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Abstract. This paper aims to improve the predictability power of a machine learning method by propos-
ing a two-stage prediction method. We use Group Modeling Data Handling (GMDH)-type neural net-
work method to eliminate the user role in feature selection. To consider recent shocks in Bitcoin market,
we consider three periods, before COVID-19, after COVID-19, and after Elon Musk’s tweeter activity.
Using time-scale analysis, we decomposed the data into different scales. We further investigate the fore-
casting accuracy across different frequencies. The findings show that in shorter period the first, second
and third lag of daily prices and trade volume produce valuable information to predict Bitcoin price
while the seven days lag can improve the prediction power over longer period. The results indicate a
better performance of the wavelet base GMDH-neural network in comparison with the standard method.
This reveals the importance of trade frequencies’ impact on the forecasting power of models.
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1 Introduction

Cryptocurrencies have attracted much attention among traders and, financial experts since these markets
are characterized by high volatility, relatively smaller capitalization, decentralized, and high market data
availability [9]. Bitcoin is the first decentralized cryptocurrency that was released in 2008. Bitcoin
gradually received more attention, and the price of Bitcoin raised from 457 US dollars in 2014 to around
40000 US dollars in April 2022, with a 773B market cap.
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Bitcoin does not necessarily work such other asset prices such as gold or stock markets, and so on.
Klein et al. (2018) found that Bitcoin is not similar in terms of volatility, correlation, and portfolio
diversification and “that Bitcoin is no safe haven and offers no hedging capabilities for developed mar-
kets” [20]. Recently, studies about Bitcoin have accelerated, specifically in forecasting Bitcoin price and
movements. While based on the efficient market hypothesis (EMH) it is impossible to earn abnormal
returns because prices reflect all information, there is evidence of the possibility of price prediction to
earn returns [ | 1]. On the other hand, the Adaptive Market Hypothesis (AMH) [22], a well-known finance
theory, asserts it is possible for one makes a profit in the market.

Due to different trading horizons, financial markets are not homogenous from the decision horizon’s
point of view. While time series and traditional method neglect this paramount point, time-scale analysis
consider the problem by decomposing data into different scales. High volatility and trading at different
frequencies make Bitcoin a suitable candidate for a time-scale study. By the time-scale approach, in-
formation that is hidden at different frequencies would be uncovered; consequently, it may expand and
deepen our understanding of the time horizon and scale level (frequency) role in predicting future prices.
In this paper, we aim to predict daily bitcoin prices by a combing wavelet decomposition method and
Group Modeling Data Handling (GMDH)-type neural network method. The paper contributes to the
related literature by employing an inductive and self-organized approach to the bitcoin market, which
uses data at different scales as input. In addition, we consider three periods, before COVID-19, after
COVID-19, and after Elon Musk’s tweeter activity. The periods include January 1, 2018, to March 10,
2020, January 1, 2018, to January 27, 2021, and January 1, 2018, to January 19, 2022. The first period
covers data before the recent pandemic. The second period covers the data during the pandemic; how-
ever, the period excludes data after Elon Musk’s Twitter activity. Finally, we contribute to the literature
by considering the importance of different frequencies in the prediction of Bitcoin prices.

Comparing standard and time-scale based predictions shows that the time-scale based prediction
produces significantly more accurate forecasts. We also show that the first, second, and third lag of
daily prices and trade volume can predict Bitcoin price in the shorter period, while the seven-day lag
can improve the prediction power over a longer period. The results indicate a better performance of
the wavelet base GMDH-neural network in comparison with the standard method. This reveals the
importance of trade frequencies’ impact on the forecasting power of models.

The remainder of the paper is organized as follows. Section 2 presents a concise review of the
relevant literature and theoretical background. Section 3 explains the data and method. The empirical
results and discussion are presented in Section 4, and Section 5 makes a conclusion.

