t),α(x2, t), . . . ,α(xN , t)
)
. (33)

3.2 Numerical Solution

In this section, two classes of numerical methods, including Radau IIA and Lobatto IIIC of implicit RK
methods will be discussed to solve the system of ODEs (26). If we apply an m-stage RK method to solve
the initial value problem (26); we have the formulae with step-size k in the interval [0,b] as

R1,n = pn + k
m

∑
j=1

λi, j

(
A(tn +η jk)R j,n +b(tn +η jk)

)
,

...

Rm,n = pn + k
m

∑
j=1

λi, j

(
A(tn +η jk)R j,n +b(tn +η jk)

)
,

pn+1 = pn + k
m

∑
j=1

θ j

(
A(tn +η jk)R j,n +b(tn +η jk)

)
. (34)

3.2.1 Radau IIA and Lobatto IIIC Runge-Kutta Methods

The m-stage Radau IIA and Lobatto IIIC methods are two classes of RK methods of non-stiff orders
2m− 1 and 2m− 2, respectively. They are L-stable and excellent methods for stiff problems. Butcher
tables of these methods are given in Tables 2 and 3 [13].

Table 2: Radau IIA methods with m = 2 and m = 3.

1
3

5
12

− 1
12

1
3
4

1
4

3
4

1
4

Radau IIA method (m = 2)

4−
√

6
10

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1
16−
√

6
36

16+
√

6
36

1
9

16−
√

6
36

16+
√

6
36

1
9

Radau IIA method (m = 3)

In the following, we examine the LN-stability of Radau IIA and Lobatto IIIC RK methods.
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Table 3: Lobatto IIIC method with m = 2, m = 3 and m = 4.

0
1
2
−1

2

1
1
2

1
2

1
2

1
2

Lobatto IIIC method
(m = 2)

0
1
6
−1

3
1
6

1
2

1
6

5
12

− 1
12

1
1
6

2
3

1
6

1
6

2
3

1
6

Lobatto IIIC method (m = 3)

0
1
12

−
√

5
12

√
5

12
− 1

12

1
2
−
√

5
10

1
12

1
4

10−7
√

5
60

√
5

60

1
2
+

√
5

10
1
12

10+7
√

5
60

1
4

−
√

5
60

1
1
12

5
12

5
12

1
12

1
12

5
12

5
12

1
12

Lobatto IIIC method (m = 4)

Definition 9. [4] Consider the matrix M with entries Mi, j = θiλi, j + θ jλ j,i− θiθ j. An RK method is
strongly algebraically stable if M is a non-negative definite matrix, θi > 0, i = 1,2, . . . ,m and

0 < θ
T

Λ
−1I< 2, I= (1, . . . ,1)T .

Lemma 1. [4] If in Definition 9, θ T Λ−1I= 1 the stability property is a generalization of L-stability to
the non-autonomous equation.

Theorem 2. The Radau IIA and Lobatto IIIC RK methods are LN-stable.

Proof. For both of the above methods Mi, j = θiλi, j +θ jλ j,i−θiθ j, where θi and λi, j for i, j = 1, . . . ,m
are presented in Tables 3 and 2. The non-negativity definite property is easily achieved, and it can also
be shown that the following relation

θ
T

Λ
−1I= 1, I= (1, . . . ,1)T ,

is established for both methods. According to Definition 9 and Lemma 1 in general, an m-stage RK
method is LN-stable if θi, i = 1,2, . . . ,m are positive, M is a non-negative definite matrix, and θ T Λ−1I=
1. All the above three conditions are satisfied for Radau IIA and Lobatto IIIC Rk methods, therefore
these methods are LN-stable.

