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Abstract. This paper develops a new numerical method of fundamental solutions for the non-homogene-
eous convection-diffusion equations with time-dependent heat sources. A summation of the fundamental
solutions of the diffusion operator is considered with time-dependent coefficients for the solution of
the underlying problem. By the 0-weight discretiztion for the time derivative and selecting the source
points and the field points at each time level, the solutions of all time levels are obtained. In addition,
the stability of this approach is analyzed by considering 6 = 1 in numerical results. This method is truly
meshless and it is not necessary to discretize any part of the domain or boundary. As a result, this method
is easily applicable to higher dimensional problems with irregular domains. In this work, we consider a
non-homogeneous convection-diffusion equation (NCDE) in 2D with a regular domain and present some
numerical results to show the effectiveness of the proposed method.

Keywords: Non-homogeneous diffusion equations, meshfree method, method of fundamental solutions, time-
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1 Introduction

Solving problems with regular domains by mesh-dependent methods such as finite difference method
(FDM) and finite element method (FEM) is easy and efficient. However, as they are mesh-dependent,
their applicability become difficult especially in the case of 3D and higher dimensional problems.
However, in the boundary element method (BEM) the discretization is required only on the boundary
and the shape complexity of the domain does not matter. Instead, evaluation of the domain integrals
in the source term and singular integrals related to fundamental solutions (FS) [19] require significant
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computational efforts. For several decades, the meshfree and integration free approaches have been used
to solve the partial differential equations (PDEs) to overcome these difficulties [3, 14,21].

Thereinafter, the Trefftz method (TM) is used by a linear combination of Trefftz basis functions to
approximate the solution of PDE [7]. One of the main categories of these functions is known as F-Trefftz
and is also called the method of fundamental solutions (MFS). This method is based on the FS of the
intended differential operator [9, 12]. The MFS is used when the FS of PDE or a part of that is known
and that is exactly what is done in the BEM. This method is simple and, due to its meshfree property, we
can easily get numerical solutions of linear elliptic PDEs [9]).

The MFS was initially used to solve the elliptic equations, such as Laplace and Helmholtz equation
[9, 15, 18] and to approximate the solution of parabolic-type PDEs like diffusion equation [11,28]. Later
on, the MFS was extended to time-dependent problems to solve homogeneous or non-homogeneous
types by a few methods such as time-marching MFS [25], the unified time-space MFS with diffusion
FS [28] or eigenfunction expansion MFS [30]. By mixing the MFS with other approaches namely the
method of particular solution (MPS) [1,11,17,23,29] and the dual reciprocity method (DRM) [2,5,8,22,

], various types of non-homogeneous equations can be solved. In these methods, the MFS is used to
the part of equation that satisfies FS and MPS or DRM are applied to the remaining part of the equation.
The MFS with modified Helmholtz FS was applied to a diffusion problem with boundary conditions of
Dirichlet-type in [11]. Also, Young et al. solved a homogeneous diffusion equation by using diffusion
FS bases directly [28]. Furthermore, solving non-homogeneous diffusion problems is possible by using
diffusion FS for homogeneous part of the problem and DRM approach for the non-homogeneous source
term [29].

In this work, we have applied MFS introduced by Young et al. to obtain the non-homogeneous
diffusion solution by a time-dependent heat source [28] and FS of the diffusion equation is considered as
the basis functions to the solution of the whole equation. Unlike the previous attempts such as [10, 19,

,29], in this approach, using a particular solution or the Laplace transform is not required to overcome
the non-homogeneous part of the problem. As a result, the computational costs can be considerably
saved. In addition, we have used the Tikhonov regularization technique [26] to obtain the solution of the
resulting system of equations that can be an ill-conditioned problem [6,24].

The rest of work is organized as follows. The convection-diffusion problem is introduced in Section
2. In Section 3, an extension of the MFS with time dependent coefficients is used for NCDE. A new
MES for time discretization is provided in Section 4. Section 5 is devoted to some numerical results for
2D examples. In Section 6, we have stated a brief conclusion and suggested some works for the future.

