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Abstract.  In this article, a first-order iterative Lasota—Wazewska model with a nonlinear delayed
harvesting term is discussed. Some sufficient conditions are derived for proving the existence, uniqueness
and continuous dependence on parameters of positive periodic solutions with the help of Krasnoselskii’s
and Banach fixed point theorems along with the Green’s functions method. Besides, at the end of this
work, three examples are provided to show the accuracy of the conditions of our theoretical findings
which are completely innovative and complementary to some earlier publications in the literature.
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1 Introduction

Throughout more than 60 years of the mathematical modeling of problems arising in hematology, a quite
large amount of hematopoiesis models have been investigated by many authors. To our knowledge, the
sixties of the past century can be regarded as a watershed in the history of the modeling of blood cell
kinetics but the first timid attempts were focused on dealing with quite complex models (see [8, 16, 1 7]).
The end of the following decade witnessed two turning points, the first work carried out by Wazewska
and Lasota [19] in 1976 and the other done by Mackey and Glass [14] in the following year.

Let us cite for instance what we consider as remarkable contributions to this field that have been
interested in studying the survival of red blood cells in the bone marrow of an animal.

In the end of the seventies of the past century and in one of the earliest papers in this topic which
was and still is one of the most important milestones in the history of mathematical modeling of erythro-
poiesis, Wazewska-Czyzewska and Lasota [19] introduced, the following delayed differential equation

*Corresponding author.
Received: 18 January 2022 / Revised: 26 February 2022/ Accepted: 1 May 2022
DOI: 10.22124/JMM.2022.21577.1892

(© 2022 University of Guilan http://jmm.guilan.ac.ir


http://jmm.guilan.ac.ir

516 M. Khemis, A. Bouakkaz, R. Khemis

with one constant delay:
X (t) = —ax (t) + be PU=7),

where they were interested in the problem of the existence of periodic solutions to this erythropoiesis
model which was aimed at modelling and getting better understanding of the survival of red blood cells in
an animal. In medical terms x () stands for the density of mature red blood cells in the blood circulation
at time ¢, a > 0 is the death rate of red blood cells, the positive constants ¥ and b are related to the
production of red-blood cells per unit time and the time delay required to produce a mature red blood
cell for release in circulating bloodstreams is denoted by the positive constant 7.

Thirteen years later, in 1989, Kulenovic et al. [9] investigated the positive equilibrium of the follow-
ing generalization of the Wazewska-Lasota model:

m
¥ (1) = —ax(t) + X"bieﬂ@(tf‘m')7 >0, m>1.

i=1

In [10], the authors applied the continuation theorem of Gaines and Mawhin to establish the existence
and global attractivity of positive periodic solutions of the below Lasota-Wazewska model with time-
varying parameters and delay.

X (1) = —a(t)x(t) +b (1) e VH=0),

While the authors in [1 1] used the fixed point theory for establishing the existence and global attrac-
tivity of the unique positive periodic solution of the Lasota-Wazewska model with time-varying param-
eters and multiple variable delays:

X (t)=—a(t)x(t)+ Z b; (t) e Mxe=w(0)

i=1

The harvesting of blood cells plays a crucial role in the blood cell population dynamics since it is
more than merely a reduction of blood cells by cupping therapy, blood sampling or a blood donation, to
name a few but it is of prime interest to gain insight into the dynamical properties of the problem. For
more details of the impact of the harvesting strategy in the population dynamics and the management of
biological renewable see [3, 18] and references therein. Concerning, the Lasota-Wazewska models with
harvesting term, the interested reader can consult the paper [5] where the authors studied the following
delay Lasota-Wazewska model with a discontinuous harvesting term:

X (t)=—a(t)x(t)+ f b; (t) e MOX=T0) _ (1) H (1),

i=1

where H is a discontinuous function.

Motivated by the above works and taking into account the effect of the harvesting strategy which can
exhibit many delayed reactions and retarded responses to stimuli, we set up a revisited Lasota-Wazewska
model with an iterative production term and a nonlinear harvesting one that involves a constant delay as
follows:

X)) =—a)x(t)+bt)e ™0 (. x(t — 1)), (1)
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where £ € [0,w], x(0) =x(w), a,b € C([0,w], (0,4)), h € C([0,w] x R, (0,+e0)) are w-periodic func-
tions with respect to the time variable, 7 is a positive constant, x2/ (¢) is the second iterate of x (r), A is
the harvesting term and 7 > 0 is the harvest delay.

