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Abstract. Orthogonal neural networks (ONNs) are some powerful types of the neural networks in the
modeling of non-linearity. They are constructed by the usage of orthogonal functions sets. Piecewise
continuous orthogonal functions (PCOFs) are some important classes of orthogonal functions. In this
work, based on a set of hyperbolic PCOFs, we propose the hyperbolic ONNs to identify the nonlinear
dynamic systems. We train the proposed neural models with the stochastic gradient descent learning
algorithm. Then, we prove the stability of this algorithm. Simulation results show the efficiencies of
proposed model.
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1 Introduction

Identification of nonlinear dynamic systems is an important and attractive field of control engineering. In
this context, the models are provided using the measurable input and output data of underlying systems.
To design the controllers for nonlinear dynamic systems, we need to know their models where achieving
the reliable models using the first principles is very hard [26]. Nevertheless, the measurement of their
input-output data is possible easily. By attention to the recent improvements in computational intelli-
gence, there is an increasing interest to develop the new methodologies for system identification based
on these approaches. Artificial neural networks (ANNSs) are potent instruments in this context.

ANNSs are some computational structures that include many parameters, and they are trained with
some learning algorithms such that the neural structure can model the underlying system [17]. ANNs are
universal approximators, and they have an inherent potential for parallel computations. They have been
used for different purposes, such as classification, prediction, and system identification.
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In recent decades, many efforts have been made to benefit the outstanding properties of neural net-
works in the identification and control of nonlinear systems. In 1989, Chen et al. [9] used neural networks
for system identification. Narendra and Parthasarathy [25] utilized neural networks to identify the non-
linear systems. Abdollahi et al. [1] proposed some stable algorithms to identify the nonlinear systems
with neural networks. Yu [33] designed the discrete-time recurrent neural networks with stable learning
algorithms to identify the nonlinear systems. Ahmadi et al. [2-5] utilized rough-neural networks with
stable Lyapunov-based and stochastic gradient-based learning algorithms to identify the different types
of nonlinear systems. Sahoo and Chakraverty [30] used the functional link neural networks to solve the
structural system identification problems. Forgione and Piga [14] employed the neural networks to iden-
tify the continuous-time nonlinear systems. Tavoosi et al. [31] published a review on the type-2 fuzzy
neural identifiers.

Some important types of neural networks are the orthogonal neural networks (ONNs). They are con-
structed based on orthogonal functions (OFs) sets. OFs are some exiting and valuable sets in function
spaces with an elegant and robust mathematical theory. They have a remarkable ability in function ap-
proximation. However, most of the OFs that have been used in designing neural networks are orthogonal
polynomials.

Piecewise continuous OFs (PCOFs) are essential classes of OFs in the literature. Datta and Mohan
[10] described the orthogonal functions and their applications in systems and control. Babolian and
Salimi Shamloo [6] applied the piecewise constant orthogonal functions for the numerical solution of
Volterra integral and integro-differential equations.

The set of block pulse functions (BPFs) is a well-known set of OFs [13]. Using BPFs, some other sets
of OFs have been proposed, such as triangular functions [1 1], hybrid functions [13] and sinusoidal basis
functions [32]. Some of the OFs have been used for the analysis of nonlinear systems [12, 16]. Besides,
some of them have been used for system identification [13]. Heydari and Razzaghi [15] proposed the
piecewise Chebyshev cardinal functions to solve the constrained fractional optimal control problems.
Recently, based on BPFs, a set of sinusoidal PCOFs has been introduced [32].

Orthogonal neural networks (ONNs) are some consequential types of neural networks in the mod-
eling of non-linearity. They are constructed by the usage of orthogonal functions sets [35]. They have
simple structures, and due to the existence of a robust mathematical theory for the approximation capa-
bilities of OFs, their performances in system identification are outstanding. In the last years, Yang and
Tseng [35] used the Legendre ONNSs for function approximation. Lee and Jeng [22] used the ONN with
Chebyshev polynomial basis function for function approximations. Purwar et al. [28] used the ONNs
with the Chebyshev polynomials as the orthogonal basis for system identification. Kumar et al. [21]
have been compared the different types of ONNs for system identification. Vukovic et al. [34] gave a
comprehensive experimental evaluation of orthogonal polynomials in the ONNSs.