2 The convection-diffusion problem

We consider the following non-homogenous convection-diffusion equation

du(z,t)

—, ~ KOu(@,t) = v Vu(@,1) = f(x,1), rcQCRY >0, (1)

where A and V represent the Laplacian and the gradient operator, respectively, k is the coefficient of
diffusion, v is a constant vector, and u(x,) may be temperature or concentration for heat or mass transfer.
The initial condition of Eq. (1) is as

u(ac,O) = ”0($)a (2
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and the boundary condition is given by
Pu(x,t) = i(x,1), r€edQ, t>0, 3)

where i(x,t) is a known function, and 4 is a boundary operator, which may be of Dirichlet, Neumann
or mixed type, and dQ represents the boundary of Q. The convection-diffusion problem is combined
with diffusion and convection problems, and describes some engineering and physical phenomena that
wherein transferred particles, energy or other quantities due to two diffusion and convection processes.
Using numerical methods to solve such problems is necessary, even though analytical solutions can be
obtained for some cases.

3 An extension of the MFS

This section is devoted to our proposed method that is based on time-dependent FS. We modify the MFS
suggested in [28] for solving the linear diffusion problems. As in [28], the time-dependent FS diffusion
equation satisfy the following equation

IF (x,1;€,7T)
ot
where 6 is the Dirac delta function acting at the source point (£, 7). This function goes to infinity at
(x,t) = (€,7) and equal to zero elsewhere. The solution of the above equation is determined by using
the Fourier transform with respect to x and the Laplace transform for ¢ as follows

=kV2F(x,t;E,7)+8(x—E)5(t — 1), 4)

X,1; =——— _H(t— )
F(x,1;€,71) (4k7t(t—r))%H(t 1),

where d denotes the spatial dimension and H (¢) is the Heaviside step function as follows

1
R

By taking ¢ > max(t — 7) as a constant, the following non-singular homogeneous solution of Eq. (5) can
be obtained in the domain
Gx,t;€,1)=F(x,t+¢; &, 7).

Since the diffusion FS is the solution of the homogenous diffusion equation, we can express the
solution of the homogeneous equation in the standard MFS, by a linear combination of the FS of diffusion
operator to determine the unknown coefficients considering initial and boundary conditions. In this work,
we assume a linear combination of diffusion FS with time-dependent coefficients as the solution of the
convection-diffusion problem

Ni+Np

ux,0) = Y, o;(t)G(x,1;;, 7)), )
j=1

where x and ¢ are the spatial and the time variables of the field points, §; and 7; represent the spatial and
time coordinates of the source points, and also the number of the initial and boundary source points are
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Figure 1: Schematic diagram of source and field points (a) 1-D diffusion and (b) 2-D diffusion problems,
0 < b < 1 indicates the time levels different form the time steps.

denoted by N; and N,, respectively that N = N; + N;,. Moreover, the unknown coefficients {aj(t)}ljyleb
can be obtained by the collocation method. In some works such as [4,9, 10], choosing the source points
situations has been studied. As shown in Fig. 1 (a) and (b) for 1-D and 2-D, the source points are chosen
on different time levels but in the same situation and the field points are located in t = (n+ 1)Ar and

t = nAt, respectively for the boundary and the interior points.

4 Using the new MFS for NCDE

First, we substitute (7) into the convection-diffusion equation (1) that results,

8at (Zl OCj(l)G(X,ﬁéj,Tj)) — kA (Z aj(t)G(x,t;é‘j,rj)>

j=1

N 3
—v.V (Z ](t)G(x,t;éj,Tj)> = f(x,1).
j=1

This further can be rewritten as

d
Za Xt gj,TJ +ZO{J 8IG(X,Z;§J',TJ')
- ©)
- K'Z Otj(l)AG(X,l‘;éj,Tj) -V Z aj(t)VG(x,t;éj,rj) :f(X,l‘).
j=1 j=1

Since G(x,1;&;,7;) satisfies (4), we can replace the second and third terms of the left hand side of (9) by
d(x—&)6(r — 7). Now by choosing suitable source points, the above mentioned terms vanish and (9)
reduces to