4 Stability and Local Truncation Error

In this section, we investigate the stability of the proposed method. The truncation error caused by the
proposed method is also analyzed.
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4.1 Stability

Stability is one of the most important issues in the numerical solutions of differential equations. To
discuss the stability test, let us first introduce the following test equation :

Dα
0tu(x, t)+

1
Γ(1−α)

∫ t

0

∫ x

0
(t− z)−αb′(y)a′(z)u(y,z)dydz = f (x, t),

u(x,0) = exp(b(x)i−a(t))
∣∣
t=0,

(35)

where 0 < α < 1 and

f (x, t) =
(
(1+ i)exp

(
b(x)i

)
− i
) ∞

∑
l=1

exp
(

a(t)
)(l)∣∣∣∣

t=0

t l−α

Γ(l−α +1)

with the exact solution u(x, t) = exp
(

b(x)i− a(t)
)
, in which b(x) > 0, a′(t) > 0 and a(t) > 0 is an

increasing function. Obviously, u(x, t) tends to zero as t tends to ∞, and we expect that the numerical
solution has the same behavior. To solve the above problem, FPIDE (35) should be converted to a VIE
as follows

u(x, t) = g(x, t)−
∫ t

0

∫ x

0
K(x, t,y,z)u(y,z)dydz,

with (x, t) ∈ [0,a]× [0,b] and

g(x, t) =(i+1)exp
(

b(x)i−a(t)
)
− iexp

(
b(x)i−a(0)

)
− iexp

(
b(0)i

)(
exp
(
−a(t)

)
− exp

(
−a(0)

))
.

According to the existing rules for fractional and classical integrations, if 0 < α < 1, we have

I=
∫ t

0

∫ x

0
K(x, t,y,z)u(y,z)dydz =

1
Γ(1−α)Γ(α)

∫ t

0
(t− s)α−1

∫ s

0

∫ x

0
(s− z)−αb′(y)a′(z)u(y,z)dydzds.

Changing the integral order and substitution s = z+ r(t− z) yields

I=
1

Γ(1−α)Γ(α)

∫ t

0

∫ x

0

∫ t

z
(t− s)α−1(s− z)−αb′(y)a′(z)u(y,z)dsdydz

=
1

Γ(1−α)Γ(α)

∫ t

0

∫ x

0

∫ 1

0
(1− r)α−1r−αb′(y)a′(z)u(y,z)drdydz

=
B(1−α,α)

Γ(1−α)Γ(α)

∫ t

0

∫ x

0
b′(y)a′(z)u(y,z)dydz =

∫ t

0

∫ x

0
b′(y)a′(z)u(y,z)dydz.

Let us consider uniform partitions with step-sizes h and k for the intervals [0,a] and [0,b], respectively.
Applying the proposed method to the test equation yields

u(t) = g(t)+B(t)p(t), (36)
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and

p′(t) = A(t)p(t)+b(t),
p(0) = 0, (37)

where u(t) and g(t) were defined in (31) and (33), respectively . Also

Ai, j(t) =


−wi, jb′(x j)a′(t), j = 1,2, . . . , i,

0, o.w,

i = 1,2, . . . ,N, (38)

and

b(t) =
(
−
∫ x1

0
b′(y)a′(t)g(y, t)dy,−

∫ x2

0
b′(y)a′(t)g(y, t)dy, . . . ,−

∫ xN

0
b′(y)a′(t)g(y, t)

)T

,

p(t) =
(

p(x1, t), p(x2, t), . . . , p(xN , t)
)T

,

B(t) =diag
[

α(x1, t),α(x1, t), . . . ,α(xN , t)
]
.

In the sequel, a Radau IIA or Lobatto IIIC RK method with m-stage is used to solve the equation (37) as
follows

Ri,n = pn + k
m

∑
j=1

λi, j (A(tn +η jk)R j,n +b(tn +η jk)) , i = l,2, . . . ,m,

pn+1 = pn + k
m

∑
j=1

θ j (A(tn +η jk)R j,n +b(tn +η jk)) .
(39)

Consider the equation (39)

Ri,n− k
m

∑
j=1

λi, jA(tn +η jk)R j,n = pn + k
m

∑
j=1

λi, jb(tn +η jk), i = l,2, . . . ,m,

pn+1− k
m

∑
j=1

θ jA(tn +η jk)R j,n = pn + k
m

∑
j=1

θ jb(tn +η jk),
(40)

which can be written in matrix form as



An LN-Stable method to solve the FPID equations 145




1

1
. . .