Training the neural networks is a fundamental issue in their applications. Some of the well-known
learning algorithms are the standard gradient-based algorithms. Sometimes, these algorithms do not con-
verge to the global minimum of the cost function. Recently, to avoid the deficiencies of these algorithms,
some stable learning algorithms have been proposed by the authors. Yu [33] developed some stable
learning algorithms for discrete-time recurrent neural networks to identify nonlinear systems. Man et
al. [23] proposed a Lyapunov-based learning algorithm for multilayer perceptron. Janakiraman et al. [20]
suggested a Lyapunov-based learning algorithm for extreme learning machines. Ahmadi et al. [2, 3, 5]
proposed some Lyapunove-based learning algorithm for rough-neural identifiers.

Besides, some works have been published about the usage of stochastic gradient descent (SGD)



Stochastic gradient-based hyperbolic orthogonal neural networks 531

learning algorithms for neural networks. SGD is a robust algorithm with frequent application in machine
learning. In SGD, the sampled data are arbitrarily presented to the model one by one, and the parameters
are updated using the gradient of the cost function for each sample. For the first time, this algorithm
is introduced by Robbins and Monro [29]. For large datasets, SGD is faster and more reliable than the
standard gradient descent, and due to its stochastic behavior, usually, it achieves the global minimum of
the cost function [7, 8]. Recently, Janakiraman et al. [19] utilized the SGD to train the extreme learning
machines in the online training of advanced combustion engines. Netrapalli reviewed the variants of
SGD in machine learning [27].

Recently, Ahmadi and Teshnehlab [4] utilized the rough-neural networks (R-NNs) for to identify the
cement rotary kiln (CRK). R-NNs are some extensions of multilayer perceptron designed based on rough
set theory to deal with the uncertainties in neural networks. In [4], the R-NNs are trained by the SGD
learning algorithm. In the present work, based on a complementary pair of PCOF sets, a new orthogonal
neural network is proposed for the identification of nonlinear systems. This neural network is inherently
different from R-NNs in [4]. To train the proposed model, the SGD algorithm is employed due to its
specific properties, as mentioned above.

PCOFs have good properties in function approximations. In the approximation of nonlinear function
f(¢) with OFs, according to the related formula, we need to compute the coefficients from the integration
of f, wherein most of the applications, it is unknown [35]. Hence, it is necessary to use the models that
their formulations can not depend on unknown functions. As mentioned above, ANNs have a significant
role in this context. The capabilities of ANNSs in nonlinear system identification are apparent. This work
tries to introduce a new ONN based on some families of PCOFs to identify the nonlinear systems. On
the basis of hyperbolic functions, we introduce a new set of PCOFs and utilize it to design the hyperbolic
ONNs (HONNs). We apply the proposed ONNS to identify the nonlinear dynamic systems where their
parameters are adjusted with a stable SGD algorithm.

We can summarize the innovations of this work as follow:

e On the basis of hyperbolic functions, we introduce a new set of PCOFs.

e Using the introduced set of PCOFs, we propose the HONNs, and we use them to identify the
nonlinear dynamic systems.

e We train the proposed neural structures using a SGD learning algorithm, and prove its stability.

We continue the paper as follows. In Section 2, we introduce the hyperbolic PCOFs. We propose
the HONNS in the Section 3. Section 4 describes the SGD learning algorithm and its stability analysis
proposed for HONNs. System identification of nonlinear systems with the proposed method and their
simulations are presented in Section 5. We draw the conclusion in Section 6.

