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Abstract. This paper proposes a proximal difference-of-convex algorithm with extrapolation (PDCAe)
based on Dinkelbach’s approach for the optimal correction of two types of piecewise linear systems, clas-
sical obstacle problems and equilibrium problems, and linear inequalities. Using Dinkelbach’s theorem
leads to getting the roots of two single-variable functions. Considering the non-convex and level-bounded
properties of the obtained problems, we use a proximal difference-of-convex algorithm programming to
solve them. The experimental results on several randomly generated test problems show that the PDCAe-
generalized Newton method outperforms other methods for both feasible and infeasible cases.

Keywords: Proximal difference-of-convex, extrapolation, classical obstacle problem, equilibrium problems, linear
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1 Introduction

In applied sciences, various factors, such as optimistic goals, noise, error in data, and lack of interaction
between groups in charge of modeling (see [27]), may create an infeasible system. Reformulation or
finding errors in the existing model may be time-consuming and costly, and the new system still may be
infeasible. Hence, correcting systems have gained increasing attention in recent years (e.g., [1, 5, 11, 12,
15, 16, 18, 20–22, 25, 27, 28]).

This paper proposes a new method for correcting classical obstacle problems, equilibrium problems,
and linear inequality systems. The classical obstacle problem arises by describing the equilibrium po-
sition of the elastic membrane above the obstacle; that is, minimizing the functional elastic energy by
adding a constraint that represents the obstacle. In mathematical objects, the obstacle problem is related
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to the study of differential calculus and partial differential equations. Its other applications can also be
seen in optimal control, financial mathematics, and finite heat [14]. Equilibrium problems in numerical
methods for free-surface hydrodynamics guarantee nonnegative water depths for each time step (see [4]).
It can be shown that these two problems are equivalent to the absolute value equations (AVE).

For the optimal correction of these problems, first, the changes are applied simultaneously in the
entries of the coefficient matrices and the right-hand side vectors. So to correct these problems, we
obtain unconstrained quadratic fractional problems that are not necessarily convex (see [18]). Then,
the Tikhonov regularization is used to control the norm of solutions. Next, the Dinkelbachs theorem
is applied instead of solving the quadratic fractional problems, and the roots of two single-variable
functions are found. This process requires solving optimization problems with non-Lipschitz, level-
bounded, non-convex, and non-smooth objective functions. As the obtained problems are non-convex
and level-bounded, the difference-of-convex (DC) programming is used to solve these problems. First,
their objective functions are rewritten as the sum of smooth convex functions with the Lipschitz gradient,
proper closed convex functions, and continuous concave functions. Then, a proximal DC algorithm with
extrapolation (PDCAe) is proposed to optimize the problems.

The remainder of this work is organized as follows. In Section 2, notations and preliminaries are
provided. In Section 3, the PDCAe-generalized Newton method is introduced for the optimal correction
of infeasible piecewise linear systems and linear inequality systems, and the preliminaries of their optimal
correction are described. In Section 4, numerical experiments are provided. Finally, conclusions are
drawn in Section 5.

2 Notations and preliminaries

The notations used in this study are as follows. |.|, ‖.‖ and ‖.‖∞ denote the absolute value, 2-norm,
and infinity-norm, respectively. The identity matrix of size n is shown by I. The transpose of x ∈ Rn

is represented by xt , and xty displays the inner product of two vectors x and y, in Rn. (x)+ indicates a
vector of elements max(0,xi) for i = 1, . . . ,n, and (x)− represents a vector of elements min(0,xi) for i =
1, . . . ,n. sign(x) denotes a vector with components of 1,0,−1 depending on whether the corresponding
component of x is positive, zero, or negative.

Let f : Rn −→ R∪{+∞}. If f is differentiable at point x ∈ Rn, then the gradient of this function at
x is denoted by5 f (x). Otherwise, ∂ f (x) denotes the generalized gradient of f at x, which is defined by

f (y)≥ f (x)+∂ f (x)t(y− x), ∀y ∈ dom( f ).

For the two-variable function f (x, t), 5x f (x, t) (∂x f (x)) denotes the gradient (the generalized gradient)
of the function f (x, t) for the variable x. f is a closed proper convex function if its epigraph, i.e., the set
epi( f ) = {(x,q) ∈Rn×R : f (x)≤ q}, is a nonempty closed convex set, and the effective domain of this
function is non-empty; in other words, dom( f ) = {x ∈ Rn : f (x)<+∞} 6= /0.

The proximal operator prox f : Rn −→ Rn of a closed proper convex function f at point y ∈ Rn is
defined by

prox f (y) = arg min
x∈Rn

f (x)+
1
2
‖x− y‖2.

The function minimized on the righthand side is strongly convex and not everywhere infinite, so it has a
unique minimizer for every y ∈Rn [24]. In this work, the proximal operator of the scaled function σ f is
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used, where σ > 0, which is called the proximal operator of f with parameter σ and expressed as follows

proxσ f (y) = arg min
x∈Rn

f (x)+
σ

2
‖x− y‖2.

The DC programming has been presented for the non-convex continuous optimization problems
(see [32]). There is a class of DC optimization problems with an objective function as follows

min
x∈Rn

f (x)+ p(x)−g(x), (1)

where f is a smooth convex function with a Lipschitz continuous gradient with modulus L > 0, p is a
proper closed convex function, and function g is a continuous convex. Problem (1) can be solved by
the classical DC algorithm (DCA), but the main drawback of this algorithm is its dependence on DC
decomposition (see [31]). Goethe et al. [10] proposed the proximal DCA method to alleviate this short-
coming, although this algorithm may take a lot of iterations [31]. Wen et al. [31] employed extrapolation
techniques to accelerate the proximal DCA and presented the proximal DCA with extrapolation (i.e., the
PDCAe method). In each iteration of this algorithm, the extrapolation point is calculated by

yk = xk +βk(xk− xk−1),

where βk ∈ (0,1], and the next iteration is estimated by

xk+1 = proxLp

(
yk−

1
L
(5 f (yk)−∂g(xk))

)
.