1

−


kλ1,1A(tn +η1k) kλ1,2A(tn +η2k) · · · kλ1,mA(tn +ηmk)
kλ2,1A(tn +η1k) kλ2,2A(tn +η2k) · · · kλ2,mA(tn +ηmk)

...
...

. . .
...

kλm,1A(tn +η1k) kλm,2A(tn +η2k) · · · kλm,mA(tn +ηm−1k)

 0

(
θ1 θ2 · · · θm

)

−kA(tn +η1k)

−kA(tn +η2k)
. . .

−kA(tn +ηmk)

 1



×




R1,n
R2,n

...
Rm,n


pn+1


=




1
1
...
1


1


pn +




λ1,1 λ1,2 · · · λ1,m
λ2,1 λ2,2 · · · λ2,m

...
...

. . .
...

λm,1 λm,2 · · · λm,m




kb(tn +η1k)
kb(tn +η2k)

. . .
kb(tn +ηmk)



(
θ1 θ2 · · · θm

)


kb(tn +η1k)
kb(tn +η2k)

. . .
kb(tn +ηmk)




.

Assume that

Z = diag(Z1,Z2, . . . ,Zm), Zi = kA(tn +ηik), i = 1,2, . . . ,m,

Ψ =


kb(tn +η1k)
kb(tn +η2k)

...
kb(tn +ηmk)

 , Φ =


R1,n
R2,n

...
Rm,n

 .

Therefore (
(I−ΛZ) 0
−θ T Z 1

)(
Φ

pn+1

)
=

(
I
1

)
pn +

(
ΛΨ

θ T Ψ

)
,

Eliminating the internal stages Φi in (39) results in

pn+1 = K(Z)pn +S(Z)Ψ, (41)

K(Z) = 1+θ
T Z(I−ΛZ)−1I, (42)

S(Z) = (q1(Z),q2(Z), . . . ,qm(Z)) = θ
T Z(I−ΛZ)−1

Λ+θ
T . (43)

On the other hand, by using (30) and (41)-(43), we can write

un+1 = g(tn+1)+pn+1,

un+1 = g(tn+1)+K(Z)pn +S(Z)Ψ,

= g(tn+1)+K(Z)(un−g(tn))+S(Z)Ψ,

= K(Z)un−K(Z)g(tn)+S(Z)Ψ+g(tn+1). (44)
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By substituting p0 with p∗0 and by using any RK method to solve the system (37), we have

p∗n+1 = K(Z)p∗n +S(Z)Ψ,

u∗n+1 = g(tn+1)+p∗n+1,

u∗n+1 = K(Z)u∗n−K(Z)g(tn)+S(Z)Ψ+g(tn+1). (45)

Now by subtracting (45) from (44) and by setting Ep(tn+1) = p∗n+1−pn+1 and Eu(tn+1) = u∗n+1−un+1,
we have

Eu(tn+1) = K(Z)Eu(tn). (46)

So, according to Definition 2 and Theorem 2, if we apply LN-stable RK method to solve the non-
autonomous equation (37), the error of numerical solution VIE satisf ies in equation (46), and the pro-
posed method is LN-stable for VIE. With this argument, every FPIDE is equivalent to a VIE, so it can be
inferred that the presented method is LN-stable for FPIDE.

4.2 Local Truncation Error

Local truncation error analysis in a numerical method is one of the most important information about
the theoretical specifications that distinguish more efficient numerical methods from the others. It is the
amount of error that occurs in a single step of a numerical approximation. It can be evaluated as the
difference between the approximate and exact solutions in one step of a numerical method. Therefore
local truncation error τn+1 is

τn = u(tn)−un = O(∆t p+1),

where u(tn) is the exact solution at time tn, un is the approximate solution in step n and p is order of the
numerical method. In this section, local truncation errors of considered numerical schemes are studied
to solve ODE (26). The accuracy and local truncation error of Lobatto IIIC RK method with m-stage for
stiff and non-stiff ODEs based on the time-step size (k) are O(km−1) and O(k2m−2), respectively [17].
Similarly, the local truncation errors of the Radau IIA RK method are O(km) and O(k2m−1), for stiff and
non-stiff ODEs, respectively [17]. We know

p′(t) = A(t)p(t)+b(t)+O(h3)I,
p(tn) = pn +O(km−1)I+O(h3)I.