2 Hyperbolic Piecewise Continuous Orthogonal Functions

In the literature, some sets of PCOFs have been introduced such as block pulse functions, triangular
orthogonal functions [1 1], and sinusoidal PCOFs [32]. Here, we introduce the hyperbolic PCOFs (HP-
COFs) and consider some of their properties. We define a set of HPCOFs with m members on the interval
[0,T) as follows:

i+1)T

(
< T (1)

m (o T iT
Hl,'(l‘) :{ SOSh (ﬁ(t lm))’ 8;t
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and

(i+1)T
m (2)

H2i(l)={ sinh (2% (r —iL)), <

T <
o S
0, ow.,
fori=0,1,2,...,m— 1. We introduce the following vectors of HPOFs for each 7 € [0,7):

(t),H1((t),...,Hl, ()],
(t),H2(t),...,H2, ()],
H(t) = [HI(r), H2(1)]".

For the orthogonality of the components of H1(z), it is necessary that [11]:

constant, p=gq,

T
H1,(t)H1,(t)dt =
[ o oa={ & P
Due to the mutually disjointness of these functions, we have
H1,(t)H1,(t)=0 forp+#gq.

Therefore,
T
/ H1,(t)H1,(t)dt =0, for p#q.
0

For p = g, we have

(p+1)h 5 (p+1)h 1 2
/ [H1, () dt = / cosh | —(t—ph) ) ) di
ph ph 2h

1
= Zh (e— e ' +2) (constant),

T
JRCORT

where 4 = T /m. Similar to this discussion, the orthogonality of the components of H2(z) can be proved.
Also, we have
H1,(t)H24(t) =0 for p #gq.

Therefore,

T
/ H1,(t)H2,(t)dt =0 for p # q.
0

For p = g, we have

[ ngomgoa = [ om0

_ /pipﬂ <cosh <21h(t —ph))> (sinh (Zlh(z —ph)>> dt

1
= Zh (e+e ' —2) (constant).

(p+1)h
Vi

Therefore, the orthogonality of HPCOFs is proved.
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Let f(¢) be a square Lebesgue integrable function. Then, f can be expanded into a HPCOF series:

m—1 m—1
=Y H1;(t)+ Y diH2;(t) = C"H1(t) + D"H2(1)], A3)
Pard =
where C = [c1,¢2,...,Cm—1], D=[d1,d>,...,dy_1], and the coefficients ¢; and d;, i = 0,1,...,m— 1, are
(i+1)h 1 r+Dh
/ dr, di= [ fOH (0, 4)
“h h Jin

where h =T /m.

In (3), the function f is supposed to be single-variable. For the approximation of multi-variable
functions, by integrating the single-variable orthogonal functions (for example, multiplication of them),
we can generate a set of multi-variable orthogonal functions [35].

Remark 1. In (4), to compute the parameters c¢; and d;, it is necessary to know the function f where
in the system identification, the function f is unknown. In this work, the proposed neural networks can
model the unknown nonlinear dynamic systems where their parameters are trained with a stable learning
algorithm.

3 Hyperbolic Orthogonal Neural Network (HONN)

In this section, the structure of HONN is introduced. Let X = [x1,x2,...,%,)7, and ¥ = [y1,y2,...,y,]"
are the input and output vector of HONN, respectively. Further, let also H1;(¢) and H2;(t) for i =
0,1,2,...,m— 1 be the i-th component of H1(¢), and H2(¢), respectively. In addition, suppose that
H1;(X) = [H1;(x1),H1;(x2),...,Hl;(x,)]", i=0,1,2,...,m—1,
H2:(X) = [H2:(x1),H2i(x2),...,H2:(x,)]", i=0,1,2,....,m—1,
Wl;,i=0,1,2,...,m—1is a g x n matrix of weights between the nodes of H1;(X) and outputs, and

W2;,i=0,1,2,...,m—1is a g x n matrix of weights between the nodes of H2;(X) and outputs. Then,
we have

m—1 m—1
Y=Y WLH(X)+ ) W2H2(X)=WIH1(X)+W2H2(X),
i=0 i=0

where
Wl = [Wlo,Wlp,...,Wlu 1],
W2 = [W20,W2i,...,W2_1],
HI(X) = [HIF(X),HI(X),...,HI"_ (x)]

= [Hlo(x1),Hlp(x2),...,Hlo(xy),Hly(x1),Hl{(x2),...,H1i(xy),
GH 1 (x1), Hlo 1 (x2), - H o (x0)]T
H2(X) = [H25(X),H2] (X),...,H2!_\(x)]"
= [H20(x1),H20(x2),...,H20(x),H21(x1),H21(x2),...,H21(xy),
G H2 1 (x1), H2 1 (x2), o H 2y ()]
Figure 1 shows the structure of HONN.
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Figure 1: The structure of hyperbolic orthogonal neural network.

