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Abstract. In this paper, we propose collocation and Kantorovich methods based on spline quasi-
interpolants defined on a bounded interval to solve numerically a class of Fredholm integro-differential
equations. We describe the computational aspects for calculating the approximate solutions and give
theoretical results corresponding to the convergence order of each method in terms of the degree of the
considered spline quasi-interpolant. Finally, we provide some numerical tests that confirm the theoretical
results and prove the efficiency of the proposed methods.
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1 Introduction

Integro-differential equations emerged at the beginning of the twentieth century, notably by the Italian
researcher Volterra. This type of equation has attracted much more interest from researchers because
they provide efficiency for the description of problems arising in the fields of engineering, mechanics,
physics, chemistry, astronomy, biology, economics, potential theory, electrostatics, electromagnetic, con-
trol theory and viscoelasticity [1, 4, 18, 23, 25]. Moreover, Integro-differential equations can be founded
explicitly in mathematical models of epidemics and spatiotemporal developments [19, 31].

Many numerical methods have been developed for solving integro-differential equations. Each of
these methods has its inherent advantages and disadvantages and the search for easier and more accurate
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methods is a continuous and ongoing process. Among the existing methods in the literature, we cite the
adomian decomposition [17], homotopy analysis method [18], Chebyshev and Taylor collocation [33],
Taylors series expansion [13, 20] and integral mean value [11]. A very popular variational iteration
method is considered to solve integral and integro-differential equations [32,34]. Decomposition method
was used to solve high-order linear Volterra-Fredholm integro-differential equations in [15]. Moreover, a
large number of papers have considered meshless schemes to solve numerically different types of integro-
differential equations. For instance, the authors in [9, 10] have solved integro-differential equations
arising in oscillating magnetic fields by local multiquadrics collocation and Galerkin methods . In [6],
the same type of equation was solved by the thin plate spline collocation method. Local thin plate
splines Galerkin scheme was used to solve nonlinear mixed integro-differential equations in [8]. A class
of fractional integro-differential equations is solved in [7] by using local radial basis functions.

Recently, many authors have used spline functions for the numerical solution of integro-differential
equations, in particular, semiorthogonal spline wavelets approximation method for Fredholm integro-
differential equations was proposed in [21]. In [22], authors applied B-spline collocation method to
solve numerically linear and nonlinear Fredholm and Volterra integro-differential equations and in [5] a
method for solving integro-differential equations using B-spline interpolation was studied.

Spline quasi-interpolants (abbr. QIs) are approximation operators obtained as a linear combination
of functions with bounded support (B-splines). These operators are convenient and efficient tools in the
approximation of functions since their construction is simple and they provide an optimal convergence
order with a uniform bounded norm (see [27]). Recently, it was proved (see [2] and [3]) that the spline
QIs work well for approximating the solutions of the linear and nonlinear Fredholm integral equations.

In this paper, we intend to use collocation and Kantorovich schemes based on spline QIs operators
to solve numerically the following Fredholm linear integro-differential equation u′(t) =

∫ 1

0
k(t,s)u(s)ds+a(t)u(t)+g(t) , t ∈ [0 ,1]

u(0) = u0

(1)

where u is the function to be determined, a, g, k are continuous functions and u0 ∈ R.
The paper is organized as follows. In Section 2, we give some preliminary results on the discrete

spline QIs of degree d and we present the explicit formula for the quadratic QI defined on a uniform
partition. In Section , we introduce the collocation and Galerkin methods based on spline QIs to solve
numerically Fredholm integro-differential equation (1). In Section 4, error estimates are given and pre-
cise convergence orders are obtained. Finally, in Section 5, we provide some numerical results that
illustrate the approximation properties of the proposed methods.

2 Spline quasi-interpolants

Let Xn := {xk,0≤ k ≤ n} be the uniform partition of the interval I = [0,1] into n equal subintervals, i.e.,
xk := kh, with h = 1/n and 0≤ k≤ n. We consider the space Sd(I,Xn) of splines of degree d and class
C d−1 on this partition. Its canonical basis is formed by the n+ d normalized B-splines {Bk,k ∈J },
with J := {1,2, . . . ,n+d}. The support of each Bk is the interval [xk−d−1,xk] if we add multiple knots
at the endpoints.
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A discrete quasi-interpolant (abbr. dQI) of degree d > 1 is a spline operator of the form

Qd f := ∑
k∈J

µk( f )Bk , (2)

where the coefficients µk( f ) are linear combinations of values of f on the set En := {ξi , i = 0 , . . . , N } ,
with {