2 Related literature and theoretical background

Price prediction has been attractive for traders and researchers. The prediction techniques have extended
from linear regression to time series methods and recently, machine learning methods have been de-
veloped to forecast prices in the financial market. Using machine learning to predict cryptocurrencies
markets also is growing. To build a model based on a theoretical foundation, there are two challenging
issues. First, are bitcoin prices predictable? Second, which inputs (features) should be selected? The
first question has a long history in economics and finance literature. EMH states that it is impossible
because the prices reflect all related information. However, EMH is rejected by researchers theoretically
and empirically [3, 12]. Alternatively, the Adaptive Market Hypothesis (AMH) states prices in the asset
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market are predictable. Findings about Bitcoin market are also mixed. Some studies showed that Bitcoin
market does not present an efficient market behavior [29]; however, some studies found weak form of
efficiency [2], and others found the AMH hold for Bitcoin market [19]. Hence, our prediction’s rational
and theoretical foundation lies in the AMH and empirical findings of the predictability of bitcoin prices.
The second challenge in supervised prediction is choosing input variables or features based on theoreti-
cal background. Input variables (features) can be selected based on two general categories: Fundamental
variables (e.g. macroeconomic variable, gold price, and etc.) [5, 8, 32]. For example, [5] found that
among macroeconomics variables dollar index has biggest influence on bitcoin price in long run.

The second general category is technical variables (e.g. lagged prices, volume, moving average prices
and etc.) [10,21,25]. For example, [21] used optimal Functional Link Neural networks to predict daily,
weekly, and monthly Bitcoin closing price movements. He also has done a comparative study among
FLNs models using and showed the superiority of optimal FLNs models to predict Bitcoin price move-
ments. [10] using multitude of popular technical indicators showed that technical analysis combined with
non-linear forecasting models becomes statistically significantly dominant relative to the random walk
model on a daily horizon. Their comparative analysis revealed that the random forest model outperforms
other models.

In addition, it is possible to use market sentiment [14,30,31] as well as other cryptocurrencies. For
example, [31] using news and historical data, showed that their model is able to predict price movements
by indicating whether to buy, sell or hold. [30] also employed machine learning tools and available
social media data for forecasting the price movement of the Bitcoin, Ethereum, Ripple, and Litecoin
cryptocurrency market movements. They found that it is possible to predict Twitter data by itself could
be used to predict certain cryptocurrencies. The findings support outperforming of NN to the other
models [30].

The empirical results about input selection are mixed; however, [ 1 7] comprehensive research showed
that technical inputs outperform other features. They also found that predictability of bitcoin increase for
longer prediction horizons. We also choose different technical variables to predict bitcoin prices. Some
researchers have focused on using the deep learning method to predict the cryptocurrencies prices. For
example, [27] employed LSTM and GRU-based hybrid to predict Litecoin and Monero price movements.
They show that their method predicts the prices with high accuracy and can be applied in various cryp-
tocurrencies price predictions. Some researchers also compare machine learning methods’ performance
with the time series method. [15] compared Gated Recurrent Network model (GRU) and LSTM method
with ARIMA method in the prediction of bitcoin prices. Their results show that the deep learning models
outperform the poorly performing ARIMA prediction.

Based on our knowledge, the number of research, which used wavelet decomposition to predict
bitcoin prices are rare. Recently, [26] combined wavelet and long short-term memory networks methods
to forecast bitcoin. The findings revealed that Wavelet-LSTM forecast one-step-ahead Bitcoin return
in more accurate. Although there are researches that have investigated bitcoin properties by wavelet
decomposition [4, 18], the predictability of bitcoin using a decomposition method and a self-organized
method is not fully understood yet.
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3 Data and method

3.1 Data

We employed the daily price of Bitcoin from YahooFinance. We select three periods based on date of
the COVI-19 pandemic announcement and Elon Musk’s tweets about bitcoin. The first period ranges
from January 1, 2018 to March 10, 2020, which excludes pandemic and Elon Musk’s tweet effects. The
second period, from January 1, 2018 to January 27, 2021, includes the time of COVID-19 pandemic but
excludes Elon Musk’s tweet. Finally, the third period ranges from January 1, 2018 to January 19, 2022,
which is longer than other periods and includes to mentioned two mentioned periods. To present a better
look at the Bitcoin prices, Figure 1 shows the Bitcoin price over the three periods. We choose a different
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Figure 1: Bitcoin price over three periods.

combinations of lagged price and trade volume variables. For example, model number 1 has five inputs,
the first, second, and third lag of daily prices as well as first and second lag of daily trade volume (Table
1). We divided the data into training datasets (80 percent of data points) and testing datasets (20 percent
of data points) for in-sample forecasting. All analyses used RStudio (Version 1.4.1717-R 4.0.4) and
Matlab 2016 for preparing data and estimating.