N9
Zj G(x,t;¢,7)) vZaJ WVG(x,1;&;, ;) = f(X,1). (10)

j=1 j=1
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Using a two-level 8-weighted time scheme, Eq. (10) and the initial and the boundary conditions can be
rewritten as

J= J=1

Za, G(x,t;&;,7;) — Ov- Zaj )WVG(x,t;&;,7;) — (1—6) <v~ iaﬂt—At)VG(x,t;@,q))

N
= ZO‘J'(t_At)G(th;éﬁfj)+Atf(xvt)7 (11)
j=1
and
N
Z G(x,t;&;, 7)) = ii(x,t), x€9Q, t€(0,tf). (12)
Now suppose that
—|xi =&
e4k(ti—|—C—Tj)
a4 i = = if ti>Tj,
LI (4kﬂ(li+c—fj))7
0, if < Tj,

and let the indexes of internal and boundary points be denoted, respectively, by J and B and consider
N = N3+ Nyg. The matrix A with entries a;; can be written as follows, A = Ay + Ay, where

Ay =[ajjfor (i€ J,1 < j<N) and 0 elsewhere],

Ay = [a;j for (i €B,1 < j < N) and 0 elsewhere] .
Then, Eqgs. (11) and (12) can be written in the following matrix form

Ca"' = Ea" +v"H!, (13)

where

C=A—-At0v-VAjz,

E=A3+At(1—-0)v-VAjz,

o' = [Atf"" for (i € 3) and /" for (j € ‘B)]T

o' =(af, ...,
and 1" = f(x;,t,) and @/ = iA(x;, by 1)

Now by solving Eq. (13) and using initial condition, a”*! can be obtained for the time level n. We
start this procedure by solving (2) to find aj(0), j=1,...,N and we proceed it until the solution of final
time is achieved.

As mentioned in [20], the coefficient matrices of MFS are often ill-conditioned and solving system

(13) can produce unstable results. So, to overcome this difficulty, we can stabilize the solution using
Tikhonov regularization method. Let the system be summarized as follows

[M; j[{ej} = {bi}-
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Using Tikhonov regularization method, we can solve the following system instead, to achieve a well-
conditioned problem
(M™M + Ao = M"b,

where A > 0 is the regularization parameter which can be found by trial and error. Note that there are
efficient rules for choosing suitable A4, for instance, the L-curve method, which was firstly developed
by Lawson and Hansen [13, 16]. In this work, we just check the value of A > 0 as the regularization
parameter by trial and error.

Now, after using Tikhonov regularization method and obtaining ¢;, we can find the solution of time
level n by the following matrix multiplication

u'=Mo".

This procedure will be continued until the solutions of all time levels are obtained.

5 Numerical results

To check the validity of the proposed method, two examples of 2-D non-homogeneous convection-
diffusion problems with Dirichlet boundary conditions are solved and the numerical results are compared
with the exact solutions. To measure the accuracy of the approximate solutions, we use the root mean
square error (RMSE), relative error (RE) and the maximum error (ME) as follows

ZN[: ﬁ-—u'z 1 N
RE = %])7 RMSE = | — Y (4,—u;)?, ME = max |a;—uj,
iy (u))? N = 1<j<N,

where #i; and u; are the numerical and exact solutions at the jth node, respectively, and N; is the number
of testing nodes uniformly distributed in the problem domain.

Example 1. Consider the following problem

du(x,t)

5 — Au(zx,t) — Vu(zx,t) = f(x,1), t € (0,t5), x= (x,y),

with the initial condition u(x,0) = 0 for x € Q, and the boundary condition
u(x,t) = sin(x)sin(y)sin(t), x€JQ, >0,

where f(x,t) = sinxsiny(cost + 2sint) — sin#(cosxsiny + sinxcosy). The analytical solution of the
problem is given by u(x,#) = sin(x) sin(y) sin(z).

The results have been obtained for N; = 81,N;, = 40 and in Table 1, the ME, RE and RMSE for
ty = 1,2,3 s with different time step sizes are reported. The numerical solution # and the absolute error
for Ar = 0.05 and final time 7, = 3 are drawn in Fig. 2.