3 PDCAe-generalized Newton method

In this section, the PDCAe-generalized Newton (PDCAe −GN) method is presented for the optimal
correction of infeasible systems of two piecewise linear systems and linear inequalities. This algorithm
is a combination of the generalized Newton method for identifying the root of a function and the PDCAe

method for solving an optimization problem.
In the optimal correction of infeasible systems, the following fractional problem is observed fre-

quently

min
x∈Rn

Π(x) =
N(x)
M(x)

, (2)

where N and M are continuous, real-valued functions on Rn, and M(x) 6= 0 for all x ∈Rn. The Tikhonov
regularization is used to control the norm of the solutions

min
x∈Rn

Π(x) =
N(x)
M(x)

+ρ‖x‖2, (3)

where ρ > 0 is the regularization parameter. According to the Dinkelbach’s theorem [8], instead of
solving problem (3), the root of the following function is identified

F(t) = min
x∈Rn

N(x)+ρ‖x‖2M(x)− tM(x). (4)

The properties of the function F(t) are proven by Dinkelbach [8] and stated in the following lemma.
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Lemma 1. The function F(t) is concave, strictly monotonic decreasing, continuous on R, and has a
unique root.

Theorem 1. Consider the convex function G(t) =−F(t) and assume that xt is an optimal solution to the
optimization problem in (4). Then, G(t) is subdifferentiable, and M(xt) is its subdifferential at t.

Proof. Since G(t) is a convex function, it has at least one subgradient at t (see [2, 7]). For all s ∈ R,

G(t)−G(s) =−N(xt)−ρ‖xt‖2M(xt)+ tM(xt)+N(xs)+ρ‖xs‖2M(xs)− sM(xs).

Since xs is a solution to the problem

min
x∈Rn

N(x)+ρ‖x‖2M(x)− sM(x),

we get
−G(s) = N(xs)+ρ‖xs‖2M(xs)− sM(xs)≤ N(xt)+ρ‖xt‖2M(xt)− sM(xt).

Thus,

G(t)−G(s) ≤ −N(xt)−ρ‖xt‖2M(xt)+ tM(xt)+N(xt)+ρ‖xt‖2M(xt)− sM(xt)

= M(xt)(t− s),

and so
G(s)≥ G(t)+M(xt)(s− t),

which completes the proof.

It should be noted that t∗ is the root of F(t) if and only if t∗ = minx∈Rn Π(x) (see [21]). Now, as G(t)
is subdifferentiable, t∗ can be obtained using the generalized Newton method

ti+1 = ti−
G(ti)

∂G(ti)
, ∀i≥ 0. (5)

The function G(t) contains an optimization problem. We consider it as a DC programming problem

G(t) = min
x∈Rn

f (x)+ p(x)−g(x, t), (6)

where f is a smooth convex function with a Lipschitz-continuous gradient with a modulus L > 0, p is a
proper closed convex function, and g is a continuous convex function for the variable x. This way, the
PDCAe method can be used to solve it and calculate xti+1 as follows:

xti+1 = proxLp(xk−
1
L
(∂ f (yk)−∂xg(xk, ti)))

= arg min
x∈Rn

p(x)+(∂ f (yk)−∂xg(xk, ti))tx+
L
2
‖x− yk‖2, (7)

where k ≥ 0 and x0 = xti , yk = xk+1−βk(xk+1− xk), βk ∈ (0,1]. The subproblem (7) is strongly convex,
therefore, has a unique solution and can be easily solved with convex optimization methods.

Here, the algorithm is outlined based on the above process.
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Algorithm 1 PDCAe-GN method

1. Choose ρ > 0, accuracy parameter ε1 > 0 and a starting point t0.

2. Set i = 0.

3. While |G(ti)| ≥ ε1 do
Calculate x(ti) using the following algorithm:

(a) Choose accuracy parameter ε2 > 0 and {βk} ⊆ [0,1) whit supk βk < 1 and the starting point
x0 ∈ dom(p).

(b) Set x−1 = x0 and k = 0.

(c) While ‖C‖∞ > ε2 do
Calculate ∂xg(xk, ti);
Set yk = xk +βk(xk− xk−1); and calculate ∂ f (yk);
Calculate xk+1 by

min
x∈Rn

p(x)+(∂ f (yk)−∂xg(xk, ti))tx+
L
2
‖x− yk‖2; (8)

Set C = xk+1− xk; and k = k+1;

(d) end;

Calculate G(ti);

Set ti+1 = ti− G(ti)
∂G(ti)

; and i = i+1;

4. end

In Algorithm 1, the parameter extrapolation βk for k ≥ 0 is considered as follows

βk =
θk−1−1

θk
, with θk+1 =

1+
√

1+4θ 2
k

2
, (9)

where θ0 = θ−1 = 1 (see more details in [31]). The following theorem shows the convergence of Algo-
rithm 1.

Theorem 2. Suppose {xti} is a sequence generated by the PDCAe-GN method. Then, any accumulation
point of this sequence is convergent to a stationary point of Π.