4 Stochastic Gradient Descent Learning Algorithm

In this Section, we propose an SGD learning algorithm to train the HONN. SGD is a powerful learning
algorithm with frequently applications in machine learning. For large datasets, SGD is faster and more
reliable than the standard gradient descent, and due to its stochastic behavior, usually, it achieves the
global minimum of the cost function [7, 8]. Recently, SGD has been used to train the extreme learning
machines and the R-NNs [4, 19].

Consider the input-output dataset { (X (k),Y (k)), i =1,2,...,N}, where they are presented to HONN

one after the other and randomly. Let Y (k) be the model response to the input X (k) and E (k) =Y (k) —
Y (k) be the model error. Here, the cost function is defined as follows:
N 1 N
JW1,W2) = min) J(W1(k),W2(k)) = min 3 Y IE®R)? ®)
k=1 k=1

Therefore, we have

~

TR = JW 1), W2(R) = SIER)IP = Y (k) P ()P

|Y (k) — W1(k)H1(k) — W2(k)H2(k) |

(Y (k) = W1(k)H1(k) — W2(k)H2(k))T (¥ (k) — W1 (k)H1(k) — W2 (k)H2(K))

— N =N =

= EY(k)Ty(k) —Y(K)"W1(k)H1(k) — Y (k)T W2(k)H2(k) + %Hl(k)Wl (k)"W1(k)H1(k)

+HI1(K)W 1 (k)" W2(k)H2(k) + %HZ(k)WZ(k)TWZ(k)HZ(k) (6)

where H1(k) = H1(X (k)) and H2(k) = H2(X (k)).



Stochastic gradient-based hyperbolic orthogonal neural networks 535

Remark 2. Suppose that A =Y (k)T and B =W 1(k)H1(k), then, we have
Y (k)" W1(k)HI (k) = A1 xgBgx1 = B'AT = (W1(k)HI (k))"Y (k).
We used this relation in (6).

To derive the SGD learning algorithm, the following relations are required:

(k)
IWI(k) (=Y (k)HL(k)" + W1 (k)HL(k)H1(k)" +W2(k)H2(k)H1(k)")

= (=Y (k) +W1(k)H1(k) + W2(k)H2(k)) H1 (k)"

= —E(k)H1(k)", o
aavgf,i) — (—Y(H2(K)T + W2(k)H2(k)H2(k) +W1(k)H1(k)H2(k)")

= (=Y (k) +W2(k)H2(k) + W1(k)H1(k))H2(k)"
= —E(k)H2(k)", ®

From the Equations (7) and (8), we can conclude that

AW1(k) = —TE(k)H1(k)" )
AW2(k) = —TLE(k)H2(k)T (10)

where the matrices 'y and I', are the learning gains. In this work, we suppose that I'; and I, are positive
definite matrices.

Suppose that HONN using the ideal parameters W1, and W2, can model the actual output Y (k) as
follows:

Y (k) = W1L,H1(k) + W2,H2(k) + & (k).

