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1 Introduction
We consider the Cahn-Hilliard equation

u—Aw=0 inQx][0,T],
wHeAu—f(u)=0 inQx|[0,T],
du aw (D
—=0,—=0 ondQx[0,T
av 7 dv 0.7},
u(-,0)=go inQ,
where Q is a polygonal domain in R?,d = 1,2,3, u = u(x,t),w = w(x,t), A = Zf-l:] ;—;, U = %, v is the
exterior unit normal to dQ, and € > 0 is a small parameter. The Cahn-Hilliard equation is a model for
phase separation and spinodal decomposition [3]. The nonlinearity f is the derivative of a double-well
potential. A typical example is f(u) = u® — u.

We discretize (1) by a Galerkin finite element method, which is based on continuous piecewise
linear functions with respect to x and discontinuous piecewise constant functions with respect to ¢. This
numerical method is the same as the implicit Euler time stepping combined with spatial discretization by
a standard finite element method.
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We perform an a posteriori error analysis within the framework of dual weighted residuals [2]. If
J(u) is a given goal functional, this results in an error estimate essentially of the form

N
VW) =IO <Y, ¥ {puxoux+puxons}+2.
n=1KeT,

where U denotes the numerical solution and T, is the spatial mesh at time level #,. The terms p, x, Pw.x
are local residuals from the first and second equations in (1), respectively. The weights @, x, ®, x are
derived from the solution of the linearized adjoint problem. The remainder % is quadratic in the error.

There is an extensive literature on numerical methods for the Cahn-Hilliard equation; see, for ex-
ample, [5] and [4] for a priori error estimates. Adaptive methods based on a posteriori estimates are
presented in [1] and [6]. However, these estimates are restricted to spatial discretization. We are not
aware of any completely discerete a posteriori error analysis.

2 Preliminaries

Here we present the methodology of dual weighted residuals [2] in an abstract form.

Let A(;-) be a semilinear form; that is, it is nonlinear in the first and linear in the second variable,
and J(-) be an output functional, not necessarily linear, defined on some function space V. Consider the
variational problem: Find u € V such that

Alu;w) =0 Yyev, (2)
and the corresponding finite element problem: Find u, € V;, C V such that

Al yn) =0 Yy € V. 3)

We suppose that the derivatives of A and J with respect to the first variable u up to order three exist and
are denoted by

A(;0), A" (v, 9), A" (:&, v, @),
and
T (uw;0), 7" (w9, 0), 1" (u:6, ¥, ),
respectively, for increments @, y, & € V. Here we use the convention that the forms are linear in the
variables after the semicolon.
We want to estimate J(u) — J(uy). Introduce the dual variable z € V and define the Lagrange func-

tional
L(u;z) :=J(u) —A(u;z),

and seek the stationary points (u,z) € V x V of Z(-;-); that is,
L'wz,0,9) =J (u;0) —A'(w;2,0) —A(u; ) =0 Yo,y V. 4)

By choosing ¢ =0, we retrieve (2). By taking y = 0, we identify the linearized adjoint equation to find
z € V such that
J(u;0)—A'(u;2,0) =0 VeoeV. (3)
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The corresponding finite element problem is: Find (u,z;,) € V), X Vj, such that

L unszn, On, Wi) = J (uns @n) — A (uns zn, @n) — A(uns; W) =0 Vo, yy, € V. (6)

By choosing ¢, = 0, we retrieve (3). By taking v, = 0, we identify the linearized adjoint equation to
find z; € V}, such that

I (uns o) — A (upszn, @n) =0 Ve, € V. (7

We quote three propositions from [2, Ch. 6].

Proposition 1. Ler L(-) be a three times differentiable functional defined on a vector space X, which has
a stationary point x € X, that is,
L'(x;y)=0 VyeX.

Suppose that on a finite dimensional subspace X;, C X the corresponding Galerkin approximation,
L' (xp;y1) =0 Yy, € Xy,
has a solution, xy, € Xy. Then there holds the error representation
L(x) = L(xy) = 5L (xix—yu) + % Vyn € X,

with a remainder term %, which is cubic in the error e == x — x,
1
R = %/0 L" (x, + se;e,e,e)s(s— 1)ds.