3.2 Time-Scale analysis

When frequencies are changing, as what happens in financial markets, standard time series methods can
not reveal enough and proper information for analysis. We need a technique to transform data to both
frequency and time domain simultaneously in this situation. While Fourier Transform (FT) transforms
data to frequency domains, the time scale or wavelet analysis transforms data to both time and frequency
domains. Wavelet analysis is based on multiresolutional analysis, which was developed by [23] and [28].
Following Mallat’s representation, a time series or a signal X (¢) can be written as follows:

X(t) ~sj(t)+djt) +dj-1(t) +---+di (1), )
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Table 1: Input variables (features).

Model

Number Input Variables
R R 1 pl p2 p3 vl v2 - -
%z! E S |2 pl p2 p3 p7 vl v2 V7
% & § S 3 pl p2 p3 vl v2 v3 -
- 4 pS p7 v5 VI - - -
- 5 pl p2 p3 vl v2 - -
oo O
§ = § Q16 pl p2 p3 p7 vl v2 V7
ERCA pl p2 p3 vl v2 V3 -

8 pS p7 v5 VI - - -
PR 9 pl p2 p3 vl v2 - -
g:i =10 pl p2 p3 p7 vl v2 V7
23 % SHIEY pl p2 p3 vl v2 V3 -
- 12 pS p7 v5 V1 - - -

p1: Bitcoin Daily price with 1-day lag, p2: Bitcoin Daily price with 2 days lag,

p3: Bitcoin Daily price with 3 days lag, pS: Bitcoin Daily price with 5 days lag ,

p7: Bitcoin Daily price with 7 days lag , v1: Bitcoin Daily Trade Volume with 1-day lag,

v2: Bitcoin Daily Trade Volume with 2 days lag, v3: Bitcoin Daily Trade Volume with 3 day lag,
v5: Bitcoin Daily Trade Volume with 5 day lag, v7: Bitcoin Daily Trade Volume with 7 day lag.

where, s;() is a trend component (the wavelet “smooth”), d;(¢) are detail components (wavelet “crys-
tals”), and j represents the number of scales. The discrete wavelet transform (DWT) process is sum-
marized in Figure 2'. The variable X (¢) is passed by two types of filter step by step until we reach an
approximated variable that includes just trend information. The two mentioned filters are called low-pass
and high-pass filters. Indeed, in each step or frequency, some part of the information. At first step, we
can write X (z) at scale 1 (J = 1) based on decomposed components, d;(¢) ( - the high frequency part)
and S (¢) ( - the low frequency part):

X(l‘)%sl(l‘)—l-dl(l‘). )
Now, we again write such decomposition for S;(¢)

s1(t) = s2(t) +da(t). 3)

By doing such recursive procedure until reaching our desirable scale J, we have a set of variables which
include j detailed or high-frequency components and 1 smoothed component. With such data in hand, we
can do prediction or any other analysis at different frequencies and domains at the same time. It should
be noted that the signal or time series will be subsampled by 2 at each step, which can be a drawback for
DWT because we need dyadic data. To tackle this issue and other disadvantages of DWT method, we
used the Maximum Overlap Discrete Wavelet Transform (MODWT) as our method of time-frequency

1 Borrowed form [7]
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Figure 2: Discrete Wavelet Transform (DWT) process.

decomposition”. Furthermore, as mentioned before, the data are filtered out by low pass filters and high
pass filters. These filters can be written with different functions. There are different wavelet functions
like Morlet, Mexican hat, Daubechies, and so forth. This study used a Daubechies 4-tap (D4) wavelet
and decomposed the data into 6 scales.