The ideal parameters W1, and W2, are unknown, and therefore, they must be approximated. Suppose
that W1(k) and W2(k) are approximations for W1, and W2,, respectively. Therefore the output of

~

HONN Y can be written as
Y (k) = W1(k)HL(k) +W2(k)H2(k). (11)

Then we may compute the model error as follows:

~

E(k) = Y(k)—Y(k)=WIH1(k)+W2,H2(k)+¢&(k) — W1(k)H1(k) — W2(k)H2(k)
= WI1(k)H1(k) +W2(k)H2(k) + &(k), (12)

where W1 (k) = W1, —W1(k) and W2(k) = W2, —W2(k). The following theorem investigate the stabil-
ity analysis of the proposed method.
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Theorem 1. Suppose that HONN is trained by the learning laws (9) and (10), and

2E(k)"e(k) < 2 B)|E(K)|? (13)
where I'y and 1’y are positive definite matrices and

ﬁ - }Lmax(rl)xl +)Lmax<r2)’(2 (14)
K = m]?x||H1(k)||2, K :m]?x||H2(k)||2 (15)
Then, the error E(k) converges to zero as k tends to infinity.
Proof. Consider the following Lyapunov function
vk) = tr (Wl(k)Tr;1W1(k)) St (Wz(k)Trglvaz(k))
where W1(k) = W1, —W1(k), W2(k) = W2, — W2(k). At first, we notice that
tr (WL.THF;‘V%M) " (Wl(k)Tr—lﬁfl(k))
— (( 1(k) + AW (k)T (W ( )+AW1(k))> —tr <V~Vl(k)TFf1W1(k)>
- ( KITWk)) +tr Trl—lﬁfl(k))
Hr (Wl( )Tr-lAW1(k)) St (AWl(k)TFI‘IAWI(k)> —tr (Wl(k)Trl—lWl(k))
— 2u (Wl(k)Tr;IAm(k)) Fr (AVTfl(k)TrflAﬁfl(k)) (16)
Similar to (16), the other terms of Av(k) can be simplified. Therefore, we have
Av(k) = vir1 —v(k)
= 2t (W1(0)T AW (k) ) + 20 (W2(0) T3 AW2(K)
ir (AW1(K) T AW1(8) ) + (AVsz(k)TrglAWz(k))
- —2tr( 1(k)TE (k)H1(k) ) 2r (W2(k)TE(k)H2(k)T)
+tr (H1(k)E (k) ' T E(K)HL(k)") + tr (H2(k)E (k) TLE (k)H2(k)")
- —2tr( 1(k)THL(K)E (k)T —|—W2(k)TH2(k)E(k)T>
+E (k)T E(k)HL1(k)TH1(k) + E (k) TLE (k)H2(k)"H2(k)
= =2 (E()E(K)") +2tr (e()E(K)") + E (k)" T1E (k) [HL(K)||>
+E (k) T2E (k) [ H2(k) |2
2|[E(K)|[* +2E (k)" € (k) + Amax (T1) | E (k)| [FHL(K) || + Amax (T2) [ E (k) | [H2(K) ||

)
=2|[E(k)[* +2E (k)" (k) + (Amax(T1) K1 + Amax (T2)2) || E (k) ||
(B =2)IIE(K)|* +2E (k)" (k). (17)

IAIA
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According to the equation (13), we have: Av(k) < 0. As a result, the sequence (v(k)) is decreasing and
bounded below. Therefore, (v(k)) is convergent: lim;_,. v(k) = ve < 0. According to the equation (17),
we have

0< (2-B) i ||E(k)||* -2 iE(k)Te(k) = - iAv(k) = V) — Veo < 0. (18)
k=0 k=0 k=0

Thus, (E(k)) € [? and according to the Barbalat’s lemma in discrete case, we have [18]: limy_.. E(k) =0,
which completes the proof. O

Remark 3. According to the equations (1) and (2), fort € [ih, (i+1)h), we have 0 < 5 (t —ih) < 3, and
then,

1 < cosh (5 (t —ih)) < cosh (1) ~ 1.13,
0 < sinh (5 (r — ih)) < sinh (}) ~0.52.

Therefore, for i =0,1,2,....,m—1, we have H1;(t) < 1.13 and H2; < 0.52. As a result, x| and K, are
some constant numbers. By attention to the positive definiteness of T'1 and Ty, smaller values of B result
in bigger values of 2 — B, which increases the probability of meeting the assumption (13). We can tune
the learning rate matrices Iy and T, for better model training. To have small values for B, we can choose
the learning rates matrices with small eigenvalues.