ξi := ti , N := n+1 , if d is even,
ξi := xi , N := n , if d is odd ,

and t0 = x0, tn+1 = xn, ti = (xi−1 + xi)/2 i = 1 , . . . , n . More precisely, the functional coefficients µk for
d +1≤ k ≤ n, have the following form

µk( f ) :=


d

∑
i=0

αi,k f (ξk−d+i) , if d is even ,

d

∑
i=1

αi,k f (ξk−d+i−1) , if d is odd ,

where αi,k are calculated such that the dQI Qd reproduces the space Pd of all polynomials of total degree
at most d, i.e.,

Qd p = p, ∀p ∈ Pd .

The extremal coefficients µk( f ) have particular expressions. The dQI Qd can be written in the following
quasi-Lagrange form

Qd f =
N

∑
j=0

f (ξ j)L j ,

where L j are linear combinations of finite number of B-splines .
Since µk are continuous linear functionals, the operator Qd is uniformly bounded on C ([0,1]) and

using classical results in approximation theory (see [14]) , for any f ∈ C d+1([0 ,1]) , we have

‖ f −Qd f‖ ≤C1hd+1‖ f (d+1)‖ , (3)

where C1 is a positive constant independent of h.
In what follows, we report an example of a spline dQI of the form (2) for d = 2. This operator is

defined on the space S2(I,Xn) of C 1 quadratic splines (see e.g. [30]) as follows

Q2 f :=
n+1

∑
k=0

µk( f )Bk , (4)

where the coefficient functionals µk( f ) are given by

µ0( f ) = f0, µ1( f ) =−1
3

f0 +
3
2

f1−
1
3

f2,

µk( f ) =−1
8

fk−1 +
5
4

fk−
1
8

fk+1, 2≤ k ≤ n−1, (5)

µn( f ) =−1
3

fn−1 +
3
2

fn−
1
3

fn+1, µn+1( f ) = fn+1.
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It is easy to see that the Q2 is uniformly bounded and its infinity norm is given by

‖Q2‖∞
=

305
207
≈ 1.4734 .

In the case of even degree, the dQI Qd presents an interesting property related to the convergence order
of its associated quadrature rule. Indeed, the following theorem holds.

Theorem 1. Let d be an even integer and let Qd be the dQI defined by (2). For any function f ∈
C d+2([0,1]), and for any weight function g ∈W 1,1 (i.e. ‖g′‖1 is bounded), we have∫ 1

0
g(t)( f (t)−Qd f (t))dt = O(hd+2). (6)

Particular cases of quadrature rules based on quadratic (d = 2) and quartic (d = 4) dQIs are studied
in depth in [26] and [28] respectively.

3 Quasi-interpolation method

Equation (1) can be written in the form

u′(t) = A u(t)+K u(t)+g(t) , (7)

where  A u(t) = a(t)u(t) , t ∈ [0 ,1],

K u(t) =
∫ 1

0
k(t,s)u(s)ds , t ∈ [0 ,1] .

Let v ∈ L∞ [0,1] such that u′(t) = v(t). Then u can be written in the form

u(t) = (Jv)(t)+u0 , 0≤ t ≤ 1 , (8)

where

(Jv)(t) =
∫ t

0
v(s)ds , 0≤ t ≤ 1 .

Using the above notations, Eq. (7) takes the form

v = T v+ f , (9)

where
T := (K +A )J , (10)

and

f (t) := g(t)+u0a(t)+u0

∫ 1

0
k(t,s)ds , t ∈ [0 ,1] . (11)

T is a compact operator, as a linear operator from L∞[0,1] into L∞[0,1] .
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3.1 Collocation-type method based on Qd

In order to solve (1), we construct a collocation-type method for the numerical solution of (8). More
precisely, we look for an approximate solution uc

n of (1) in the form

uc
n(t) =

∫ t

0
vc

n(s)ds+u0 , (12)

where vc
n satisfies the following approximate equation

vc
n−QdT vc

n = Qd f . (13)

This last equation can be reduced to a linear system of equations. Indeed, from (13) vc
n is a spline function

of the form

vc
n =

N

∑
i=0

ciLi . (14)

By replacing vc
n in (13), we obtain

N

∑
i=0

ciLi =
N

∑
i=0

T

(
N

∑
j=0

c jL j

)
(ξi)Li +

N

∑
i=0

f (ξi)Li .