3.3 modeling and forecasting using GMDH-type neural networks

GMDH algorithm was introduced by [16] to solve complex system problems; specifically, the GMDH
neural network has been developed for prediction and forecasting tasks in different disciplines such as
statistics, economics, finance, medicine, etc. It is an inductive and self-organized machine learning
approach that is suitable for complex model prediction [1]. The central idea is straightforward, but the
process is complex and suitable to model complex and nonlinear phenomena and short-term predictions.
Supposed one aims to model a complex system, S, with multiple inputs, X = (x,x2,x3,...,%,) , and one
output, y, as depicted in Figure 3. The inputs and output relationship can generally be written as follows:

y=f(x1,%2,%3,...,%). @

In which f is an elementary function, y is output, and x; is input. The goal is to find a proper estimation of

—

A s =y

Figure 3: Complex system.

elementary function, f, so that it can predict the output y. To do so, the least square method is employed
to estimate the coefficient of the elementary function. One of the favorite functions is the complicated

2 DWT also have another disadvantages. For detailed information see [6]
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discrete form of the Volterra functional series, which is known as the Kolmogorov-Gabor polynomial:

n n n n n n
y=ao+ Y axi+ Y Y ayxixi+ Y Y Y Gipxixixt - 5
i=1 i=1j=1 i=1 j=1k=1
The central idea of GMDH is based on a Divide and Conquer strategy so that the Kolmogorov-Gabor
polynomial decomposing to several sub-functions such as (6)

Zij = G(xi,xj) = ag + a1x; + azxx; + azxix; —|—a4x,-2 + a5x§. 6)
Itis clear that Z;; has two input variables, and the number of all Z;; is equal (i) In this way, such a partial
quadratic description is recursively used to reconstruct the complete Kolmogorv-Gabor polynomial. Eq.
(4) can be presented in matrix form

Y = xA. @)

In which A is the vector of coefficients in Eq. (6). Multiplying both sides of Eq. (7) by the transpose of
a the matrix X gives
xTy = (xTx)A. (®)

Using the least-squares technique for multivariate regression, the solution of the normal equations will
be as follows
A=xTx)"1xTy. )

In practice, the mentioned recursive procedure is done as follows. The date is divided into two
section, train data, and test date. This procedure is started from the first hidden layer (in which there are
(i) neurons, Z;; ). The coefficients of Eq. (5) (or Eq. (7) in matrix form) are estimated by the least square

Figure 4: GMDH-type neural network.

method. Now all estimated equations are evaluated by external criteria or thresholds for prediction error
such as RMSE? . All estimated equations which are passed the threshold will be saved to construct the
next hidden layer, and others are dropped out. The next hidden layer is also constructed by Eq. 6 in
which inputs are Z;;, which was produced in the previous step (layer). The estimation and selection®
are made again. This process, called the self-organization of models, will end up until just one neuron
remains. Figure 4 depicts a schematic GMDH-type neural network.

3 Root Mean Square Error
4 Which remember the natural selection in evaluation theory.
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3.4 Combining wavelet decomposition and GMDH-type neural network

We predict the prices by doing a two-step process. First, the time series of Bitcoin and all other input
variables are decomposed into six scales using Daubechies 4-tap (D4) wavelet. Then, we predict prices at
different scales by GMDH-type neural network method and sum up forecasted prices to achieve predicted
time series in time-domain environment (Figure 5).
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Prediction by GMDH

Prediction by GMDH
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Figure 5: GMDH-type neural network.

4 Results and discussion

It is critical to assess and compare the performance of the forecasting. In this study, the Mean Absolute
Error MAE) (Eq. (11)), and the Root Mean Square Error (RMSE) (Eq. (10)) are employed to providing a
fair performance evaluation among the utilized methods. The smaller value for RMSE and MAE indicate
the higher accuracy for the model.