Remark 4. Recently, some works have been published in the context of identifying nonlinear systems
using the neural networks where the Lyapunov stability theory (LST) is used to prove the error con-

vergence [2-5, 19,20,23,33]. In [33], the assumptions for stability proof contain the identification er-
ror, learning rates, activation functions, and their derivatives, and sometimes, the network parameters.
In [2, 3,5, 20], the assumptions for stability proof contain the unmodeled dynamics, the identification

error, and some hyper-parameters of the algorithms where learning rates are not within them. In these
works, for stability proof of the learning algorithms, the terms containing second order differences of
parameters are ignored. This deficiency decreases the strength of stability proof. In [19], the extreme
learning machines are trained with SGD-based learning algorithm. For the stability proof of this al-
gorithm, the assumption is 0 < Amax(Isg) < 2, where U'sg is the learning rates matrices. It must be
mentioned that in this work, the computations are done in the continuous-time framework that simplifies
the justifications. In the present work, similar to the recent work [4], the assumption of stability proof is
a combination of works mentioned above. The assumption (13) contains the unmodeled dynamics, the
identification error, and the learning rates matrices.

5 Syatem identification using HONN

In this Section, some benchmark nonlinear systems are identified with the proposed neural model HONN.
To show the efficiency of proposed method, we compare it with sinusoidal neural network (SNN). For
the implementation of proposed models, we consider the following form of discrete dynamic nonlinear
systems:

Z(k) = f(Z(k—=1),U(k—1)), (19)
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where U (k) and Z(k) are the vectors of system inputs and states at the time index k, respectively. Assume
that this system is controllable and the Lipschitz’s condition is satisfied for f.

To identify (19), the HONN is utilized in NARX (nonlinear autoregressive with exogenous input)
configuration. In this configuration, the system inputs and outputs are fed to the model. Assume that the
system (19) is completely controllable and the Lipschitzs condition is satisfied for the unknown function
f- To identify (19), the proposed models are utilized in NARX (nonlinear autoregressive with exogenous
input) configuration [26]. In this configuration, the system inputs and outputs are fed to the model. We
can write the system (19) as Z(k) = AZ(k— 1)+ g(Z(k—1); U(k— 1)) where the matrix A is Hurwitz
and the function g is the nonlinear part of the system (19). Then, according to the equation (11), we
approximate the function g with the proposed neural models. To implement the proposed model HONN,
in the equations (1) and (2), we suppose that T = 1. In the following examples, we have & = 1/m where
m shows the number of orthogonal functions in H1 and H2. Also, n; denotes the number of hidden
neurons in SNN.

5.1 A single input-single output nonlinear system

Consider the following discrete dynamic nonlinear system [25]:

z2(k)z(k—1)(z(k) +2.5)
1+z(k)?z(k—1)?

2(k+1) = +u(k) (20)

The identification of (20) is done by HONN and sinusoidal neural network (SNN) [3]). The input signal
is chosen as u(k) = sin(¥%). The initial values of trainable parameters in SNN are uniformly distributed
pseudorandom numbers between -2 and 2. The initial values of trainable parameters in HONN are
uniformly distributed pseudorandom numbers between 0.05 and 0.05. The input vector of models is
x=[u(k—1),u(k—2),z(k—1),z2(k—2),z(k—3),1]7.

The algorithm design parameters for SNN are chosen as
A=0.1, n, =10, 20, 30, 40, 50, I'j =1 =0.051,,xx,,

where I'; and I'; are the learning rates matrices. The algorithm design parameters for HONN are chosen
as

A=0.1, h=0.25,02,0.15, 0.1, 0.08, 0.05, Ty =T =0.11,, ..,

where I'} and I, are the learning rates matrices.

Figures 2 and 3 show the actual states, the estimated states, and the errors in the testing of SNN with
40 hidden neurons and HONN with 2 = 0.2 in the identification of (20), respectively.