Proof. The PDCAe-GN method in steps c-d (i.e., PDCAe method) solves the following optimization
problem at the ith iteration:

min
x∈Rn

N(x)+ρ‖x‖2M(x)− tiM(x). (10)

Since the objective function of problem (10) is level-bounded, and the extrapolation parameters {βk}
satisfy supβk < 1 and {βk}⊆ [0,1), any accumulation point of sequence generated by the PDCAe method
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(steps c-d) is a stationary point of the problem (10) (see [31] for more details ). On the other hand, G(t)
is a convex function by Theorem 1, and the generalized Newton method has a finite termination property
(see [13]). Thus, any accumulation point of the sequence generated by the PDCAe-GN method is a
stationary point of Π.

3.1 PDCAe-GN method for optimal correction of piecewise linear and linear inequality
systems

In this subsection, first, the following classical obstacle problem is considered

(x)−+T (x)+ = r, (11)

where T ∈ Rn×n and r ∈ Rn. It appears in the semi-implicit methods for the numerical simulation of
free-surface hydrodynamics and the numerical solutions to obstacle problems (see [33]).

Since (x)−=
x−|x|

2 and (x)+ = x+|x|
2 , systems (11) can be reformulated as the following absolute value

equations
(T + I)x+(T − I)|x|= 2r. (12)

Next, the following equilibrium problems are discussed, which are a correct formulation of numerical
methods for free-surface hydrodynamics that guarantees nonnegative water depths for any time step
(see [4] )

Qx+(x)+ = q, (13)

where Q ∈ Rn×n and q ∈ Rn. If (x)+ is replaced by |x|+x
2 , system (13) is equivalent to the following

absolute value equations
(2Q+ I)x+ |x|= 2q. (14)

When the above problems are infeasible, the optimal correction of the following absolute value equations
is considered

Ax+B|x|= b, (15)

where A,B ∈ Rn×n, b ∈ Rn. For the optimal correction of the infeasible system (15), the following
fractional problem is solved (see [16] and [11])

min
x∈Rn

‖Ax+B|x|−b‖2

1+‖x‖2 . (16)

The above problem is not coercive, and it is possible that solving problem (16) leads to solutions with
very large norms. Hence, the Tikhonov regularization method is used to turn this problem into a coercive
problem and avoid ending up with a large norm solution:

min
x∈Rn

H(x) =
‖Ax+B|x|−b‖2

1+‖x‖2 +ρ‖x‖2, (17)

where ρ ∈ R is a positive parameter. The following function is obtained from Dinkelbach’s theorem [8]

F(t) = min
x∈Rn

‖Ax+B|x|−b‖2 +ρ‖x‖2(1+‖x‖2)− t(1+‖x‖2). (18)
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The function F has the properties described in Lemma 1 and has a unique root in the interval [0,‖b‖2]
(see [11]). Also, the subdifferential of the function G(t) = −F(t) is (1+ ‖xt‖2) at point t where xt is a
solution for the following problem (see [11, 21]):

min
x∈Rn
‖Ax+B|x|−b‖2 +ρ‖x‖2(1+‖x‖2)− t(1+‖x‖2). (19)

So, the problem (19) must be solved to obtain the root of function F . Therefore, Proposition 1 demon-
strates that problem (19) can be rewritten as a class of DC optimization problems.

Proposition 1. There is γ > 0, so that s(x) = γ

2‖x‖
2 +2xtAtB|x|+‖B|x|‖2 is a convex function. Problem

(19) is equivalent to a DC programming problem, so its objective function is the sum of a smooth convex
function with Lipschitz-continuous gradient, a proper closed convex function, and a continuous concave
function.

The following notes are required to prove this proposition (also see [29]).

Note 1. Let x ∈ Rn,

Dx = diag(sign(x)) =


sign(x1) 0 0 · · · 0

0 sign(x2) 0 · · · 0
...

. . .
...

0 0 · · · sign(xn)

 , (20)

where

sign(xi) =


−1, i f xi < 0,
0, i f xi = 0,
1, i f xi > 0.

Therefore,

(sign(xi))
2 =

{
1, i f xi < 0 or xi > 0,
0, i f xi = 0,

(21)

and, since |x|= Dxx, thus

‖|x|‖2 = ‖Dxx‖2 = (
n

∑
i=1

(sign(xi)xi)
2)2 = ‖x‖2.

Therefore, ‖Dxx‖2 is a convex function.

Note 2. Consider the function of two variables M(x,y) = δ (x2 + y2)+αx2 +ηy2 + cxy, where α,η ,c ∈
R are constant. This function can be reformulated as M(x,y) = [(δ +α)x2 + px] + [(δ +η)y2 + qy],
where α,η , p,q ∈ R (see [30]). For sufficiently large values of δ > 0, h(x) = (δ + α)x2 + px and
f (y) = (δ + η)y2 + qy are convex functions. Then, M(x,y) is a convex function. Now, consider the
function φ(x1,x2) =

γ

2(x
2
1 + x2

2)− (a11sign(x1))x2
1 + a22sign(x2))x2

2)− (a12sign(x1) + a21sign(x2))x1x2.
Since sign(xi) =(-1) or 1 or 0, i = 1,2, ai jsign(xi) ∈ R, i, j = 1,2. So, there exist α1,α2,λ1,λ2 ∈ R so
that φ(x1,x2) = (( γ

2 +α1)x2
1 + λ1x1)+ (( γ

2 +α2)x2
2 + λ2x2). Therefore, for sufficiently large values of

γ > 0, φ(x1,x2) is a convex function.
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Further details are provided below for the proof of Proposition 1.

Proof. It is proven that for sufficiently large γ1 > 0, the function

s1(x) =
γ1

2
‖x‖2 +2xtAtB|x|,

is convex. Therefore,

s1(x) =
γ1

2
‖x‖2 +2xtAtBDxx = xt(

γ1

2
I +((AtB)Dx +Dx(AtB)t))x.

Also, suppose that qi j, i, j = 1, . . . ,n are the entries of the matrix AtB. Then,

(AtB)Dx =


q11sign(x1) q12sign(x2) · · · q1nsign(xn)
q21sign(x1) q22sign(x2) · · · q2nsign(xn)

...
...