Using the linearity of T and identifying the coefficients of L j, we obtain the following system

ci−
N

∑
j=0

T (L j)(ξi)c j = f (ξi) , i = 0, . . . ,N . (15)

Let us define the vectors

C N := (c0, . . . ,cN )T and FN := ( f (ξ0), . . . , f (ξN ))T ,

and the matrices

A := (β j (ξi))06i, j6N , A N := diag(a(ξi))06i6N A , (16)

M N :=
(∫ 1

0
k (ξi,s)β j(s)ds

)
06i, j6N

(17)

with
β j(s) =

∫ s

0
L j(v)dv , j = 0, . . . ,N .

Then, the system (15) becomes [
IN −

(
AN +MN

)]
CN = FN . (18)

Once the solution C N of (18) is determined, the approximate solution un is given by

uc
n(t) = u0(t)+β

T (t)CN ,

where
β (t) =

(
β0(t),β1(t), . . . ,βN (t)

)T
.
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3.2 Kantorovich-type method

In the Kantorovich-type method, the approximate solution uk
n is given by

uk
n(t) =

∫ t

0
vk

n(s)ds+u0 ,

where vk
n satisfies the following approximate equation

vk
n−QdT vk

n = f . (19)

Using the expression of Qd , vk
n can be written in the form

vk
n =

N

∑
i=0

c̃iLi + f . (20)

Replacing this last expression of vk
n in (19), it follows that c̃i , i = 0 , . . . ,N satisfies the linear system

given by

c̃i−
N

∑
j=0

T (L j)(ξi) c̃ j = T ( f )(ξi) , i = 0, . . . ,N . (21)

In the matrix form, it holds [
IN −

(
AN +MN

)]
C̃N = F K

N , (22)

where A N ,M N are as in (16) , (17) and

C̃ N := (c̃0, . . . , c̃N )T , F K
N :=

(
T ( f )(ξ0) , . . . , T ( f )(ξN )

)T
.

Once (22) is solved, the approximate solution un is given by

uk
n(t) = u0(t)+β

T (t)C̃N +
∫ t

0
f (s)ds .

Remark 1. It is important to note the presence of integrals in systems (18) and (22). When implementing
the method, the integrals β j(ξi) were calculated exactly, since L j are given by piecewise polynomial
functions. However, the other integrals were calculated numerically using high accuracy quadrature
rules, like those defined in [29], to imitate exact integration.

Remark 2. It should be noted that the methods introduced above can be extended to the case of nonlinear
integro-differential equations. For instance and without loss of generality, we consider the following
particular case of nonlinear integro-differential equations

u′(t) =
∫ 1

0
K(t,s)ψ(s,u(s))ds+g(t), (23)

where k,g and ψ are known functions, with ψ(s,ν) nonlinear in ν , and u is the function to be determined.
Thus, the collocation method based on the spline QI Qd consists in this case to look for an approximate
solution uc

n given by (12) where vc
n takes the form

vc
n =

N

∑
i=0

ciLi .
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and {ci, i = 0, . . . ,N } is the solution of the nonlinear system of equations given by

ci−
∫ 1

0
K(ξi,s)ψ(s,c jL j(s))ds = f (ξi) , i = 0, . . . ,N .

A more detailed study of the solution of nonlinear integro-differential equations by the methods presented
in this work will be the subject of a future paper.

4 Error analysis

For the sake of completeness, we report the theorem of existence and uniqueness of solution for Eq. (1) .

Theorem 2. Assume that a, g∈C([0,1]) and k ∈C([0,1]× [0,1]). Then for any initial value u0 ∈R , Eq.
(1) possesses a unique solution u ∈C1([0,1]) satisfying u(0) = u0. Moreover, this solution is given by

u(t) = r(t,0)u0 +
∫ t

0
r(t,s)g(s)ds, t ∈ [0,1] , (24)

where r ∈C1([0,1]× [0,1]) is a resolvent kernel .

Proof. See Brunner [12] .

The following theorem confirms the existence and the uniqueness of the solutions of the linear alge-
braic systems (18) and (22) .

Theorem 3. Assume that a, g ∈ C([0,1]) and k ∈ C([0,1]× [0,1]) . Then for h sufficiently small ,the
linear algebraic systems (18) and (22) have unique solutions in RN +1. Hence, the collocation equation
(13) and the Kantorovich equation (19) have unique solutions given respectively by vc

n and vk
n.

Proof. We give only the proof for the collocation method. The proof in the case of Kantorovich method
is quite similar.