From the Table 1 and the Figures 2 and 3, we can conclude that the performance of HONN in the
identification of (20) is better than SNN. According to Table 1, decreasing the parameter & generally
decreases the identification error wherein the SNN, sometimes, increasing the number of hidden neurons
does not result in error decreasing.
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Table 1: Performances comparison of SNN and HONN models in the identification of (20).

Model n, h Parameters Train MSE  Test MSE
SNN 10 - 70 1.0399e-02  1.7896e-03
SNN 20 - 140 4.4874e-02 7.3730e-04
SNN 30 - 210 6.7156e-02 2.5798e-04
SNN 40 - 280 1.2087e-01 1.5307e-04
SNN 50 - 350 3.6409e-01 1.5869¢-04
HONN - 0.25 41 9.3136e-04 1.2567e-04
HONN - 02 51 3.3819e-04 1.9484e-05
HONN - 0.15 71 3.8505e-04 2.4753e-06
HONN - 0.1 101 3.1583e-04 4.9561e-07
HONN - 0.08 131 3.3863e-04 2.0623e-08
HONN - 0.05 201 3.2136e-04 1.0487e-09
1 0.8
0.6
0.5 0.4
Actual 0.2 Actual
Estimated Estimated
0 ! ! 0
900 950 1000 985 990 995
0.05
»005 1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900
Iterations

1000

Figure 2: The actual states, the estimated states and the errors in the testing of SNN with 40 hidden
neurons, in the identification of (20).
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Figure 3: The actual states, the estimated states and the errors in testing of HONN with 2 = 0.2 (51
orthogonal functions), in the identification of system (20).

5.2 A multiple input-multiple output nonlinear system

Consider the following discrete dynamic nonlinear system [25]:

1
Zk+1) = il@gz;)) +ul (k) .
2 _ Pk 2 LY — 2200 — @D
Z“(k+1) = TEEE U (k), z'(0)=2z7(0)=0.

The identification of (21) is done by HONN and SNN. The input signal is chosen as

u(k) = [sin(%), cos(%)]T.

The initial values of trainable parameters in SNN are uniformly distributed pseudorandom numbers be-
tween -2 and 2. The initial values of trainable parameters in HONN are uniformly distributed pseudo-
random numbers between 0.05 and 0.05. The input vector of models is x = [u' (k—1),u?(k— 1),z (k —
1),z2(k—1),1]T.

The algorithm design parameters for SNN are chosen as

A=0.1, n, =10, 20, 30, 40, 50, 60, T} =T = 0.05I,, s,

where '] and I'; are the learning rates matrices. The algorithm design parameters for HONN are chosen
as

A=0.1, h=0.2,0.15, 0.1, 0.08, 0.05, Ty =, = 0.1, s, , (22)
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Table 2: Performances comparison of SNN and HONN models in the identification of (21).

Model n, h Parameters Train MSE  Test MSE
SNN 10 - 70 8.0354e-03 1.0431e-03
SNN 20 - 140 1.4402e-02 5.5962e-04
SNN 30 - 210 2.0616e-02 6.5447¢-04
SNN 40 - 280 5.7140e-02 6.1418e-04
SNN 50 - 350 5.8536e-02 5.6590e-04
SNN 60 - 420 1.5363e-01 4.8967e-03
HONN - 02 41 2.7960e-03 6.2670e-04
HONN - 0.15 57 8.2662¢-04  1.6329¢-05
HONN - 0.1 81 5.9234e-04 3.8162e-08
HONN - 0.08 105 5.9180e-04 3.6184e-11
HONN - 0.05 161 5.9857e-04 6.4671e-12
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Figure 4: The actual states, the estimated states, and the errors in testing of SNN with 35 hidden neurons,

in the identification of (21).
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Figure 5: The Actual states, the estimated states, and the errors in testing of HONN with 4 = 0.15, in the
identification of system (21).

where I'] and I'; are the learning rates matrices.

Figures 4 and 5 show the actual states, the estimated states, and the errors in the testing of SNN with
35 hidden neurons and HONN with 42 = 0.15, in the identification of (21), respectively.