...
qn1sign(x1) qn2sign(x2) · · · qnnsign(xn)

 .
So,

γ1

2
I +((AtB)Dx +Dx(AtB)t) =

γ1
2 +2q11sign(x1) (q12sign(x2)+q21sign(x1)) · · · (q1nsign(xn)+qn1sign(x1))

(q12sign(x2)+q21sign(x1))
γ1
2 +2q22sign(x2) · · · (q2nsign(xn)+qn2sign(x2))

...
...

. . .
...

(q1nsign(xn)+qn1sign(x1)) (q2nsign(xn)+qn2sign(x2)) · · · γ1
2 +2qnnsign(xn)

 .
Therefore

s1(x) =
n

∑
i=1

((
γ1

2
+2qiisign(xi))x2

i )+2
n

∑
i=1

n

∑
j=1
j 6=i

(qi jsign(xi)+q jisign(x j))xix j.

Since sign(xi) = (−1) or 1 or 0, i = 1, . . . ,n, qi jsign(xi) ∈ R, i, j = 1, . . . ,n. According to Note 2, there
exist αi,λi ∈ R, i = 1, . . . ,n, so that s1(x) is converted to

s1(x) =
n

∑
i=1

((
γ1

2
−αi)x2

i +λixi).

Therefore, for sufficiently large values of γ1 > 0, s1(x) is convex function. Similarly, it can be shown that
there exists γ2 > 0 so that the following function is convex

s2(x) =
γ2

2
‖x‖2 +‖B|x|‖2.

So, by choosing γ = max{γ1,γ2}, function s(x) = s1(x)+ s2(x) is convex. Also, Problem (19) is equiva-
lent to the following DC programming problem

min
x∈Rn

f (x)+ p(x)−g(x, t), (22)
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where

f (x) = ρ‖x‖2, p(x) = ‖Ax−b‖2 +‖B|x|‖2 +2xtAtB|x|+2(−btB)+|x|+
γ

2
‖x‖2 +ρ‖x‖4,

g(x, t) = t(1+‖x‖2)+2(btB)+|x|+
γ

2
‖x‖2.

Here, the function f is smooth convex with a Lipschitz-continuous gradient and modulus L = 2ρ . The
effective domain of the function p is nonempty, so it is a proper closed convex, and the function g is a
continuous convex for the variable x.

In implementing the PDCAe-GN method to correct infeasible AVE (15), the subgradient of the
function g for the variable x at the point (xk, ti) and the gradient of the function f at the point yk =
xk +βk(xk− xk−1) are calculated as below{

∂xg(xk, ti) = (2t + γ)xk +2Dk(btB)t
+,

5 f (yk) = 2ρyk,

where Dk = diag(sign(xk)). Instead of problem (8), the following convex optimization problem is solved

min
x∈Rn
‖Ax−b‖2 +‖B|x|‖2 +2xtAtB|x|+2(−btB)+|x|+

γ

2
‖x‖2

+ρ‖x‖4 +(5 f (yk)−∂xg(xk, ti))tx+
L
2
‖x− yk‖2. (23)

Remark 1. For optimal correction of system (15) when B=-I, i.e., infeasible system

Ax−|x|= b, (24)

according to Note 1, the function ‖x‖2 is smooth. Therefore, the following DC problem can be considered
instead of problem (22)

min
x∈Rn

f (x)+ p(x)−g(x, t), (25)

where

f (x) = (1+ρ)‖x‖2, p(x) = ‖Ax−b‖2−2xtAt |x|+2(b)t
+|x|+

γ

2
‖x‖2 +ρ‖x‖4,

g(x, t) = t(1+‖x‖2)+2(−b)t
+|x|+

γ

2
‖x‖2,

in which the function f is smooth convex with a Lipschitz-continuous gradient with modulus L= 2(1+ρ),
the function p is proper closed convex, and the function g is a continuous convex for the variable x. The
effectiveness of the PDCAe-GN method for problem (25) is confirmed via the results obtained in Section
4.

Remark 2. It should be noted that AVE (15) is converted to the linear equality system Ax = b when
B = 0. Hence, the linear equality system is a special case of AVE (15), and the approach discussed in
this subsection can be used to correct the infeasible linear equality system.



44 S. Shahsavari, S. Ketabchi

Now, the infeasible system of linear inequalities is considered for all A ∈ Rm×n and b ∈ Rm

Ax≤ b, (26)

The aim is to correct system (26) using changes in the matrix A entries and the right side vector b. It is
equivalent to solving the following fractional problem (see [1])

min
x∈Rn

‖(Ax−b)+‖2

1+‖x‖2 . (27)

The Tikhonov regularization method is applied to control the norm of the solutions

min
x∈Rn

‖(Ax−b)+‖2

1+‖x‖2 +ρ‖x‖2, (28)

where ρ is a positive parameter. Applying Dinkelbachs theorem results in

F(t) = min
x∈Rn
‖(Ax−b)+‖2 +ρ‖x‖2(1+‖x‖2)− t(1+‖x‖2). (29)

The function F(t) is a strictly decreasing and concave function with a unique root in the interval
[0,‖(−b)+‖2] (see [12,28]). Therefore, the function F(t) has the properties of Lemma 1. Also, Theorem
1 is true for the function G(t) = F(t) with subgradient 1+‖xt‖2 at t, where xt is a solution of

min
x∈Rn
‖(Ax−b)+‖2 +ρ‖x‖2(1+‖x‖2)− t(1+‖x‖2). (30)

Proposition 2 proves that the problem (30) is equivalent to a form of the DC programming problem
(1).