The matrices A N and M N given in (16) and (17) respectivly, can be written as

A N = hA ∗
N and M N = h2M ∗

N ,

with A ∗
N and M ∗

N are matrices with bounded elements that are independent of h . Indeed, using the
fact that, the quasi-Lagrange functions L j have compact supports, that is supp(L j) = [x j−p , x j+q] for
certain p and q , we deduce that for any 0 6 i, j 6 N , it holds

Ai j = β j (ξi) =
∫

ξi

0
L j(s)ds

=


0 , if ξi < x j−p,

h
∫

ηi

j−p
L j(sh)ds , if x j−p < ξi < x j+q,

h
∫ j+q

j−p
L j(sh)ds , if ξi > x j+q,

= hA ∗
i j ,
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where ξi = ηih and A ∗
i j are bounded and independent of h .

Similarly, we have

Mi j =
∫ 1

0
k(ξi ,s)β j(s)ds =

∫ x j+q

x j−p

k(ξi ,s)
(∫ s

0
L j(t)dt

)
ds

= h2
∫ j+q

j−p
k(ξi ,sh)

(∫ s

j−p
L j(t)dt

)
ds = h2M ∗

i j

where M ∗
i j are bounded and independent of h . Hence , the matrix of the system (18) can be written as

I N −h(A ∗
N +hM ∗

N )

which is invertible with a bounded inverse, whenever h is sufficiently small (from the Neuman lemma,
see [24]). So the proof is complete.

In the sequel, we study the convergence order of the proposed methods.

Theorem 4. Let Qd be the QI operator of degree d given by (2), and vn be either the collocation solution
vc

n defined by (14) or the Kantorovich solution vk
n defined by (20). Assume that a ,g ∈ C d+1

(
[0 ,1]

)
and

k ∈ C d+1
(
[0 ,1]× [0 ,1]

)
. Then for n large enough, the following error estimations hold

‖v− vn‖∞ = O(hd+1) , (25)

‖u−un‖∞ = O(hd+2) , (26)

where u is the exact solution of (1), v = u′ and vn = u′n.

Proof. We give only the proof for the collocation method. The proof in the case of Kantorovich method
is quite similar.

By assumption, u∈Cd+2[0,1], then u′ ∈Cd+1[0,1]. Using Peano’s theorem (see [16], Chapter 3), we
get

u′(t) = Qdu′(t)+
∫ 1

0
Kd+1(t,s)u(d+2)(s)ds , (27)

where the Peano kernel Kd+1 is given by

Kd+1(t,s) =
1
d!

(
(t− s)d

+−
N

∑
k=0

(ξk− s)d
+Lk(t)

)
.

By taking t = τh , s = zh and ξk = ηkh , the kernel Kd+1 takes the form

Kd+1(t,s) =
hd

d!

(
(τ− z)d

+−
N

∑
k=0

(ηk− z)d
+Lk(t)

)
,

and (27) can be written as

u′(t) = Qdu′(t)+hd+1
∫ 1

0
Kd+1(τh,zh)u(d+2)(zh)dz =

N

∑
j=0

u jL j(t)+hd+1R(1)
d+1(τ) , (28)
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where u j = u′(ξ j), j = 0, . . . ,N , and

R(1)
d+1(τ) =

∫ 1

0
Kd+1(τh,zh)u(d+2)(zh)dz .

Using the fact that the Lagrange function has local support, we can show that R(1)
d+1(τ) is bounded and

independent of n. Integration of (28) leads to

u(t) = u0 +
N

∑
j=0

u jβ j(t)+hd+2Rd+2(τ) ,

where
β j =

∫ t

0
L j(s)ds and Rd+2(τ) =

∫
τ

0
R(1)

d+1(s)ds .

For t = τh, the representation (13) of un implies that
en = u(t)−un(t) =

N

∑
j=0

ε jβ j(t)+hd+2Rd+2(τ),

e′n = u′(t)−u′n(t) =
N

∑
j=0

ε jL j(t)+hd+1R(1)
d+1(τ),

(29)

with ε j := u j− c j, j = 0, . . . ,N . From Eqs. (1) and (15) , we have

εi =
∫ 1

0
k(ξi,s)en(s)ds+a(ξi)en(ξi)

=
N

∑
j=0

(∫ 1

0
k(ξi,s)β j(s)ds+a(ξi)β j(ξi)

)
ε j +hd+3

∫ N

0
Rd+2(τ)k(ξi,τh)dτ +hd+2a(ξi)Rd+2(ηi) .

It follows that ε := (ε0 , . . . , εN ) satisfies the linear algebraic system[
IN −