From Table 2 and the Figures 4 and 5, we can conclude that in the presence of noise, the performance
of HONN in the identification of (21) is better than SNN. According to Table 2, decreasing the parameter
h generally decreases the identification error wherein the SNN, sometimes, increasing the number of
hidden neurons does not result in error decreasing.

5.3 Discrete-Time Narendra-Li Benchmark System

Consider the discrete-time equations of the Narendra-Li system as follow [24]:

ak+1) = (lgf’g{)ﬁp(l)) sin(z2(k)),
nk+1) = 2k k k)exp (— 2kt 23
2 = 22(k)cos(z2(k)) +z1 (k) exp 02 (23)
n u(k)?
14u(k)>+p(3) cos(z1 (k) +22(k)) ?
(k) — Zl(k) + Zz(k) (24)
Y Trp@)sin(z:(R) ' THp(3)sin(zi (k)

where z; (k) and z; (k) are the states, u(k) is the input signal, y(k) is the output signal and p is a parameter
vector with 5 elements. Here, we suppose that p = [1.05, 7, 0.52, 0.52, 0.48].

The identification of (24) is done by HONN and SNN. The input signal is chosen as u(k) = sin(32) +
sin(zz—’gt). The initial values of trainable parameters in SNN are uniformly distributed pseudorandom

numbers between -1 and 1. The initial values of trainable parameters in HONN are uniformly distributed
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pseudorandom numbers between 0.05 and 0.05. The input vector of models is x = [u(k — 1),u(k —
2)7Z(k_ 1),Z(k—2),2(k— 3)’ 1]T
The algorithm design parameters for SNN are chosen as

A=0.1, n, =10, 20, 30, 40, 50, 60, T} =T = 0.011,, .,

where I'; and I'; denote the learning rates. The algorithm design parameters for SHONN and HONN are
chosen as

A=0.1, h=0.2,0.15, 0.1, 0.085, 0.05, Ty =, = 0.1, x,,

where I'} and I, are the learning rates matrices.

Table 3: Performances comparison of SNN and HONN models in the identification of (24).

Model n, h Parameters Train MSE Test MSE

SNN 10 - 70 1.9062e-02 8.8108e-03
SNN 20 - 140 2.1483e-02 6.4271e-03
SNN 30 - 210 1.4921e-02 4.6987e-03
SNN 40 - 280 1.6315e-02 1.7501e-03
SNN 50 - 350 1.4665e-02 5.2370e-03
SNN 60 - 420 1.6637e-02 4.7391e-03
HONN - 02 51 3.9229¢-03 2.8217e-03
HONN - 015 71 3.4466e-03 2.9197e-03
HONN - 0.1 101 1.7831e-03 2.9128e-04
HONN - 0.08 131 1.4785e-03  3.6393e-04
HONN - 0.05 201 1.1905e-03  7.9203e-05

Figures 6 and 7 show the actual states, the estimated states, and the errors in the testing of SNN with
40 hidden neurons and HONN with 4 = 0.05, in the identification of (24), respectively.

From Table 3, and Figures 6 and 7, we can conclude that the performance of HONN in the identifica-
tion of (24) is better than SNN. According to Table 3, decreasing the parameter /& generally decreases the
identification error wherein SNN, sometimes, increasing the number of hidden neurons does not result
in error decreasing.

6 Conclusion

This work proposes a new orthogonal neural identifier using a set of hyperbolic piecewise continuous or-
thogonal functions. We train the proposed neural structure by a stochastic gradient descent algorithm, and
prove its stability. The proposed methodology is accurate, and can cope with the problems of overfitting
and trapping in local minima in traditional neural networks. Simulation results show the efficiencies of
this approach. Future works focus on using this model for different problems in engineering and applied
mathematics, such as system analysis, optimal control problems, and designing neural controllers.
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Figure 6: The actual states, the estimated states, and the errors in the testing of SNN with 40 hidden
neurons, in the identification of (24).
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Figure 7: The actual states, the estimated states, and the errors in the testing of HONN with & = 0.05, in
the identification of system (24).
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