So local truncation error of obtained numerical solutions by using the Lobatto IIIC RK method for the
FPIDE (1) and (2) in the stiff case is as following

u(tn) =g(tn)+B(tn)p(tn) = g(tn)+B(tn)

[
pn +

(
O(km−1)+O(h3)

)
I

]
,

un =g(tn)+B(tn)pn.

Therefore local truncation error vector(τn) in the stiff case is

τn = u(tn)−un =
(

O(km−1)+O(h3)
)
I,
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and in the non-stiff case is τn = u(tn)−un =
(

O(k2m−2)+O(h3)
)
I. Similarly, the local truncation errors

of Radau IIA RK method for the stiff case is τn = u(tn)−un =
(

O(km)+O(h3)
)
I, and in the non-stiff

case is τn = u(tn)−un =
(

O(k2m−1)+O(h3)
)
I.

5 Numerical examples

In this section, several numerical examples are solved by the proposed method and compared with the
results obtained in [15]. The comparison of numerical results show high accuracy of our results with
respect to the results of [15]. All computations are performed in Maple software 2018.

Example 1. Consider the following TFPIDE with the exact solution u(x, t) = exp(−t2− t +(x+1/3)3i)
(i is imaginary part)

D1/2
0t u(x, t) = f (x, t)− 1/Γ(1/2)

120

∫ t

0

∫ x

0

(2z+1)(y+1/3)2
√

t− z
u(y,z)dydz,

where (x, t) ∈ [0,1]× [0,1] and

f (x, t) =
(
(1+

i
3Γ(6)

)exp
(
(x+

1
3
)3i
)
− i

3Γ(6)

)
∞

∑
l=1

exp(−t2− t)(l)
∣∣∣∣∣
t=0

t l−1/2

Γ(l +1/2)
.

This equation was solved by the method of [15], semi-analytical and numerical methods (Lobatto IIIC
RK method with m = 2,3,4 and Radau IIA RK method with m = 2,3), described in this paper. The
numerical results, including absolute errors in some arbitrary points and maximum value of errors are
reported in Tables 4, 5, 6 and 7 . Also, absolute errors , exact and approximate solutions at (x, t) ∈
[0,1]× [0,1] are ploted in Figures 1, 2, 3 and 4.

Table 4: Absolute errors in some points for Example 1 by the semi-analytical method and the method
of [15].

semi-analytical method method of [15]

(x,t) N = 10 N = 5
(0.3,0.5) 0.1e−9 0.1e−2
(0.2,1) 0.1e−9 0.3e−3
(0.9,0.5) 0.1e−10 0.9e−3
(1,0.7) 0.2e−9 0.8e−2
(0.3,0.6) 0.2e−10 0.1e−2
(0.2,0.9) 0.1e−9 0.1e−3
(0.7,0.1) 0.5e−12 0.2e−2

Example 2. As second example, consider the following TFPIDE with the exact solution u(x, t) =
sin(x)exp(−t2)

D2/3
0t u(x, t) = f (x, t)− 1/Γ(16/3)

β (1/3,5)

∫ t

0

∫ x

0

sin(y)z
3
√
(t− z)2

u(y,z)dydz,
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Table 5: Absolute errors in some points for Example 1 by Lobatto IIIC method with m = 2,3,4.