(
AN +MN

)]
ε = hd+2

ϕN ,

where AN and MN are given in (16) and (17) , and

ϕN =

(
h
∫ N

0
k(ξi,τh)Rd+2(τ)dτ +a(ξi)Rd+2(ηi)

)
06i6N

From the proof of Theorem 3 , we get∥∥∥∥(IN −
(
AN +MN

))−1
∥∥∥∥6 D0 ,

where D0 is a positive constant independent of h.
Moreover, we have

‖ϕN ‖∞ 6 hN ‖k‖∞

∥∥u(d+2)∥∥
∞

MK +A0
∥∥u(d+2)∥∥

∞
MK 6

(
‖k‖∞ +A0

)∥∥u(d+2)∥∥
∞

MK ,
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where

MK = max
t∈[0,1]

∫ 1

0

∣∣Kd+1(t,s)
∣∣ds and A0 = max

t∈[0,1]
|a(t)| .

Thus , we deduce that ‖ε‖6Chd+2 where

C = MkD0

(
‖k‖∞ +A0

)∥∥u(d+2)∥∥
∞
.

Using (29) , we deduce that ∣∣e′n(t)∣∣6 Λd+1Chd+2 +hd+1∥∥u(d+2)∥∥
∞

MK , (30)

and ∣∣en(t)
∣∣6 Λ̃d+1Chd+3 +hd+2∥∥u(d+2)∥∥

∞
MK , (31)

where

Λd+1 = max
t∈[0,1]

N

∑
j=0

∣∣L j(t)
∣∣ and Λ̃d+1 = max

t∈[0,1]

N

∑
j=0

∣∣β j(t)
∣∣ .

Finally, from (30) and (31) , we have∥∥e′n
∥∥

∞
= O

(
hd+1) and ‖en‖∞ = O

(
hd+2),

which completes the proof .

5 Numerical results

To illustrate the theoretical results established in the previous sections, we consider four examples of
FIDE that we solve numerically by collocation and Kantorovich methods based on quadratic QI given by
(4) and defined on the interval [0 ,1] endowed with a uniform partition of length h = 1/n. For different
values of n, we compute the maximum absolute errors

Ec
∞ := ‖u−uc

n‖∞ ; Ẽc
∞ := ‖v− vc

n‖∞ ; Ek
∞ := ‖u−uk

n‖∞ ; Ẽk
∞ := ‖v− vk

n‖∞ ,

where the uc
n and uk

n are the approximate solutions obtained by the collocation and Kantorovich methods
respectively. Moreover, we present the corresponding numerical convergence orders denoted by NCO
and calculated as the logarithm to base 2 of the ratio between two consecutive errors. We note that the
numerical algorithm was run on a PC with Intel Pentium 2.16GHz CPU, 4GB RAM, and the programs
were compiled by using Mathematica.

In the following table, we give the data associated with the considered examples.
The obtained results for Examples 1,2, and 3 are reported in Tables 2, 3, and 4 respectively. It can

be seen from these tables that the approximate solutions gradually converge to the exact ones along with
the increase of nodes. Moreover, it also confirms that the numerical convergence orders match well with
the expected values given in Theorem 4.

Example 4 is given in [5], we consider it here to give a comparison with the results presented in [5]
and those obtained by the collocation and Kantorovich method based on quadratic QI given by (4). We
notice that, the method presented in [5] is based on B-splines interpolation and the unknown solution
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Table 1: Numerical examples

Kernel K Function a Function g Exact solution u

Example 1 πt sin(πs) sin(πt) π sin(πt)− cos(πt)sin(πt) cos(πt)

Example 2 ts 2t2 −(−1+ e)t
e

−2t2 cosh(t)+ sinh(t) cosh(t)

Example 3 exp(t + s) exp(−2t) −exp(−t)+
3exp t− exp(2+ t)

2
exp(t)

Example 4 exp(t + s) 1 −1
2

exp(x)(exp(2)−1) exp(t)

Table 2: The absolute errors Ec
∞ , Ẽc

∞ , Ek
∞ , Ẽk

∞ and the corresponding NCO .