Since
L(usz) — L (upszn) = J(u) — J (up),

at stationary points (u,z), (up,z,), Proposition 1 yields the following result for the Galerkin approxima-
tion (3) of the variational equation (2).

Proposition 2. For any solutions u and uy, of equations (2) and (3) we have the error representation
J(u) = I (un) = p (uniz— @) + 5 p" (wnsz e — i) + 2% Ve, yi, € Vi,
where z and zj, are solutions of the adjoint problems (5) and (7) and

p(un;-) = —A(ups-),
p*(uh;Z}n ) = ‘],(uh; ) _A,(Mh;Zh, ')a

and, with e, = u— uy,, e, = 7 — z, the remainder is

1
3 1 " . " .
73 — 5/0 (] (up + seys ey e ey) — A" (up + sey;zn + sez ey ey, ey)

—3A" (uy + seu;eu,eu,e1)>s(s —1)ds.
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The forms p(-;-) and p*(-;-,-) are the residuals of (2) and (5), respectively. The remainder 748
is cubic in the error. The following proposition shows that the residuals are equal up to a quadratic
remainder.

Proposition 3. With the notation from above, we have
P (unsznyuu— W) = P (up;2— @n) +0p Y, Wi € Vi,

with
1
op :/ <A//(“h+s€u;Zh+seZa€u7€u) —J//(“h+se“;e”’e”)> ds.
0

Moreover, we have the simplified error representation
J(u) = (up) = p(wnsz— @n) + 2 Yoy €V,

with quadratic remainder

1
7.2 :/ (A"(uh+seu;z,€u,€u) —J”(”h+se“;e“’eu)) ds.
0

3 Galerkin discretization and dual problem

In this section, we apply the dual weighted residuals methodology to the Cahn-Hilliard equation (1). We
denote I =1[0,T], Q = Q x I, and

o)y = [ otz b= [ Ve

for subsets Z of Q or Q with the relevant Lebesgue measure dz. Let V = H'(Q) and # = C'([0,T],V).
By multiplying the first equation by y,, € V and the second equation by y,, € V, integrating over £ and
using Green’s formula, we obtain the weak formulation: Find u,w € #  such that u(0) = g¢ and

(ur, W)ao+ (Vw,Vy,)o =0 Vy, €V, 1t €]0,T], ®
<W> WW>Q - 8<Vu7 VWW>Q - <f(u)7 WW>Q =0 VII/W € Vv re [07 T]
Split the interval I = [0, 7] into subintervals I, = [t,_1,,) of lengths k,, =1, — 1,1,
O=np<n< <t <---<ty=T.

For each time level #,,n > 1, let ¥}, be the space of continuous piecewise linear functions with respect to
regular spatial meshes T, = {K}, which may vary from time level to time level. By extending the spatial
meshes T, as constant in time to the time slab Q X [,,, we obtain meshes .7 of the space-time domain
Q = Q x I, which consist of (d + 1)-dimensional prisms Q% := K x I,,. Define the finite element space

Vo= {(p:Q—) R:o(.t)|g € Vnit €1y, @(x,-)|, €p,x € Q}'
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Here, I1y denotes the polynomials of degree 0. For functions from this space and their continuous
analogues, we define

vi=limv(t), v,=v, =limv(t), ,=v/ —v, .
tty 1ty

For all u,w, y,, y,, € ¥ or #, consider the semilinear form
N
A(I'taW; Yy, l/’w) = Z / <u17 WL1>Q + <VW7VV’14>Q + <W7 WW>Q - 8<VM7VI/IW>Q
n=1

_<f( }dt+z Uln— lawun 1Q+< gOa‘lfuo> .