The sensitivity of the solution by choosing the regularization parameter A has been investigated by
numerical results for some different values of A which shows the effect of the regularization on the
quality of the solution given by Eq. (4). The choice of this parameter can be based on the Hansen’s
L-curve criterion which calculates the residual ||Aa — b|| versus the norm of the solution ||5|| for various
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Table 1: ME, RE and RMSE with different time steps Az and final time 7, and A = 10~!! for Example 1.

Errors A=1/3 AN=1/4 Ar=1/8 A =1/12 Ar=1/20
Iy = 1
ME 9.2E -3 6.3E -3 7.0E -3 3JE—-3 3.0E-3
RE 738E—2 4.96E -2 1.600E — 1 1.041E—1 6.07E -2
RMSE 5.7TT1AE —4  3.793E —4 4.726E —4 2.449E —4 2.047E —4
Iy = 2
ME 6.8E —3 5.1E—-3 7.2E -3 57E—-3 32E-3
RE 7T.67TE—2  4.98E -2 1.603E — 1 1.057E -1 6.25E -2
RMSE 4.309E —4 3.106E —4 4.861F —4 3.892E -4 2.15E—4
Iy = 3
ME 1.4E—4 6.553E—4 1.708E—4E—4 4.121FE—4 4.031E —4
ME 6.230E—-2 4810E—2 1.793E—-4E—-1 1298E—1 7.900E —2
RMSE 8.333E -5 3.877E—5 1.090E —5 2.716E -5 2.629E —5

Table 2: ME, RE and RMSE with time steps Ar = 0.1 and final time ¢ = 3 and different values of A

Example 1.

Errors A=100 2=10"" A=10"2 A=108 A=10""
ME 3.758E —4 3818E—4 2907E—4 3.280E—4 3.520E—4
RE 1.652E—1 1.689E—1 1559E—1 1445E—1 1.232E—1
RMSE 2478E—5 2521E—5 1867E—5 2.164E—5 2331E—5

Exact Solution

n
o

Absolute Error
o

Absolute Error at t=3

Figure 2: The numerical solution # and the absolute error at 7y = 3 for N; = 81 , N, = 40, At = 0.05 and
A = 107! for Example 1.
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values of A. In this work, we choose the regularization parameter A by trial and error. In Table 2, the
ME, RE and RMSE errors for different values of A with time step Ar = 0.1 and final time 7, = 3 are
presented to indicate the sensitivity of choosing the regularization parameter A.

Example 2. Consider the following non-homogeneous two-dimensional problem

du(x,t)
ot

— Au(x,t) —Vu(x,t) = f(x,t); t€(0,t7), x=(x,y),

where

—2t(x*4+y?) 2x+2y+4

o) = (14222 1422

with the initial condition u(x,0) = x> 4y for (x,y) € Q, and the boundary condition

x2 +y2

u(x,t) = e

(x,y) €0Q, >0, (14)

and the domain € is the same as that of Example 1. The analytical solution of the problem is given as

x2+y2
14122°

u(x,y,r) = (15

We have taken N; = 81, N, = 40 in our computations. In Table 2, the ME, RE and RMSE for numeri-
cal solution with different time step sizes are given. Moreover, the numerical solution & and the absolute
difference between the numerical solution and the exact solution are shown in Fig. 3 for Ar = 0.04 at the
final time 77 = 3.

Exact Solution Absolute Error at t=3

Fi gure 3: The numerical solution & and the absolute error at ¢ 7 =10.5 for At = 0.1 for Example 2.

The different time increments indicate that smaller time increments give better results. Also, in Table
4, the ME, RE and RMSE errors for different values of A with time step Az = 0.1 and final time 7, = 3
are presented to indicate the sensitivity of choosing the regularization parameter A.
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Table 3: ME, RE and RMSE with different time steps Az and final time 77 and A = 10~ for Example 2.