Lobatto IIIC method
with m = 2

Lobatto IIIC method
with m = 3

Lobatto IIIC method
with m = 4

(x, t) N = 10
M = 10

N = 10
M = 100

N = 10
M = 10

N = 10
M = 100

N = 10
M = 10

N = 10
M = 100

(0.3,0.5) 0.9e−6 0.1e−7 0.3e−8 0.5e−9 0.4e−8 0.5e−9
(0.2,1) 0.5e−6 0.5e−8 0.2e−8 0.3e−9 0.2e−8 0.3e−9
(0.9,0.5) 0.7e−5 0.1e−6 0.3e−6 0.4e−7 0.3e−6 0.4e−7
(1,0.7) 0.9e−5 0.1e−6 0.9e−6 0.9e−7 0.8e−6 0.9e−7
(0.3,0.6) 0.1e−5 0.1e−7 0.5e−8 0.6e−9 0.5e−8 0.6e−9
(0.2,0.9) .5e−6 .5e−8 0.1e−8 0.3e−9 0.1e−8 0.2e−9
(0.7,0.1) 0.1e−5 0.1e−7 0.1e−7 0.2e−8 0.1e−7 0.1e−8

Table 6: Absolute errors in some points for Example 1 by Radau IIA method with m = 2,3.

Radau IIA method
with m = 2

Radau IIA method
with m = 3

(x, t) N = 10
M = 10

N = 10
M = 100

N = 10
M = 10

N = 10
M = 100

(0.3,0.5) 0.4e−8 0.5e−9 0.4e−8 0.5e−9
(0.2,1) 0.7e−8 0.3e−9 0.2e−9 0.3e−9
(0.9,0.5) 0.3e−6 0.4e−7 0.3e−6 0.4e−7
(1,0.7) 0.8e−6 0.9e−7 0.9e−6 0.9e−7
(0.3,0.6) 0.6e−8 0.6e−9 0.5e−8 0.6e−9
(0.2,0.9) 0.6e−8 0.3e−9 0.1e−8 0.1e−8
(0.7,0.1) 0.1e−7 0.1e−8 0.1e−7 0.2e−8

Table 7: Maximum value of errors for Example 1 by Radau IIA method with m = 2,3 and Lobatto IIIC
method with m = 2,3,4.

Radau IIA method Lobatto IIIC method

(N,M) m = 2 m = 3 m = 2 m = 3 m = 4

(10,10) 0.1e−5 0.1e−5 0.9e−5 0.1e−5 0.1e−5
(10,100) 0.1e−6 0.1e−6 0.2e−6 0.1e−6 0.1e−6
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Figure 1: Comparison of absolute error , between the semi-analytical method with N = 10 (left) and the
method of [15] with N = 5 (right) for Example 1.

where (x, t) ∈ [0,1]× [0,1] and

f (x, t) =
(

sin(x)− 1/Γ(16/3)
2Γ(5)

sin(x)
)

∞

∑
l=1

exp(−t2)(l)

∣∣∣∣∣
t=0

t l−2/3

Γ(l +1/3)
.

We proceed as in the previous example and report numerical results in Tables 8, 9, 10 and 11 and Figures
5, 6, 7 and 8.

Table 8: Absolute errors in some points for Example 2 by the semi- analytical method and the methods
of [15].

semi-analytical method method of [15]
(x, t) N = 10 N = 5

(0.3,0.5) 0.4e−10 0.5e−5
(0.2,1) 0.1e−9 0.5e−4
(0.9,0.5) 0.3e−8 0.4e−4
(1,0.7) 0.1e−7 0.2e−3
(0.3,0.6) 0.8e−10 0.9e−5
(0.2,0.9) 0.1e−9 0.3e−4
(0.7,0.1) 0.4e−11 0.4e−5

6 Conclusion

In this article, the method of lines is extended to convert time FPIDE with initial conditions to a system
of ODEs. Then LN-stable schemes of the Runge-Kutta method is extended to solve the resulted ODEs
system. It is proved that the proposed method is LN-stable, too. It seems that the proposed method can
be applied to solve Fredholm and Volterra integral equations of the first kind.
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Figure 2: Comparison of absolute error , between N = 10,M = 10 and N = 10,M = 100 by the Lobatto
IIIC method with m = 2 (row:1, column:1), m = 3 (row:1, column:2) and m = 4 (row:2, column:1) for
Example 1.