Example 1

n Ec
∞ NCO Ẽc

∞ NCO Ek
∞ NCO Ẽk

∞ NCO

8 5.86(−04) −− 3.00(−03) −− 3.31(−04) −− 2.83(−03) −−
16 4.24(−05) 3.78 3.90(−04) 2.94 1.98(−05) 4.06 3.14(−04) 3.17

32 2.77(−06) 3.93 4.93(−05) 2.98 1.23(−06) 4.00 3.53(−05) 3.15

64 1.76(−07) 3.97 4.73(−06) 3.38 8.17(−08) 3.91 4.58(−06) 2.94

128 1.11(−08) 3.98 5.93(−07) 2.99 4.66(−09) 4.13 5.52(−07) 3.05

Theoretical order − 04 − 03 − 04 − 03

Table 3: The absolute errors Ec
∞ , Ẽc

∞ , Ek
∞ , Ẽk

∞ and the corresponding NCO .

Example 2

n Ec
∞ NCO Ẽc

∞ NCO Ek
∞ NCO Ẽk

∞ NCO

8 9.22(−06) −− 3.61(−05) −− 6.47(−05) −− 6.54(−04) −−
16 7.18(−07) 3.72 4.74(−06) 2.96 4.41(−06) 3.87 7.29(−05) 3.08

32 5.04(−08) 3.86 6.81(−07) 2.82 2.73(−07) 4.01 7.25(−06) 3.40

64 3.30(−09) 3.93 6.59(−08) 3.36 1.82(−08) 3.90 9.68(−07) 2.90

128 2.12(−10) 3.97 8.81(−09) 2.91 1.05(−09) 4.10 1.23(−07) 2.96

Theoretical order − 04 − 03 − 04 − 03
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Table 4: The absolute errors Ec
∞ , Ẽc

∞ , Ek
∞ , Ẽk

∞ and the corresponding NCO .

Example 3

n Ec
∞ NCO Ẽc

∞ NCO Ek
∞ NCO Ẽk

∞ NCO

8 3.52(−05) −− 1.37(−04) −− 7.22(−06) −− 1.28(−04) −−

16 2.46(−06) 3.83 1.46(−05) 3.23 4.04(−07) 4.15 1.62(−05) 2.98

32 1.63(−07) 3.91 1.62(−06) 3.17 2.52(−08) 4.00 1.79(−06) 3.18

64 1.11(−08) 3.87 1.45(−07) 3.47 3.24(−09) 2.96 2.35(−07) 2.93

128 6.16(−10) 4.17 1.73(−08) 3.07 8.60(−11) 5.23 2.95(−08) 2.99

Theoretical order − 04 − 03 − 04 − 03

is approximated by a cubic B-spline defined on the interval [0,1] endowed with a uniform partition of
length h = 1/n. For n = 4, we compute the punctual errors

Ec
j = |u(x j)−uc

n(x j)| and Ek
j = |u(x j)−uk

n(x j)| for x j =
j

10
, j = 0, · · · ,10

and we compare them with the errors ESp, j given in [5].

Table 5: Comparison with results given in [5].

Collocation and Kantorovich methods Method [5]

x j u(x j) uc
n(x j) Ec

j uK
n (x j) EK

j app values in [5] ESp, j

0 1 1 0 1 0 1 2.22×10−16

0.1 1.10517 1.10516 1.04×10−6 1.10515 1.29×10−5 1.10518 1.00×10−5

0.2 1.22140 1.22140 6.87×10−7 1.22141 1.29×10−5 1.22137 3.39×10−5

0.3 1.34985 1.34985 1.36×10−6 1.34987 1.72×10−5 1.34979 6.92×10−5

0.4 1.49182 1.49183 5.76×10−6 1.49183 1.51×10−5 1.49171 1.14×10−4

0.5 1.64872 1.64876 4.16×10−5 1.64878 6.53×10−5 1.64855 1.16×10−4

0.6 1.82211 1.82217 5.47×10−5 1.82216 4.30×10−5 1.82189 2.30×10−4

0.7 2.01375 2.01386 1.16×10−4 2.01384 9.29×10−5 2.01345 3.30×10−4

0.8 2.22554 2.22573 1.97×10−4 2.22564 1.05×10−4 2.22515 3.28×10−4

0.9 2.45960 2.45990 3.01×10−4 2.45971 1.08×10−4 2.45909 5.15×10−4

1 2.71828 2.71872 4.39×10−4 2.71849 2.13×10−4 2.71773 5.51×10−4

The results from Table 5 shows that our methods, based on quadratic QI, give very good approximations
similar to those obtained in [5] by using cubic B-splines.
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6 Conclusions

In this paper, we have proposed collocation and Kantorovich methods based on the QI Qd to solve the
Fredholm linear integro-differential equations. The theorems on the convergence and error estimates
of the methods have been stated and proved. Some numerical examples are provided to illustrate the
efficiency and effectiveness of the proposed approach.
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