Solutions u,w € # of (1) satisfy the variational problem

Al wi W, W) =0 Yy, y € ¥ )
and the finite element problem can formulated: Find U,W € ¥  such that

AUWy,p) =0 Yy, p, € 7. (10)

We now show that this is a standard time-stepping method. Since

Ut)=U,=U; =U"

n—1°

W( ) :Wna

for t € I,,, we have

N
A(UaW;l//uyll/w Z VWmVl//u Q+<Wn;llfw>9 8<VUn7VWW> <f(Un)al//w>Q}dt
n=1

Iy

. (11)
+ ) (U= U, 1,%,, e+ (U1 =g, ¥, p)a-
n=2
By taking
€Yy, teI, eV, te,
ll/u(t) — XM n n ‘ Ilfw([) — XW n n .
0, otherwise, 0, otherwise,

we see that (10) amounts to the implicit Euler time-stepping,

(Uo—80: X))o =0 Yy, €,
k”<VW’l7VXM>Q+<Un_Un—1;xu>Q:0 VXMG%HHZ 17

(Wa, 2w)2 — €(VUL Vw)a = (f(Un), Xw)a =0 Vi € Vyn = 1.
Now take a goal functional J(u), which depends only on u, and set
Z(viz) = J(u) = A(v;2),
where v = (u,w),z = (z4,2). With @ = (¢,, 9,), ¥ = (W, W), the stationary points are given by

L'(viz, 0, ) =J (us00) —A'(viz,0) —A(v; ) =0 Yo,y e W xW.
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With y = 0 we obtain A’(v;z, @) = J'(u; @), the adjoint problem. So we should compute A’ (1, w; 2y, 2y,

©yu, 0y) and J'(u; @,). To this end we write

A(u7W; Yu, lI]W) = <ut7 WM>Q + <VW7VWM>Q + <W7 lI/W>Q - €<VM7VWW>Q
= (f(u), Yiw) o + (u(0) — go, ¥u(0))a.

Hence,

A/(u,w;zu,zw, Oy, (Pw) = <(Pu,tazu>Q + <V(PW7VZM>Q + <(Pw>ZW>Q
- 8<V(Pua VZW>Q - <(Pu>ZW>Q + <(Pu(0)7zu(0)>9-

By integration by parts in ¢,

(Puirzu) 0 = —(@uszur) 0+ (@u(T), 2(T)) 2 — (9u(0),24(0) )02,
we obtain

A/(M7W;Zu7ZW7 Dy, (Pw) = _<(PL17ZL1J>Q + <V(PW7VZM>Q + <(PW7ZW>Q
+&(VOu, Vaw) o — (@us f () zw) o + (@u(T), 2u(T ) -

The adjoint problem is thus to find z,,z,, € # such that

(Pus—2ur) 0 — E(VPu, V) 0 — (Pus [ () 2w) 0 + (@u(T), 24(T) 2
+ <V(PanZW>Q + <(pW7ZW>Q = -],(M; Ou) YO, W .

We now specialize to the case of a linear goal functional of the form

J(u) = (u;g)o + (u(T),8r)0;

for some g € L(Q) and gr € L,(Q). Then

J/(”; (Pu) = <(thg>Q + <(PM(T)agT>Q-

The adjoint problem then becomes: Find z,,,z,, € # such that

(@us—2us = ' ()2 — 8)0 — €(VPu, Vau) o+ (0u(T),2u(T) — gr) =0 Vo, €V,
<(pw>ZW>Q + <V(PanZM>Q =0 Vo, c%.

The strong form of this is
_atzu + €Az, — f/(M)Zw =& in Q7
Zw—Az,=0 inQ,
0z, 07y
=0,—=0 dQ x 1
av " v on oRExl,
z2(T)=gr inQ.

(12)

(13)

(14)

(15)
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4 A posteriori error estimates

From Proposition 3 we have the error representation
J(”)_J(U):_A(U7W;Zu_”Zuazw_ﬂzw)+%(2)a (16)

where z = (zy,2y) is the solution of the adjoint problem (12) and 7z, 7z, € ¥ are appropriate approxi-
mations to be defined below. The remainder is quadratic in the error.