It is interesting to point here that x?! () results from a delay 7, (t,x(¢)) = t — x(t) depending upon
both the time and the density of mature red blood cells which describes the time duration between the di-
vision of hematopoietic stem cells (HSC) residing the bone marrow niche and their maturation for release
in circulating bloodstream. This dependence on the density of mature red blood cells can be explained by
the fact that some growth factors and hormones control the production and maturation of blood cells by
playing an activator or inhibitor role as needed. Indeed, when the density of mature erythrocytes is low,
the erythropoietin (EPO) produced by the kidneys with the aid of some other growth factors and some
hormones such as thyroxine, sex steroids and pituitary hormones stimulate and accelerate the red blood
cell division by increasing the synthesis of DNA, RNA, and hemoglobin in the cells and in the converse
case, the division will be suppressed and slowed down.

So far, Eq. (1) which is a first order iterative differential equation that can be regarded as a special
type of the class of time and state dependent delay differential equations, has not been investigated till
now.

Unfortunately, although iterative differential equations appear widely in many applications such as
models arising in epidemiology, biology and electrodynamics and although they have also fascinated
many authors and hence gained much momentum recently, publications that handle such equations are
still somewhat rare (see [1—4,06,7,12,13,15,20] and the references cited therein). Their unpopularity
is partly due to the fact that their iterative terms that involve compositions of the unknown function
with itself, may create some difficulties both when studying them and when applying the well-known
methods. This is what motivates us, in turn, to investigate this topic and contribute to make up for this
deficiency. Our idea here aims to diminish some of these difficulties by choosing an appropriate Banach
space and its subset on the one hand, and utilizing an attractive technique based on the fixed point theory,
some functional analysis tools as well as the Green’s functions method, on the other hand.

More precisely, the current work principally probes into the existence, uniqueness and continuous
dependence on parameters of positive periodic solutions for Eq. (1). To this end, we pursue the following
key steps:

Firstly, we construct a Banach space and a closed convex and bounded subset of it with a twofold
purpose: For biological realism, they should ensure the periodicity, positivity and boundedness of the
sought solution if there exists, and also they should help us to control the iterative terms.

Secondly, we convert our periodic boundary value problem into an equivalent integral equation for
transforming this problem into a fixed point one. So, fixed points of the obtained integral operator are
solutions to Eq. (1) and vice versa.

Finally, we focus on two main issues:

(i) the establishment of a set of sufficient criteria that guarantee the existence of at least one positive
periodic solution of Eq. (1) with the periodic boundary conditions by the aid of the Krasnoselskii’s
fixed point theorem and some properties of the obtained Green’s kernel in the second step. For this,
the integral operator needs to satisfy the requirements of the used fixed-point theorem and we need
especially to express it as a sum of two operators, one of them is completely continuous while the other
is a contraction.

(ii) the addition of some suitable conditions under which the contraction mapping principle can be
applied and hence the positive periodic solution of the given problem becomes unique as well as the
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reveal of the impact of the harvesting strategy on the solution and also we prove that small changes in
the harvesting term % or the production rate b lead to small variations of the obtained findings.

The basic frame of this manuscript is planned in four sections. In the next section, before proceeding
with the main part of this work, we introduce some assumptions and lemmas that play an important role
in establishing our main outcomes while the third section is devoted to presenting our main results on the
existence, uniqueness and continuous dependence of positive periodic solutions. In the fourth section,
three examples are exhibited to support the obtained results. Finally, we conclude the paper by a brief
conclusion.

2 Preliminaries
For ry,r1,L > 0, we consider the following closed, convex and bounded subset:
P, (ro,r1,L) ={x € Py, ro <x(t) <ry, |x(t2) —x(t1)| < L|t, — 11|, Vt1,6 € R},
of the Banach space of all w—periodic continuous functions
P, ={xe €[R,R), x(t+w) =x(t), Vt € R},
endowed with the norm

[l = sup|x(r)| = sup |x(z)[.

teR te0,w]

It follows from conditions ry < x(z) < ry and |x(#) — x(¢1)| < L|t, — 1| in the definition of P, (ro,r1,L)
that this subset is uniformly bounded and equicontinuous. So, the Arzela-Ascoli theorem guarantees the
compactness of P, (ro,ry,L).

For the sake of simplicity, we will adopt the following notations:

ay= sup a(t), bo= inf b(t),

1€[0,w] 1€[0,w]
by = sup b(t), hi= sup h(6,0),
re[0,w] 0€[0.w)
_ exp(=Jy'a(v)dv) _exp(fga(v)dv)

1

" exp(fa(av) =1 TN exp(fya(v)dv) — 10

It’s not hard to prove the following lemma through which we can transform our problem into an
equivalent integral equation.