At=1/3 At=1/4 At=1/8 At=1/15 Ar=1/25
tr=1
ME 1.15E—-3 6.400E—-3 7.600E—-3 5.500E—3 1.700E—3
RE 1.403E—1 7.800E—3 1.120E—1 3.480E—2 1.260FE —2
RMSE 8.875E—4 5.314E—4 5962E—4 3.869E—4 8.460E—5
lr= 2
ME 4700E -3 2.500E—-3 3.00E—3 2200E—-3 6.717E—4
RE 1.303£—-3 1.800E—3 1.073E—1 3.600E—2 1.19E-2
RMSE 3.627TE —4 2.124E—4 2365E—4 1.535E—4 3.348E—5
ty=3
ME 2.400E -3 1.200E—3 1.500E—-3 1.100E—-3 3.340FE —4
RE 1.213E—1 5.100E—-3 9.960E -2 3.930E—-2 9.700E —3
RMSE 1.839E —4 1.046E —4 1.143E—4 7T424E—4 1.600E —5

Errors A=1010 A=10" A=10"7 A=100 A=10""
ME 1.3E -3 8.999F —4 4.948F —4 1.2E -3 1.2E -3
RE 1.267E—1 9.14E—2 1.838E—2 8.15E—2 63E-2

RMSE 1.104E —4 7.934E —5 2.561E—5 7.729E—5 6.962F —5

Table 4: ME, RE and RMSE with time steps Ar = 0.1 and final time #; = 3 and different A Example 2.

6 Conclusions

In this paper, we used a numerical method with a time-dependent heat source for solving the non-
homogeneous time-dependent convection-diffusion equations. This scheme is based on the fundamental
solution of the diffusion equation with boundary meshfree property. Moreover, due to the meshfree na-
ture of the proposed method, it is easy to implement with computational efficiency and it is applicable to
higher dimensional problems with irregular geometry. The solutions are obtained by time-marching at all
time levels by choosing appropriate source points and field points at the time levels. Also, Tikhonov reg-
ularization method was used to overcome the dilemma of conditioning in the linear system of equations.
Finally, the stability and accuracy of the solution was confirmed by obtained numerical results.

References

[1] M. Amirfakhrian, M. Arghand, E.J. Kansa, A new approximate method for an inverse time-
dependent heat source problem using fundamental solutions and RBFs, Eng. Anal. Bound. Elem.
64 (2016) 278-289.



80

(2]

(3]

[4]

(5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. Banei, K. Shanazari

K. Balakrishnan, P.A. Ramachandran, Osculatory interpolation in the method of fundamental solu-
tion for nonlinear poisson problems, J. Comput. Phys. 172 (2001) 1-18.

S. Banei, K. Shanazari, Solving the forward-backward heat equation with a nonoverlapping domain
decomposition method based on multiquadric RBF meshfree method, Comput. Methods Differ.
Equ. 9 (2021) 1083-1099.

S. Chantasiriwan, Methods of fundamental solutions for time-dependent heat conduction problems,
Int. J. Numer. Meth. Eng. 66 (2006) 147-165.

C.S. Chen, A. Karageorghis, Y.S. Smyrlis, The Method of Fundamental Solutions-A Meshless
Method, Dynamic Publishers Atlanta, Inc, 2008.

H. A. Cho, C.S. Chen, M.A. Golberg, Some comments on mitigating the ill-conditioning of the
method of fundamental solutions, Eng. Anal. Bound. Elem. 30 (2006) 405-410.

H. A. Cho, M. A. Golberg, A.S. Muleshkov, Trefftz methods for time-dependent partial differential
equations, Comput. Mater. Continua. 1 (2004) 1-37.

C.F. Dong, An extended method of time-dependent fundamental solutions for inhomogeneous heat
conduction, Eng. Anal. Bound. Elem. 33 (2009) 717-725.

G. Fairweather, A. Karageorghis. The method of fundamental solutions for elliptic boundary value
problems, Adv. Comput. Math. 9 (1998) 69-95.

G. Fairweather, A. Karageorghis, P.A. Martin, The method of fundamental solutions for scattering
and radiation problems, Eng. Anal. Bound. Elem. 27 (2003) 759-769.

M.A. Golberg, The method of fundamental solution for poisson’s equations, Eng. Anal. Bound.
Elem. 16 (1995) 205-213.

M.A. Golberg, C.S. Chen, The method of fundamental solutions for potential, helmholtz and diffu-
sion problems, Boundary Integral Methods - Numerical and Mathematical, WIT Press, Southamp-
ton, 1999.