In order to write this as a sum of local contributions we must rewrite A(U,W; y,,, y,,) in (11). First
we compute [; (VW,Vy,)qdt. By using Green’s formula elementwise, we have

/(VW Vy,)adt = / Y (VW V) di = / Y, —(aw,y, Kdt+/ Y (W, wi) o dt,
I, I, KeT, I, KeT, Iy KeT,

where d,W = v-VW. We divide the boundary dK € T, into two parts: internal edges, denoted by &7,
and edges on the boundary dQ, denoted by &7,. So we get, with [ | denoting the jump across the edge,

| X @oWwodi= [ ¥ @Woed+ [ ¥ (@ yied
nKeT 7

lEGé”’ Iy Eeé°"

= [ ¥ 10wl vioxoadi+ / Y, (W, Vi)okraa dr.
n KeT nKeT

Let 0y denote the spatial boundary and define 0,0 = dQ x I and d,Q% = JK x I,. Hence,
/1 (YW, Vy,)aodi =) { — (AW, ) or — 3 ([0 W], W) o 0n0 0.0 + (W W, Wu>8XQ;‘(ﬂ8XQ}7
n KET;«,

and in the same way

e [ (VU.Vp)ad = ¥ { - e(8U.vo; ~ 3e(0U) Wagpae + U, Wagyae -

In KeT,

Note that AW = AU = 0 on Q% for piecewise linear functions, but we find it instructive to keep these
terms. Inserting this into (11) and noting that

| Wowadi= ¥ Wow)op.

KeT,
and
[ wad = ¥ (10 w0
Iy KeT,
gives
N
AUW: o) =), Y { — (AW, W) gy + (AU +W — f(U), y)op
n=1KeT,

— 2 {[0W] W aopa0 + 28U, Win)a.ona.0
+ (W, W) o.0mn0.0 — E(VU, W) a.0nna.0 + ([Uln-1, w;:n71>K}a
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where we have set U, = go for simplicity. Hence (16) becomes

N

J(u) _J(U) = Z Z {<Ruazu - ﬂZu)Q}Q + (RWaZw - n'Zw>Q7(
n=1KeT,

17

+<ru7Zu_ﬂ:Zu>8xQ7(+<FWaZw_7TZw>8XQ’[’( (7

—([U]n=1,(zu— ﬂzu):_1>K} +%(2)’

with the interior residuals
R, =AW, R, =—-eAU—-W+ f(U),

the edge residuals

e {—;e[avu], [ C 0.0k \ %0,

0, otherwise,

0, otherwise,

. {;[avW], [ C 005\ 2.0,

and the boundary residuals

8avU7 F C aer[l( m axQ7
rw‘FZ .

0, otherwise,

—oyW, TI'CdQxNd,0,
ru|F:

0, otherwise.

Here the subscript u refers to residuals from the first equation in (8) and the subscript w to residuals from
the second equation.
We now define nz,, 7z, € 7. Let

(P) (1) = - / v(s)ds

l’lIn

be the orthogonal projector onto constants. Let 7,:C(Q) — ¥, be the nodal interpolator; that is, it is
defined by

(av)(a) = v(a),

for all nodal points @ in T,. Then we define 7:C(Q) — ¥ by nv|;,= P,m,v. Since R, R,,, 7, and r,, are
piecewise constant in ¢, we have

N
J(u)—J(U) = Z Z {<Ruan(Zu_7TnZu)>Q§'<+<RWaPn(Zw_7thw)>Q”K

n=1KeT,
18
+<ru7Pn(Zu_ﬂnZu)>9xQ7(+<rW7Pn(ZW_n”ZW>>axQnK ( :

— (U1, (zu— nzuml)K} el
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Applying the Cauchy-Schwartz inequality to each term gives

=

| (u) Z )y {HRMHQ;HPn< ﬂnzu>HQn+hK HruHathZHP( = Tuzu) .0y
n=1KeT,
+ 1Rl gy 1Pu (20 — Tazw) [l o +hg 2Herath 1P (2w — Tuziw) |50

1 1
ki N0, ki = m20), 1+ 1222,
Here hg = diam(K). For a,b,c,d > 0 we have
1

(ab+cd) < (a®+c2)? (b2 +d%)?.