Proposition 2. The problem (30) is equivalent to a DC programming problem so that the objective
function of the problem is the sum of a smooth convex function with a Lipschitz-continuous gradient with
modulus L = 2ρ , a proper closed convex function, and a continuous concave function.

Proof. By choosing the following functions

f (x) = ρ‖x‖2, p(x) = ‖(Ax−b)+‖2 +ρ‖x‖4, g(x, t) = t(1+‖x‖2), (31)

it is clear that problem (30) is equivalent to the following DC problem

min
x∈Rn

f (x)+ p(x)−g(x, t) (32)

where f is a smooth convex function with a Lipschitz-continuous gradient with modulus L = 2ρ , p is a
proper closed convex function, and g is a continuous convex function for the variable x.

The results of this subsection support the conclusion that the PDCAe-GN method can be used to solve
problem (27). So, the two gradients are calculated as follows{

5 f (yk) = 2ρyk,
5xg(xk, ti) = 2tixk.

(33)

Also, problem (8) is equivalent to the following convex optimization problem

min
x∈Rn
‖(Ax−b)+‖2 +ρ‖x‖4 +(5 f (yk)−5xg(xk, ti))tx+

L
2
‖x− yk‖2. (34)
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Remark 3. In many applications, the linear inequality systems have non-negative variables; that is, the
following system is observed {

Ax≤ b,
x≥ 0,

(35)

where A ∈ Rn×n and b ∈ Rn. If

A =

[
A
−I

]
, b =

[
b
0

]
,

then, system (35) turns into the system (26).

4 Numerical experiments

In this section, three examples are randomly generated to demonstrate the effectiveness of the PDCAe-
GN method. The first and second examples involve AVE problems (15) and (24), respectively. The third
example considers the system of linear inequalities (26). In each of these examples, first, it is shown that
the proposed algorithm is valid for optimal correction; so, the algorithm is valid

- For AVE problems (15)

r∗ =
‖Ax∗+B|x∗|−b‖2

1+‖x∗‖2 ≈ 0, and E∗ =−r∗x∗
t ≈ 0,

where x∗ is an optimal solution to the fractional programming problem (16) (see [16]).

- For linear inequalities

r∗ =
(Ax−b)+
1+‖x‖2 ≈ 0, and E∗ =−r∗x∗

t ≈ 0,

where x∗ is a solution to the problem (27) (see [27]).

Therefore, problems (15) and (27) are feasible whenever

1
2(‖r

∗‖2 +‖E∗‖2)≈ 0.

Then, the PDCAe-GN method is compared with other algorithms for infeasible problems. The numerical
results obtained in this section are calculated using a personal computer (CORE i5, CPU 2.50 GHz, 4
GB memory, MATLAB 2013). In the tables provided in this section, every random system with identical
dimensions is generated ten times simultaneously, and the average of the numerical results is presented.
The first column indicates the size of matrix A, and Time(s) is the average calculated CPU times. The
sign “-” indicates a Time(s)> 600, and

MrE =
1

10

10

∑
i=1

(
1
2
(‖r∗i ‖2

∞ +‖E∗i ‖2
∞)),

where r∗i and E∗i are the approximations obtained of the algorithm in step i.
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Example 1. Here, the system of AVE (15) is considered. Two numerical experiments are performed
to demonstrate the effectiveness of the PDCAe-GN method in various randomly generated feasible and
infeasible problems of the AVE (15). In the tables, G(t∗) is defined as

G(t∗) = | 1
10

10

∑
i=1

(‖Ax∗i +B|x∗i |−b‖2 +ρ‖x∗i ‖2(1+‖x∗i ‖2)− t∗i (1+‖x∗i ‖2))|,

where x∗i and t∗i are the solutions obtained from the algorithm in step i, and Me = 1
10 ∑

10
i=1(‖(A+E∗i )x

∗
i +

B|x∗i | − (b + r∗i )‖∞). First, the feasible AVE (15) is considered, which is randomly generated by the
following MATLAB code

Code 3. A randomly generated feasible system of absolute value equations

n = input(′Enter n :′);

A = 100∗ ((rand(n,n)− rand(n,n)));

x = (rand(n,1)− rand(n,1));

B = spdiags(x,0,n,n);

b = A∗ x+B∗abs(x);

The numerical results from the implementation of the PDCAe-GN method for Code 3 are summarized
in Table 1. The results of this table show that the proposed algorithm has a desirable performance on
a feasible system of AVE (15) and is valid for correcting an infeasible AVE since the expectations are
1
2(‖r

∗‖2
∞ +‖E∗‖2

∞)≈ 0.

Table 1: Numerical results of the PDCAe-GN method for the feasible AVE (15).
n Me G(t∗) MrE Time(s)

3000 1.7440e-11 7.7812e-11 1.0033e-12 6.59
4000 2.3351e-11 1.7474e-13 2.0037e-12 13.95
5000 2.8581e-11 4.2826e-11 1.0680e-10 29.22

Second, for an infeasible AVE, the proposed algorithm is compared with the DC-Newton method
from Hashemi and Ketabchi [11]. They used Dinkelbachs approach to transform the fractional pro-
gramming problem (16) into a single variable equation. They then applied four smoothing functions for
|t|

φ1(t,µ) = µ
[

ln(1+ e
− t

µ )+ ln(1+ e
t
µ )
]
.

φ2(t,µ) =


t, i f t ≥ µ

2 ,

( t2

µ
+ µ

4 ), i f − µ

2 < t < µ

2 ,

−t, i f t ≤− µ

2 .