(B —FPR)?, (10)

D=

RMSE =

S|

t=1

1 n
MAE = - Y|P —FP|, (11)
i3

where P, FP,, and n are the actual values, the predicted value, and the number of forecasted data (or
test data), respectively. In addition, to make a better sense of prediction performance, we normalized our
metric as (Egs. (12) and (13)):

RMSE
RMSE = ——"— (12)
maxp, — minp,
MAE
NMAE = ——"— (13)

maxp, —minp,

Since measures are sensitive to outliers, the outlier detection test is performed [13]. Table 2 shows the
Grubbs’ test results. The results for 24 (GMDH and Wavelet-GMDH) models are presented in Table 3.
Here, we explain some part of the results in detail. The RMSE and MAE of model number 1 for GMDH
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Table 2: Grubbs’test results.

Highest value is an outlier Lowest value is an outlier

Model Number statistic statistic

Models G U P-value G 0] P-value
1-GMDH 1.901 0857 1 2.001 0979 1
1-WGMDH 1.803 0.983 1 1.913 0981 1
2-GMDH 1.901 0.981 1 2.031 0989 1
2-WGMDH 1.812 0.971 1 1.925 0.881 1
3-GMDH 1.901 0857 1 2.001 0979 1
3-WGMDH 1.803 0.983 1 1.915 0980 1
4-GMDH 1.982 0979 1 2.111 0976 1
4-WGMDH 1.655 0.985 1 2.497 0967 1
5-GMDH 1.804 0.983 1 2.002 0979 1
5-WGMDH 1.882 0.981 1 1.813 0982 1
6-GMDH 1.791 0.983 1 2.005 0979 1
6-WGMDH 1.815 0982 1 1.882 0981 1
7-GMDH 1.804 0.983 1 2.002 0979 1
7-WGMDH 1.814 0982 1 1.882 0981 1
8-GMDH 1.995 0979 1 2.104 0977 1
8-WGMDH 1.559 0.975 1 1.774 0983 1
9-GMDH 1.859 0.961 1 1.967 0975 1
9-WGMDH 1.959 0.891 1 2.501 0903 1
10-GMDH 1.853 0.923 1 1.804 0.880 1
10-WGMDH 1.982 0.879 1 2.101 0.876 1
11-GMDH 1.7655 0.905 1 2.697 0.867 1
11-WGMDH 1.816 0984 1 1.802 0.781 1
12-GMDH 1.789 0.748 1 2.145 0964 1
12-WGMDH 1.879 0.857 1 2.732 0946 1

prediction are 246.61 and 180.6, respectively. However, using Wavelet-GMDH method, the mentioned
metrics significantly decrease to 85.05 and 62.45. The normalized metrics are 0.71% (NRMSE), 0.52%
(NMAE) for Wavelet-GMDH prediction, 2.07% (NRMSE), and 1.51% (NMAE) for GMDH prediction.
The model number 3, which includes first, second and third lag of price and trade volume as input vari-
ables, has RMSE value of 83.18 and MAE value of 60.26 for Wavelet-GMDH, 246.77, and 177.45 for
GMDH prediction. The NRMSE and NMAE for Wavelet-GMDH is 0.7% and 0.5% and the metrics for
GMDH prediction are 2.07% and 1.49%, respectively. In the first period, the model number 3 produces
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Table 3: Prediction accuracy.

Wavelet-GMDH GMDH Wavelet-GMDH GMDH
Model Number | RMSE MAE RMSE MAE NRMSE | NMAE | NRMSE | NMAE
. . 1 85.05 62.45 246.61 180.60 0.71% 0.52%  2.07% 1.51%
%2 E S 2 160.72 82.75 245.35 178.75 1.35% 0.69%  2.06% 1.50%
% & é S 3* 83.18 60.26 246.77 177.45 0.70% 0.50% 2.07% 1.49%
- 4 287.15 169.48 593.88 447.21 2.41% 1.42%  4.98% 3.75%
=] 122.70 85.93 990.77 548.88 0.48% 0.33% 3.85% 2.13%
gg @ § 6 219.64 113.10 941.75 553.64 0.85% 044%  3.66% 2.15%
E: o § “ 7% 122.57 85.81 990.77 548.88 0.48% 033% 3.85% 2.13%
8 414.97 281.34 2947.95 1626.04 1.61% 1.09% 11.44%  6.31%
PR 9 3448.39  2704.77 17075.62 15556.02  5.36% 420% 26.54%  24.18%
Q g % Q 10* 1105.84  837.21  16918.32 15416.53 1.72% 1.30% 2630%  23.96%
% § % S 11 3041.06 239347 1641393 1495190 4.73% 372%  25.52%  23.24%
- 12 2873.27 2258.15 53001.19 48319.87 4.47% 351% 8239%  75.11%