P.C. Hansen, Analysis of discret ill-posed problems by means of L-curve, SIAM Rev. 34 (1992)
561-580.

E. J. Kansa, Multiquadrics, a scattered data approximation scheme with applications to computa-
tional fluid dynamics-1. Surface approximations and partial derivatives estimates, Comput. Math.

Appl. 19 (1990) 127-145.

V.D. Kupradze, M.A. Aleksidze, The method of functional equations for the approximate solution
of certain boundary value problem, Comp. Math. Math. Phys. 4 (1964) 633-725.

C.L. Lawson, P. C. Hansen, Solving Least Squares Problems, Englewood Cliffs: Prentice-Hall Inc,
1974.

C. Lee, H.Wang, Q. Qin, Method of fundamental solutions for 3D elasticity with body forces by
coupling compactly supported radial basis functions, Eng. Anal. Bound. Elem. 60 (2015) 123-136.



A new approximation method for convection-diffusion equation by the fundamental solutions 81

[18] R. Mathon, R.L. Johnston. The approximate solution of elliptic boundary-value problems by fun-
damental solutions, SIAM. J. Numer. Anal. 14 (1977) 638-650.

[19] P. W. Partridge, C.A. Brebbia, L.C. Wrobel, The Dual Reciprocity Boundary Element Method,
Computational Mechanics Publications, London, 1992.

[20] P.A. Ramachandran, Method of fundamental solutions: Singular value decomposition analysis,
Commun. Numer. Meth. Eng. 18 (2002) 789-801.

[21] K. Shanazari, S. Banei, A meshfree method with a non-overlapping domain decomposition method
based on TPS for solving the forward-backward heat equation in two dimension, Numer Algorithms
86 (2021) 1747-1767.

[22] K. Shanazari, S. Banei, A non-overlapping domain decomposition dual reciprocity method for solv-
ing the forward-backward heat equation in two-dimension, Numer. Methods Partial Differ. Equ. 39
(2023)1635-1651.

[23] K. Shanazari, N. Mohammadi, An overlapping domain decomposition Schwarz method applied to
the method of fundamental solution, Comput. Appl. Math. 40 (8) (2021) 1-16.

[24] C.C. Tsai, Y.C. Lin, D.L. Young, S.N. Atluri, Investigation on the accuracy and condition number
for the method of fundamental solutions, Comput. Model. Eng. Sci. 16 (2006) 103-114.

[25] S. S. Valtchev, N. C. Roberty, A time marching MFS scheme for heat conduction problems, Eng.
Anal. Bound. Elem. 32 (2008) 480-493.

[26] J. Wang, T. Wei, Y. Zhou, Tikhonov regularization method for a backward problem for the time-
fractional diffusion equation, Appl. Math. Model. 37 (2013) 8518-8532.

[27] L. Yan, E. Yang, Efficient Kansa-type MF'S algorithm for time-fractional inverse diffusion problems,
Comput. Math. Appl. 67 (2014) 1507-1520.

[28] D.L Young, C.C Tsai, K. Murugesan, C.M. Fan, C.W. Chen, Time-dependent fundamental solutions
for homogeneous diffusion problem, Eng. Anal. Bound. Elem. 28 (2004) 1463-1473.

[29] D.L. young, C.C. Tsai, Direct approach to solve non-homogeneous diffiusion problems using fun-
damental solutions and dual reciprocity methods, J. Chin. Ins. Eng. 4 (2004) 597-609.

[30] D.L. Young, C.H. Chen, C.M. fan, The method of fundamental solutions with eigenfunctions expan-
sion method for 3D non-homogeneous diffusion equations, Numer. Methods Partial Differ. Equ. 25
(2009) 195-211.

[31] D.L. Young, Ming Li, C.S. Chen, C.C. Chu, Transient 3D heat conduction in functionally graded
materials by the method of fundamental solutions, Eng. Anal. Bound. Elem. 45 (2014) 62-67.



	1 Introduction
	2 The convection-diffusion problem
	3 An extension of the MFS
	4 Using the new MFS for NCDE
	5 Numerical results 
	6 Conclusions