We use this inequality for each term in the previous inequality and set

1
2 - 2 2
pur = (IRl +i Il )

1

0ux = (1P = 1)y 1Palea— Tz gy )

s = (IRl i Iy )

Ok = (1P e — Tz [y il P2 — 2 B g ) g
o= (5107 R)

1

2 2
o = (kall (e~ 7z, )
Note that, since R, = AW = 0 for piecewise linear functions, the first term in p, x and ®, g can actually
be removed. So we have

’J(Lt) Z {pu,meK + Pw,k Oy x + pKa)K} + |%(2)‘

€T,

HMZ

We have proved the following theorem:

Theorem 1. We have the a posteriori error estimate
N
@) =IO Y, ¥ {Puk@uk + ok @k +prog | + 1) (19)
n=1KeT,

Note that on each space-time cell Q%, the terms p, x @, x and p,, x @, x can be used to control the
spatial mesh and the term pg @k to control the time step k,, in an adaptive algoritheorem ; see [2]. We do
not pursue this here.

In the following we want to obtain a weight free a posteriori error estimate where the weights in
(19) are replaced by a global stability constant. We need the following interpolation error estimate,
see [2, lemma 9.4].
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Lemma 1. With t and &, as defined as before, there holds

1
| Pa(z— ”nz)‘|Q’,‘<+h12(||Pn(Z_ ﬂnZ)Hax%ﬁ Ch%(HDZZHQ"K’ (20)

1
[z(ta—1) — Puz|| k< Chit || drz| g - (21)

1
Here |D?z| g1 denotes the seminorm <Z|a|:2”DaZ”Z)"K> g

In the following we assume that J(-) is a linear functional given by (13) and Q is such that we have
the elliptic regularity estimate

d
ID*v[|o< CllAv]a Vv € H3(Q) with % _=o. (22)

We also assume a global bound for f’(u), which is reasonable since it is known that [[ul|;_g)< C (c.f. [5]).
In particular, with

-U - U,
g= U=y and gr = 7@1\] N)
|luny — Un/|l

the following theorem provides bounds for the norms of the error, ||u —Ul||p and ||uy — Uy|| .

Theorem 2. Assume that || f'(u)||r..< B and that (22) holds. Let zy,z,, be the solutions of (15). Then
there is C = C(P) such that the following a posteriori error estimates hold.
(i) Let g € Lr(Q) with ||g||o= 1 and g7 = 0. Then

N 1
(w—U.)ol<CCs Y. ¥ {ik(pix+pls) + (it +R2)p7} +12%), 23)
n=1KeT,

where
1

(D22, 3+ 19zl +ID?20 )
Cs = sup
2€L,(Q) lgllo
(ii) Let gr € Lr(Q) with ||gr|ja= 1 and g = 0. Then

N 1
(w=Ugral<CCs Y., ¥ {ik(pix+0, ' plx+0, ' pR) + K20 02} +12),  24)

n=1KeT,

where 6(t) =T —t,

and

1
_ _ 1 1 2
Cs= sup (&7 max|lzuBte |l HID*z B +HIo dzlp+elo D223 )/ lgrlle.
gr€La(Q)
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Proof. Part (i). From Theorem 1 we have

1
0w = (18— iz Iy il B~ ) gy ) < ORIl

1
Ok = (HP,,(ZW—nnzw)HéﬁJrhKHP,,(zw—nnzw)”i%)2 < Ch: ||D22WHQ

and
1 | ,
ok = ki || (zu = Tuzu) K< ki 1Pz — azu) kit (12 (tn—1) — Pazull
< Chi D2 gy +Cha 1912l gy +122).
Hence,
(u—U,g)ol S Z {p%meKJFPw,waerpKwK}

KeT,

= HMZ

IN

Z Z { PuK||D2ZuHQK"“ChKPWKHDZZWHQK"‘pK(Ch HD2ZMHQK+Ck ”atZuHQ")}
n=1KeT,

and the desired estimate (23) follows by the Cauchy-Schwartz inequality

1

L N 7
Z Z h puKHD ZuHQk < (Z Z th“K) (Z Z h%(pu’KHDzzuuer”f)z

n=1KeT, n=1KeT, n=1KeT,
1
(X X ikete) 10%slo= cs( X X ipie) sl
n=1KeT, n=1KeT,

and similarly for the other terms.
Part (ii). The previous bound for ZnN:1 Y ket, Puk @y applies here also. Consider then