Models with lowest NRMSE and NMAE are indicated by *

lowest forecasting error. In addition, seven and five days lags of daily price and trade volume do not im-
prove the accuracy of prediction. However, the third lag of daily trade volume significantly improves the
forecasting performance. The results for the second period, which covers the data after COVID-19, but
is limited to period Elon Musk’ tweet, shows that the model number 7 has lowest RMSE (122.57), MAE
(85.81), NRMSE (0.476%), and NMAE (0.333%) values for Wavelet-GMDH prediction and RMSE
(990.77), MAE (548.88), NRMSE (3.845%), and NMAE (2.130%) values for GMDH prediction. How-
ever, the model number 5 produces errors closest metrics to model number 7.

In the second period, the general message of prediction is same as fist shorter period; the seven and five
days lag does not improve the forecasting performance. In longer third period, the models number 10
has higher accuracy rather than other models. The metrics for Wavelet-GMDH prediction are 1105.84
(RMSE), 837.21 (MAE), 1.72% (NRMSE), 1.30% (NMAE).

The prediction accuracy for GMDH prediction are 16918.32 (RMSE), 15416.53 (MAE), 26.30%
(NRMSE), and 23.96% (NMAE). It is clear that on our longer period the entering seven days lag of daily
trade volume improve the prediction.

Considering normalized metrics, model number 7 produces a more accurate prediction rather all
alternative models in all periods, the models number 3 and 6 have second lowest NRMSE and NMAE.

Accuracy improvement

Table 4 presents accuracy improvement which is obtained by applying Wavelet-GMDH model. It is clear
that there are significant improvement in all models by employing Wavelet-GMDH method. It should be
noted that the metrics are statistically different based on the multivariate version of the Diebold-Mariano
test [24] ( see Table 5).
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Table 4: Improvement in accuracy metrics.

Model Number  Percentage Improvement in RMSE  Percentage improvement in MAE

1 65.5% 65.4%
2 34.5% 53.7%
3 66.3% 66.0%
4 51.6% 62.1%
5 84.3% 87.6%
6 79.6% 76.7%
7 84.4% 87.6%
8 82.7% 85.9%
9 79.8% 82.6%
10 93.5% 94.6%
11 81.5% 84.0%
12 94.6% 95.3%

Table 5: Test for equal predictive accuracy of forecasting models.

lag length*  statistic ~ p-value **

- o
el 3 38432 4.921e-07
ESES

ENET 5 50352 2.059¢-08
- s

nre 99.10  3.961e-08
E2ES

ENET s 44302 7.096¢-06
E

7 ,S_ 3 10110 4.001e-09
2 =g ' e
ES ER

ENET s 51516 5.078¢-07
E

*It is assumed that the autocorrelation of loss differentials is essentially zero beyond this lag length.

** Alternative hypothesis: Equal predictive accuracy does not hold.

In the first period, the highest improvement occurs in model number 3 with, 66.3% improvement
in RMSE and 66.0%in MAE. The model number 7 in the second period produce highest improvement
among other models in the period by 84.4% and 87.6% for RMSE and MAE, respectively. Wavelet-
GMDH method produces highest improvement in model number 12 (94.6% for RSME and 95.3% for
MAE). The maximum improvement occurs in the third period, which is a longer, and includes data
after COVID-19 and Elon Musk’s tweets. Based on the results, the Wavelet-Based GMDH-type neural
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Table 6: NRMSE at different scales

NRMSE

Model Number dy ds ds dy ds de S6
2.2209% 2.3380%  1.4804% 0.8495%  0.5828% 0.2381%  0.0256%