φ3(t,µ) =
√

4µ2 + t2.

φ4(t,µ) =

{
t2

2µ
, i f |t| ≤ µ,

|t|− µ

2 , i f |t|> µ,
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where µ is a positive constant. Instead of the problem (19), they obtained a smoothing DC programming
problem as below

min
x∈Rn

k(x)−h(x),

where

k(x) = ‖Ax−Φi(x)−b‖2 + γ‖x‖2 +ρ‖x‖2(1+‖x‖2), h(x) = t(1+‖x‖2)+ γ‖x‖2,

in which γ > 0 and Φi(x) =
(
φi(x1,µ),φi(x2,µ), . . . ,φi(xn,µ)

)> (see [11] for more details). They indi-
cated that φ4 was the optimal choice of the smoothing function for applying the DC-Newtown method.
So, the proposed algorithm was compared with the DC-Newtown method with a smoothing function φ4
(i.e., DC−N(φ4) method). The infeasible AVE is generated based on the following lemma (see [21]).

Lemma 2. If {x ∈ Rn|(A−B)x− b ≥ 0} = /0 or {x ∈ Rn|(A+B)x− b ≥ 0} = /0, then equation (15) is
infeasible.

Farkas lemma is used to generate the MATLAB code of the infeasible AVE. It is supposed that {x ∈
Rn|(A−B)x− b ≥ 0} = /0. Then, by Farkas lemma, a vector u ∈ Rn exists such that (A−B)tu = 0,
btu > 0 and u≥ 0. Hence, the MATLAB code for the infeasible AVE (15) is written as

Code 4. A randomly generated infeasible system of absolute value equations

n = input(′Enter n :′);

pl = inline(′(abs(x)+ x)/2′); % plus f unction

u = 10∗ (rand(n,1)− rand(n,1));

u = pl(u);

k = null(u′);

k = [k,zeros(n,1)];

x = spdiags(rand(n;1),0,n,n)∗ (rand(n,1)− rand(n,1));

x = spdiags(ones(n,1)− sign(x),0,n,n)∗10∗ (rand(n,1)− rand(n,1));

B = spdiags(x,0,n,n) :

A = k+B; % (A−B)′u = 0

b = u; % b′u > 0

Table 2 compares the performance of the PDCAe-GN method and the DC−N(φ4) method. It indi-
cates that the proposed algorithm has a better performance than the DC−N(φ4) method in terms of time
and error, optimal correction, and accuracy. Therefore, the PDCAe-GN method is more effective for the
optimal correction of an infeasible AVE system (15).
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Table 2: Comparison of the PDCAe−GN and DC−N(φ4) methods for the infeasible AVE (15).
n method Me G(t∗) MrE Time(s)

1000 PDCAe−GN 1.8037e-15 5.8309e-11 4.9066e+01 0.56
DC−N(φ4) 1.7493e-14 3.3120e-09 5.1274e+01 3.62

2000 PDCAe−GN 2.0989e-15 5.8862e-10 4.9252e+01 2.57
DC−N(φ4) 2.1066e-14 1.4814e-09 4.9010e+01 23.04

3000 PDCAe−GN 2.0922e-15 2.9939e-09 4.9386e+01 6.85
DC−N(φ4) 3.0598e-14 1.5942e-08 4.9297e+01 67.58

4000 PDCAe−GN 2.0378e-15 9.5014e-09 4.9404e+01 14.09
DC−N(φ4) 3.0366e-14 4.8726e-08 4.9471e+01 155.97

5000 PDCAe−GN 2.1897e-15 2.4548e-08 4.9409e+01 25.75
DC−N(φ4) 3.4903e-14 2.0384e-08 4.9454e+01 303.86

5500 PDCAe−GN 2.2204e-15 8.6579e-09 4.9600e+01 31.93
DC−N(φ4) 3.8431e-14 3.4386e-08 4.9557e+01 429.58

6000 PDCAe−GN 2.0527e-15 1.2704e-08 4.9440e+01 46.58
DC−N(φ4) 3.9549e-14 5.7378e-08 4.9288e+01 540.97

Example 2. In this example, the efficiency of the PDCAe-GN method is investigated for two cases of
feasible and infeasible AVE (24). In the implementation of the PDCAe-generalized Newton method, the
algorithm with PDCAe-GN is used for the problem (22), and the algorithm with PDCAe-GN(I) is used
for the problem (25). Table 3 presents the numerical results of these two methods for feasible AVE (24).
In Table 4, the numerical results of these two algorithms for the infeasible AVE (24) are compared with
the DC−N(φ4) method. The symbols of the Example 4 tables are used, the Codes MATLAB 3 and 4 are
considered, and we put B =−I.

Table 3: Comparison of the PDCAe−GN(I) and PDCAe−GN methods for the feasible AVE (24).
n method Me G(t∗) MrE Time(s)

3000 PDCAe−GN(I) 1.7099e-11 3.9926e-11 1.6898e-12 27.43
PDCAe−GN 1.5416e-11 9.4360e-16 1.6932e-12 29.53

4000 PDCAe−GN(I) 2.2101e-11 5.5005e-11 1.9502e-12 59.98
PDCAe−GN 2.2567e-11 1.7124e-11 1.9478e-12 68.00

5000 PDCAe−GN(I) 2.7467e-11 1.9553e-10 1.0042e-12 111.97
PDCAe−GN 2.7603e-11 1.0870e-11 9.9920e-13 138.06

The results presented in Table 3 demonstrate the validity of the PDCAe-GN(I) method. The last
column of the table shows that the PDCAe-GN(I) method has higher speed in solving a feasible AVE
(24) than the PDCAe-GN method.