Z Y puk®uk < Z Y pukChgID?zullgp+ Y. Puwk®uk-
n=1KeT, n=1 KeT, KeTn

Here,

— _1 1
Z Z Pk Chi||D*zylloy = Pw71<Ch%<||G 202D’z |gy
n=1KeT,

_1 1
Pw,k On 2h3<||0-7D2ZWHQ”K

| /\

g3
NZ

1 N—1 1
_ 2 1 2
( o, lh;tpi,K) (L X lloiD%,)

n=1 KeT,

1
< ( _lthwK> |62 D%z |0

< csc(; z ke lerla



448 A. Mesforush, S. Larsson

The term with n = N is special. We go back to (18) and replace it by

Y (Ruzw-vadoy = Y, <Rw,(1—7rN)/ wdt) < ¥ IR, HKChKHDz/ ]| .

KeTy KeTy KeTy

Here, by the regularity estimate (22), €Az, = iz, + f' (1)z,, from the first equation in (15), and || /() || .. <
B, we have

HDZ/ detH SCH detH :Cs_lH/ ((9,zu+f’(u)zw)dtH
Iy K Iy K Iy K
1
< e (Jlaulow)lk-+lzulen 1) I+ Bzl gy )-
1
Hence, since py.x = [[Rw([gy= ky|[Rw |k, we have

1
Y Ruze-mvadgy < 3 IRulkCHEE™ (llz (o) x-+ il 2l gy)

KeTy KeTy
_1 1
= Ce' ¥ ky B (lzuow) -+ o) L+l g )
KeTy
3 1
ce”! (X ky'tkpdx) (lzu) o+ lzuin-1)llo+ky 2 lo)
KeTy
1
< CeflcSHgTHQ( Z GNlthwK)za
KeTy
where we have used oy = ky. So we have
N N %
Y Y ko <CCsligrla( Y, ¥ on ' rkpls) (25)
n=1KeT, n=1KeT,

Now we compute Zﬁlvzl Y ker, Pk k. For K € Ty we use

1 1 1
g = k}if”(Zu - nzu);,1 ||K§ k]%/HPN<Zu - ﬂNZu)”K—FkK,HZu(tN,ﬂ —PNZMHK

1 1
= 1Py (2 — vzl gy +ex llzu(tn—1) = Puzall < CH D22l gy k3 | 2u (1) — Pnzalx-

Then we have

N N N—1
Y Y okox = CY Y pehdDalgtC Y, X prkion [ty

n=1KeT, n=1KeT, n=1KeT,
1
+ Y, prkyllza(tv-1) — Pyzallx
KeTy
— 1
_ 2 1
< (Y ¥ i)’ HDZZM||Q+C(Z T oikio;") oo

n=1KeT, n=1KeT,

1
+0( ¥ kupk) lzulv-1) ~ Puzalle.
KeTy
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Using oy = ky and
llzu(tn—1) — Pvzull @< 2H1121XHZMHQS 2Cs||g7 || s

gives

- \- 4 2\2 ' )2
Y ¥ oo < (X ¥ hiod) Colarllarc() Z Y pikio;!) Collerla
n=1 KeT,

n=1KeT, n=1KeT,
1
+C< kNpIZ()ZCSHgTHQ
KETN
N % N %
= ccs(X ¥ kot lerlla+ccs( Y. X piko;") lsrla.
n= lKET n=1KeT,

This completes the proof.

Finally, we prove a priori bounds for the stability constants Cs.

Theorem 3. Assume that || f'(u)||1..,, < B and € € (0,1] and that (22) holds. Then the solution of (15)
admits the following a priori bounds, where C = C(B). If g7 = 0, then

_|— 1
”DZZMHQ HazZuHQ € ||D2Zw||Q<CHg||2 ce T, (26)
If g =0, then, witho(t) =T —t,

€ 1matzuHQ+sz||Q+||D2<7)MHQ+HGZc9zzu|!Q+e |62D%2,|[5< Ce Vjgr[3e 7. @7)

Proof. We first estimate sz||é To this end we use Az, = z,, from the second equation of (15) to get