—

2 2.1867% 2.3091%  1.4629% 2.9860%  2.2262% 0.4131%  0.0490%
3 2.1725%  2.0047%  0.9785% 0.5897%  0.5250%  0.2255%  0.0222%
4 3.1189% 3.3862%  0.9285% 6.2328%  2.6242% 3.9183% 1.2294%
5 22311% 1.9694%  0.6633% 0.1557%  0.1573% 0.1323%  0.0238%
6 2.2312% 1.9695%  0.6664% 0.1853%  0.0570% 1.6048% 0.0115%
7 22312% 1.9694%  0.6624% 0.1850%  0.1573%  0.1346% 0.0188%
8 3.0378% 3.3513%  4.7963% 3.5265%  1.9387% 1.2349%  0.2602%
9 8.2096%  7.9946%  2.3072% 0.8982%  0.1926% 0.1597%  5.9665%
10 8.1822% 7.9730%  2.3060% 0.7715%  0.1959% 3.4854% 0.5715%
11 8.2096%  7.9946%  2.3072% 0.8982%  0.1926% 0.1597% 5.2162%
12 8.7299% 8.9314% 12.0012% 13.1491% 6.6741% 1.8940% 2.4552%

network produces more reliable forecasting model rather pure GMDH-type neural network in all our
three periods. Indeed, employing Wavelet-GMDH-type neural network the forecasting accuracy increase
significantly and considerably. The improvement rises as the length of period increases, which reveals
the importance of hidden information in different frequencies. The possible explanation for improving
the performance of the wavelet GMSH models underlies the decomposition of time series data. Indeed,
wavelet deposition makes series stationary at different scales. This would increase the performance of
prediction at different scales. Our findings show that first, second, and third lag of daily price along with
first, second, and third lag of daily trade volume have more predictive power; however, this is not true
for third period. The model with seven days lag has more predictive power in comparison with other
alternative models in the period.

Accuracy across scales

We calculate forecasting error in all scales for all models (Tables 6 and 7). In model number 1 lowest
NRMSE and NMAE occurs at less noisy data (trend component (sg)) with value of 0.026% and 0.019%,
respectively and the model produces highest error at scales d; (2.338% for NRMSE and 1.544% for
NMAE) and d» (2.338% for NRMSE and 1.544% for NMAE). However, this arrangement is not true for
all models. For example, in model number 4 the lowest NRMSE and NMAE (0.9285% and 0.6296%)
occur in scale d3. The model number 12 has the largest NRMSE and NMAE among all models across
scales except scales dg and sg. These findings emphasize the dissimilar prediction power of input vari-
ables on different scales.

Figure 6 depicts a general picture of the metrics for all scales and model. It would be interesting
to see how our prediction accuracy change across different scales and models. The plot box method is
employed to show the variation of NRMSE and NMAE across scales (1 to 6). The vertical axis shows the
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Table 7: NMAE at different scales.

NMAE

Model Number dj dy ds dy ds dg S

1 1.7368% 1.5440% 0.6816% 0.2631% 0.2280% 0.1670% 0.0187%
2 1.7191% 1.5283% 0.6746% 0.5769% 0.5918% 0.1901% 0.0333%
3 1.6893% 1.4168% 0.6491% 0.1994% 0.2008% 0.1580% 0.0156%
4 24108% 2.5641% 0.6296% 3.6926% 1.8624% 2.4702% 0.8621%
5 1.5300% 1.3436% 0.4077% 0.0891% 0.0529% 0.0611% 0.0145%
6 1.5301% 1.3444% 0.4104% 0.0985% 0.0315% 0.3358% 0.0063%
7 1.5301% 1.3436% 0.4077% 0.0984% 0.0529% 0.0621% 0.0118%
8 2.1428%  2.3748% 3.3039% 2.3589% 1.1511% 0.6355% 0.1738%
9 6.1336% 6.1123% 1.7897% 0.6820% 0.1203% 0.0934% 4.6079%
10 6.1078%  6.0999% 1.7923% 0.5866% 0.1229% 1.1475% 0.4695%
11 6.1336% 6.1123% 1.7897% 0.6820% 0.1203% 0.0934% 4.0410%
12 6.8952% 7.2333% 9.4280% 9.4291% 4.5848% 1.4557% 2.1163%
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Figure 6: Forecasting error disparities at different scales.