Table 4 presents the results of the implementation of the PDCAe-GN(I), PDCAe-GN, and DC−N(φ4)
methods for the correction of the infeasible AVE (24). It is seen that the error of optimal correction (Me)
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in PDCAe-GN(I) and PDCAe-GN methods are nearly similar, but the DC−N(φ4) method has higher
error. Also, the PDCAe-GN(I) method is faster than the other two methods, and the PDCAe-GN method
is faster than DC−N(φ4).

Table 4: Comparison of the PDCAe−GN(I), PDCAe−GN, and DC−N(φ4) methods for the infeasible
AVE (24).

n method Me G(t∗) MrE Time(s)
1000 PDCAe−GN(I) 1.3975e-15 7.9019e-11 4.8923e+01 0.62

PDCAe−GN 2.0561e-15 3.5738e-11 4.8923e+01 1.34
DC−N(φ4) 1.4663e-14 1.0550e-11 4.9118e+01 7.28

2000 PDCAe−GN(I) 1.8363e-15 3.5056e-10 4.9166e+01 4.41
PDCAe−GN 2.0849e-15 5.8088e-10 4.9166e+01 8.48
DC−N(φ4) 2.3228e-14 2.2344e-09 5.1218e+01 39.370

3000 PDCAe−GN(I) 2.2720e-15 6.6551e-10 4.9302e+01 24.91
PDCAe−GN 2.1450e-15 8.4954e-10 4.9302e+01 28.72
DC−N(φ4) 2.5938e-14 -8.2946e-10 4.9254e+01 119.59

4000 PDCAe−GN(I) 2.1285e-15 4.3001e-10 4.9750e+01 51.05
PDCAe−GN 2.1764e-15 2.4628e-09 4.9323e+01 58.82
DC−N(φ4) 2.9635e-14 1.4495e-08 4.9323e+01 277.91

5000 PDCAe−GN(I) 2.1640e-15 3.9784e-10 4.9387e+01 123.60
PDCAe−GN 2.2189e-15 5.4887e-09 4.9387e+01 110.39
DC−N(φ4) 3.5053e-14 2.0955e-10 4.9551e+01 599.23

5500 PDCAe−GN(I) 2.1991e-15 4.8793e-10 4.9256e+01 220.89
PDCAe−GN 2.5689e-15 3.6224e-08 4.9256e+01 166.30
DC−N(φ4) - - - -

6000 PDCAe−GN(I) 2.1662e-15 6.2699e-10 4.9707e+01 422.15
PDCAe−GN 2.4778e-15 1.2065e-08 4.9707e+01 473.30
DC−N(φ4) - - - -

The proximal subgradient method (PSM) by Shahsavari and Ketabchi [29] is compared with the
exact Douglas-Rachford splitting method (DRs) by Chen et al. [6] for the feasible AVE (24). Table 5
shows the numerical results, where Time(s) is the average elapsed CPU times, and

f ∗ =
1
10

10

∑
i=1

(‖Ax∗i +B|x∗i |− (b)‖∞),

where x∗i , is the solution obtained from the algorithms. Numerical results indicate that the PSM method
is superior to the DRs method in terms of accuracy and time.

Example 3. In this example, numerical experiments are presented for the optimal correction of an in-
feasible system in linear inequality on various randomly generated problems. In the first column of the
following tables, d represents the density,

G(t∗) = | 1
10

10

∑
i=1

(‖(Ax∗i −b)+‖2 +ρ‖x∗i ‖2(1+‖x∗i ‖2)− t∗i (1+‖x∗i ‖2))|,
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Table 5: Comparison of the PDCAe−GN(I), PDCAe−GN and DRs methods for the feasible AVE (24).
n method f ∗ Time(s)

3000 PSM 3.4062e-12 5.76
DRs 4.5747e-09 218.98

4000 PSM 6.3699e-12 12.98
DRs 8.7296e-10 554.39

5000 PSM 1.6139e-11 29.096
DRs - -

6000 PSM 2.6191e-11 55.99
DRs - -

7000 PSM 8.7411e-11 74.29
DRs - -

8000 PSM 5.1587e-12 183.68
DRs - -

where x∗i , and t∗i are the solutions obtained from the algorithm in step i, and

Me =
1
10

10

∑
i=1

(‖((A+E∗i )x
∗
i − (b+ r∗i ))+‖∞).

The following MATLAB code is considered for the feasible system of linear inequalities, and the numer-
ical results are presented in Table 6.

Code 5. A randomly generated feasible system of linear inequalities

m = input(Enter m : );

n = input(Enter n : );

d = input(Enter d in (0,1] : );

A = sprand(m,n,d);

A = 100∗ (A− .5∗ spones(A));

x = spdiags(rand(n,1),0,n,n)∗ (rand(n,1)− rand(n,1));

b = A∗ x+ spdiags((rand(m,1)),0,m,m)∗10∗ones(m,1);

Table 6: Numerical results of the PDCAe-GN method for the feasible system of linear inequalities.
n, d Me G(t∗) MrE Time(s)

3000, 0.1 3.2486e-12 8.8436e-09 1.0071e-13 23.42
4000, 0.1 1.6747e-12 3.4764e-09 2.3555e-16 49.58
5000, 0.1 1.7991e-12 1.4799e-08 2.2092e-12 85.39

As shown in Table 6, the values of 1
2(‖r

∗‖2
∞ + ‖E∗‖2

∞) ≈ 0. Therefore, the PDCAe-GN method is
valid for correcting the system of linear inequalities.
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For the infeasible system of linear inequalities, the proposed algorithm was compared with the lp-
norm regularization method (lp-NR) proposed by Hashemi and Ketabchi [12] for the optimal correction
of this system. They used the lp-NR method to solve the fractional minimization problem (27), then ap-
plied Dinkelbachs theorem and presented a DC smoothing function to approximate the non-differentiable
objective function. Combining the DC programming and smoothing quadratic regularization approaches
with the fast quasi-Newton method produces an efficient method for solving this problem (in this paper,
it is assumed that p = 2). For this comparison, the following MATLAB code is considered (see [12])
based on Farkas lemma. Since the system of linear inequalities (26) is inconsistent, a vector u ∈ Rm

exists such that Atu = 0, btu < 0, and u≥ 0.