(Azw, 20y = (2w AZu) @ = |12

Then we multiply the first equation of (15) by z,, and integrate over [t,T],

T T T T
/ (~Ohzwz)ads + ¢ / lzll2 ds — / (F ()220 ds = / (g,20)0ds.
t t t t

By assumption we know that || f'(u)]|z...,, < B, so we have

T T T
a3z lfte [ albds < [ 17 0lilalalzlads+ [ lelolzlads
[ Elalt SlalB)as+ [ lgliot i) o
2 [ adhas+s [ odBas+ [ (Slglbot bzl o

IN

| /\
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Hence, with z,(T) = gr and ¢ = %

T € T
JOlate | lenlbds < gl Hlarlr28%" [ s

T
< gl +lsrl+ce [ lalhds
Define ,
(1) = 20 e | () [Bds

Obviously we have ||z,(s)||5< ®(s), so that

T
(1) < Cellgl+ler|aCe ! [ @(s)ds.
We apply Gronwall’s lemma to get
—1 _
D(1) < Cleglp+lerla)e™ .
This means .
—1 _
qu(t)HéJrS/t lzwldds < Clellgllp+lgrg)e .

We conclude

)eCs’lT

I

m;lXIIZuIIé < C(elglp+llerlla
_ -1
lzwlle < Cllgllp+e " lerlg)e .

From the second equation we know z,, = Az,. So, by (22) and (28),
_ —1
D23 Cllaz = Cllauli3 Cllgl+e lgrlR)ecs . (28)

This takes care of the first terms in (26) and (27).
Now assume that g7 = 0. Consider the dual problem (15) and multiply the first equation by —d,z,
and integrate over Q to get

<atzu7 atZu>Q - £<AZW7 atzu>Q - <f/(u)ZW7 atZu>Q = —<g, atzu>Q- (29)
So, by using z,, = Az, from the second equation, we get
 [Td 2
(820,0)0 = (onsdd)o = (8 dbado = 4 [ 5 18l adr.
By putting this in (29) and using that || f'(u)||;_(0)< B, we have

19hzully =5 1Azu(T) [+ 5 182u ()&, < 117 ()| 12l | Oz ll 0+ IIg 0| Ohzull 0

<
2
< BB+ Azl b5 gl B+ A 19zl
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Put ¢ = 2 and kick back |]8,zuH2Q to get, with z,(T) = gr =0,
319zul1p+5 1820 [&< B2 llzullo+18115-
Hence, by (28) with C =C(f) ,
19,2ul15< Cllzw5+Clglh< Cllglige 7. (30)
It remains to bound HDzszZQ. From the first equation of (15) we get
€Az = g+ Ozu+ f ()2
Taking norms and using (22), (28), and (30) gives

&|D%2, |13 < £2Cl|AzlIh=Cllg + Az + £ (w2l
< C(lgly+1azliHIF )12 ) I2nl13)
< Clglige™ .

This completes the proof of (26)
Now let g = 0 and set o(¢t) = T — ¢. Multiply the first equation of (15) by —cd;z, to get

<atzu7 Gatzu>Q - 8<AZW7 GatZM>Q - <f/(M)ZW7 Gatzu>Q =0.

Here, since z,, = Az, and 6’(r) = —1,
[T d 2 A 2
(800200 = (o 0AIZ)0 = (A, 08I ade = 4 [ S (olaalBIar—1 [ o'laclha
T
= %G(T)HAZu(T)Hé—%G(O)HAZu(O)H?ﬁ%/O lzwllBdt = = 3T Az (0) [g+ 3 |z |-
Hence,

1 1 1
162 dzllg+11A2,(0) 14 < Sllzw o+ 1/ ()l 02 2ullol 02 Arzullo
1

< 3(e+B7T)|zwllpt+31l07 drzulp-

So by (28) we have
1 1
|02 dzullo< (e +B>T)||zul[pCe ' lgrGe™ .

Finally, from (22) and €Az,, = iz, + f(u)z,, we get

1 1 1
& 61 D%, [} < £2C|l0 Az = Cllot Az, + £ (w)2) I3
_ 1
<c(lotazld+Tlzlb) < Cellgr R .

This completes the proof of (27). OJ
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