value of NRMSE and NMAE, and the horizontal axis shows the model numbers. In longer period, which
includes data after COVID-19 and Elon Musk’s tweeter activity, the range of the NRMSE and NMAE
values cross scales are wider than other models. However, there is no substantial variation in the first and
second periods. In addition, the models with lower NRMSE and NMAE (3, 5, 6, 7, and 10) exhibit lower
range in the NRMSE and NMAE values across scales. For example, the range of changes of NRMSE
across scales in model 3 is 0.0215, and the value for NMAE is 0.01674. The variance is 0.00006 and
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Table 8: Variance and range of forecasting error measures across scales.

NRMSE NMAE

Model Number  Variance  Range  Variance Range

1 0.00007  0.02312  0.00004  0.01718
2 0.00010  0.02937 0.00003  0.01686
3 0.00006  0.02150 0.00004 0.01674
4 0.00027  0.05304 0.00010  0.03063
5 0.00008  0.02207 0.00004  0.01516
6 0.00008  0.02220 0.00003  0.01524
7 0.00008  0.02212  0.00004  0.01518
8 0.00020  0.04536  0.00011  0.03130
9 0.00112  0.08050  0.00065  0.06040
10 0.00100  0.07986  0.00059  0.05985
11 0.00108  0.08050 0.00062  0.06040
12 0.00161  0.11255 0.00091  0.07973

0.00004 for NRMSE and NMAE, respectively. The range of NRMSe in model number 8 is 0.04536, and
the variance is 0.00020. The range of NMAE is 0.03130, and its variance is 0.00011. Model number 12,
which belongs to our longer period, has a wider range for NRMSE(0.11255) and NMAE(0.07973). The
variances are also larger compared to other models(0.11255 for NRMSE and 0.00091 for NMAE) (See

Table 8 for more details).

Figure 7 displays a comparison between the ranges of forecasting errors of the two methods. Wavelet-

Percentage
2

*

NMAE

Forecasting Method

Method B3 GMDH B3 Wavelet-GMDH

Figure 7: Forecasting error disparities.

NRMSE

GMDH neural network type decreases the range and variation in error measures of proposed models sig-
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Table 9: Variance and range of forecasting error measures across models

NRMSE NMAE

Variance Range Variance = Range
Wavelet-GMDH  0.000291  0.048848  0.000191  0.038715
GMDH 0.049063  0.803335 0.04232 0.736254

nificantly. The variance of NRMSE and NMAE values across 12 models for Wavelet-GMDH method are
0.000291 and 0.000191, while the numbers are 0.049063 and 0.04232 for GMDH method, respectively.
The range of metrics (0.803335 for NRMS and 0.736254 for NMAE) is also wider for GMDH method
in comparison with Wavelet-GMDH method (0.048848 for NRMS and 0.038715 for NMAE) (See Table
9). It is clear that using wavelet decomposition decrease the variation of forecasting error across models.

5 Conclusion

This paper attempts to compare the forecasting power of the wavelet-Based GMDH-type neural network
and standard GMDH-type neural network in the prediction of Bitcoin price over three periods. Using
daily price and trade volume data, we run 12 models with different features using GMDH type neu-
ral network. We decomposed the data into six scales using Daubechies 4-tap (D4) wavelet and used
a GMDH-type neural network over the scales. The findings provide practical implications for Bitcoin
traders. First, in the short run, the first, second, and third lag of trade volume and price provide valuable
information to predict bitcoin price; however, widening the analysis period shows that the seven-day lag
of trade volume should be considered a predictor. Second, our findings show that the Wavelet-GMDH-
type neural network significantly outperforms the standard GMDH method in forecasting Bitcoin prices.
In addition, the results indicate that disparities of forecasting error in the Wavelet-GMDH method across
models are lower in the standard GMDH method. The finding supports the importance of hidden infor-
mation on different scales of Bitcoin prices which are neglected in standard time series.
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