Code 6. A randomly generated infeasible system of linear inequalities

m = input(Enter m : );

u1 = rand(m,1); u2 = rand(m,1);

u12 = [u1;u2]; %u = u12,u >= 0

A1 = null(u1′); A2 = null(u2′);

A = 100∗ [A1;−A2]; %A′u = 0

uu = rand(2∗m,1);

b = 5∗ (0.8∗uu−u12); %b′u < 0

Table 7 shows the results of the calculations. As can be seen, the PDCAe-GN method has superior
accuracy and speed to the lp-NR method. The high accuracy and speed of the PDCAe-GN method in
large-scale infeasible problems indicate the efficiency of the proposed algorithm for correcting infeasible
linear inequalities.

5 Conclusions

This paper proposed like Dinkelbach approach for the optimal correction of the linear inequalities and
piecewise linear systems based on a proximal difference-of-convex algorithm with extrapolation (PDCAe).
This method resulted in the reduction of the non-convex fractional problems to simple univariate equa-
tions on closed intervals. The convergence of the proposed method was shown under suitable conditions.
The experimental results on several randomly generated problems indicated that the PDCAe-generalized
Newton method is superior to the other methods in both feasible and infeasible large-scale problems.
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[14] A. Karppinen, M. Lee, Hölder continuity of the minimizer of an obstacle problem with generalized
Orlicz growth, arXiv preprint: https://arxiv.org/abs/2006.08244.

[15] S. Ketabchi, H. Moosaei, An efficient method for optimal correcting of absolute value equations
by minimal changes in the right hand side, Comput. Math. Appl. 64 (2012) 1882–1885.

[16] S. Ketabchi, H. Moosaei, S. Fallahi, 2013. Optimal error correction of the absolute value equation
using a genetic algorithm, Math. Comput. Model. 57 (2013) 2339–2342.

[17] S. Ketabchi, H. Moosaei, Minimum norm solution to the absolute value equation in the convex case,
J. Optim. Theory Appl. 154 (2012) 1080-1087.

[18] S. Ketabchi, H. Moosaei, Optimal error correction and methods of feasible directions, J. Optim.
Theory Appl. 154 (2012) 209–216.

[19] O.-L. Mangasarian, R.-R. Meyer, Absolute value equations, Linear Algebra Appl. 419 (2006) 359–
367.

[20] H. Moosaei, S. Ketabchi, M. Hladik, Optimal correction of the absolute value equations, J. Glob.
Optim. 79 (2021) 645–667.

[21] H. Moosaei, S. Ketabchi, P.-M. Pardalos, Tikhonov regularization for infeasible absolute value
equations, Optimization 65 (2016) 1531–1537.

[22] H. Moosaei, S. Ketabchi, Optimal correcting of absolute value equations by using smoothing tech-
niques, J. Interdiscip. Math. 22 (2019) 531–538.

[23] S. Nakayama, J.-Y. Gotoh, On the superiority of PGMs to PDCAs in nonsmooth nonconvex sparse
regression, Optim. Lett. 15 (2021) 28312860.

[24] N. Parikh, S. Boyd, Proximal algorithms, Found. Trends Syst. Control. 1 (2014) 127–239.

[25] C. Popa, C. Serban, Han-type algorithms for inconsistent systems of linear inequalitiesA unified
approach, Appl. Math. Comput. 246 (2014) 247–256.

[26] M. Radons, S.-M. Rump, Convergence results for some piecewise linear solvers, Optim. Lett. 16
(2022) 1663–1673.

https://arxiv.org/abs/2006.08244


54 S. Shahsavari, S. Ketabchi

[27] M. Salahi, Optimal correction of infeasible systems in the second order conic linear setting, Compt.
Sci. J. Moldova, 55 (2011) 72–79.

[28] M. Salahi, S. Ketabchi, Correcting an inconsistent set of linear inequalities by the generalized
Newton method, Optim. Meth. Software 25 (2010) 457–465.

[29] S. Shahsavari, S. Ketabchi, The proximal methods for solving absolute value equation, Numer.
Algebra Control. Optim. 11 (2021) 449.

[30] G.-B. Thomas, R.-L. Finney, Calculus, Addison-Wesley Publishing Company, 1961.

[31] B. Wen, X. Chen, T.-K. Pong, A proximal difference-of-convex algorithm with extrapolation, Com-
put. Optim. Appl. 69 (2018) 297–324.

[32] L. Yang, L. Wang, A class of semi-supervised support vector machines by DC programming, Adv.
Data Anal. Classif. 7 (2013) 417–433.

[33] X.-T. Yuan, S. Yan, Nondegenerate piecewise linear systems: A finite newton algorithm and appli-
cations in machine learning, Neural Comput. 24 (2012) 1047–1084.


	1 Introduction
	2  Notations and preliminaries
	3 PDCAe-generalized Newton method 
	3.1 PDCAe-GN method for optimal correction of piecewise linear and linear inequality systems 

	4  Numerical experiments 
	5 Conclusions