Figure 3: Comparison of absolute error , between N = 10,M = 10 and N = 10,M = 100 by the Lobatto
IIIC method with m = 2 (left) and m = 3 (right) for Example 1.
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Figure 4: Comparison of exact and approximate solutions by the semi-analytical method with N = 10
(row:1, column:1), Lobatto IIIC method with m = 4,N = 10,M = 100 (row:1, column:2) and Radau IIA
method with m = 3,N = 10,M = 100 (row:2, column:1) for Example 1.

Figure 5: Comparison of absolute error , between the semi-analytical method with N = 10 (left) and the
method of [15] with N = 5 (right) for Example 2.
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Table 9: Absolute errors in some points for Example 2 by Lobatto IIIC method with m = 2,3,4.

Lobatto IIIC method
with m = 2

Lobatto IIIC method
with m = 3

Lobatto IIIC method
with m = 4

(x, t) N = 10
M = 10

N = 10
M = 100

N = 10
M = 10

N = 10
M = 100

N = 10
M = 10

N = 10
M = 100

(0.3,0.5) 0.9e−6 0.1e−7 0.7e−8 0.8e−9 0.8e−8 0.7e−9
(0.2,1) 0.9e−6 0.1e−7 0.1e−7 0.9e−9 0.9e−8 0.8e−9
(0.9,0.5) 0.6e−5 0.8e−7 0.2e−6 0.2e−7 0.2e−6 0.2e−7
(1,0.7) 0.1e−4 0.1e−6 0.6e−6 0.6e−7 0.6e−6 0.6e−7
(0.3,0.6) 0.1e−5 0.1e−7 0.1e−7 0.1e−8 0.1e−7 0.1e−8
(0.2,0.9) 0.8e−6 0.9e−8 0.8e−8 0.7e−9 0.7e−8 0.6e−9
(0.7,0.1) 0.2e−6 0.2e−8 0.7e−9 0.1e−9 0.8e−9 0.1e−9

Figure 6: Comparison of absolute error, between N = 10,M = 10 and N = 10,M = 100 by Lobatto
IIIC method with m = 2 (row:1, column:1), m = 3 (row:1, column:2) and m = 4 (row:2, column:1) for
Example 2.
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Table 10: Absolute errors in some points for Example 2 by Radau IIA method with m = 2,3.

Radau IIA method
with m =2

Radau IIA method
with m =3

(x, t) N = 10
M = 10

N = 10
M = 100

N = 10
M = 10

N = 10
M = 100

(0.3,0.5) 0.2e−7 0.8e−9 0.8e−8 0.8e−9
(0.2,1) 0.1e−7 0.9e−9 0.3e−7 0.9e−9
(0.9,0.5) 0.3e−6 0.2e−7 0.2e−6 0.2e−7
(1,0.7) 0.8e−6 0.7e−7 0.6e−6 0.6e−7
(0.3,0.6) 0.2e−7 0.1e−8 0.1e−7 0.1e−8
(0.2,0.9) 0.1e−7 0.7e−9 0.8e−8 0.7e−9
(0.7,0.1) 0.2e−7 0.1e−9 0.8e−9 0.1e−9

Figure 7: Comparison of absolute error , between N = 10,M = 10 and N = 10,M = 100 by Lobatto IIIC
method with m = 2 (left) and m = 3 (right) for Example 2.

Table 11: Maximum value of errors for Example 2 by Radau IIA method with m =2, 3 and Lobatto IIIC
method with m =2, 3, 4.

Radau IIA method Lobatto IIIC method

(N,M) m = 2 m = 3 m = 2 m = 3 m = 4

(10,10) 0.1e−5 0.1e−5 0.1e−4 0.1e−5 0.1e−5
(10,100) 0.1e−6 0.1e−6 0.3e−6 0.1e−6 0.1e−6
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Figure 8: Comparison of exact and approximate solutions by the semi-analytical method with N = 10
(row:1, column:1), Lobatto IIIC method with m = 4,N = 10,M = 100 (row:1, column:2) and Radau IIA
method with m = 3,N = 10,M = 100 (row:2, column:1) for Example 2.
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