Lemma 1. x € P, (ro,r,L)NE" (R,R) is a solution of Eq. (1) ifand only if x € P,, (ro,r1,L) is a solution
of the following integral equation:
t+w

o t+w
x(t) = G(t,0)b(0)e (9>d9—/ h(6,x(0—1))G(,0)d6, )

t

where
exp <ft9 a(v) dv)

G0 = o avyav)) -1
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Proof. Suppose that x € P, (rg,r1,L) N6 (R,R) is a solution of Eq. (1) then
[ (1) +a(t)x(t)] e e — [b (1) e PO _p(r,x(r — 1))| efoaav,
Hence
e 9 a(v)dv T Pawvyd —pl(
/ (X' (6)+a(6)x(6)] el dez/ el V[b(e)e 2O _h(0,x(6—1))|db.
t t

Thanks to the periodic properties, we get

x(t) (exp </tt+wa(v) dv) —exp </0ta(v) dv>>
— exp < [ ") dv) [exp ( /t ) dv) - 1] (1)

0
_ /,Hw [b(e)e—yxm(e) —h(6,x(0— r))] exp (/Oea(v) dv> de.

That is,

0 t
o tHw e) _ o] exp (fo a(v) dv) exp (— [pa(v)dv)
= [ OO —ho.510 -0 =

0
_ t+w i) _ o] exp(f, a(v)dv)
/z _b(G) ' h(6,x(6 T» exp(fy a(v)dv)—1
- /HW b(6)e ™ ®) _1(6,x(6 1)) G(1,0)d6.

do

do

Conversely, if we assume that x is a solution of the integral equation (2) in P, (ro,r1,L), then the differ-
entiation of Eq. (2) leads to the desired result. O

Remark 1. The Green’s kernel G (t,0) is bounded as follows:
0<A9<G(t,0) <Ay, 3)

and for all t,t; € [0,w] with t; < t, we have

t+w
/ ’G(Zz,@)—G(ﬁ,eﬂdG < Aywaq ‘lz—ll‘. @

151

Throughout this paper, we impose the following hypotheses which will be used in the sequel:
The function £ (¢,x) is globally Lipschitz with respect to the second variable x, i.e., there exists a
positive constant y such that

[ (2,x(2)) = h(t,y (1) < pl(e) =y (0)]- (5)
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We suppose further that the following estimates are satisfied:

WA1b1 S r, (6)
w (Aoboe™ "™ — (ury +h1)Ar) > ro, (7
A1 (24+way) (b1 +h1+ur) <L, (8)
and
wA U < 1. 9

Lemma 2. [20] Forall x,y € P, (ro,r1,L), we have ||x? —y@|| < (1+L)[lx—y]|.

Remark 2. From condition (5), we get

|h(6,x(1))| < ury+hy. (10)

In addition, by applying the mean value theorem to the function f(z) = exp(—Yz) over the interval
[x[z] (0) 2 (9)], we obtain

e 1P0) _ o=n(0) — _yp-7E(6) (xm () —y? (9)) ,
where { (0) is between x?) (0) and y! (0).
Since y> 0 and 0 < ro < ¢ (8) < r, then |e )| = ¢ 15(0) < 1 and
o 1(0) _ e—yym(e)‘ _ ‘_?,efyC(G) (xm (6) —yH (9)) ‘
= |—| ‘e—YC(O)‘ ‘X[Z] (6) —y (9)’
<7 (0) =y (0) .
According to Lemma 2, we get
—le)y  —pll(e)
O RO <y (141) x—yll, an

forall x,y € P, (ro,r1,L).

3 Main results

The main goal of this section is to prove the existence, uniqueness and structural stability of positive
periodic solutions to Eq. (1) by using an efficient technique based on Krasnoselskii’s and Banach fixed
point theorems as well as the Green’s functions method.

For achieving our target, we define an operator 7" that can be expressed as a sum of two operators 7}
and 75 as follows: T =Ty + T : P, (ro,r1,L) — P, where T1,T» : P, (ro,r1,L) — P,,

(Tix) ( / G(1,0)b(0)e g0, (12)
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and .
(Tox) (z):—/t h(6,x(0—1))G(1,0)d6. (13)
By virtue of the periodic properties, we conclude that operators 77 and 75 are well defined.
Lemma 3. Assume that conditions (6)-(8) hold, then
(Tix) + (Tay) € By (ro,r1, L),
forall x,y € P, (ro,r1,L).

Proof. Letx,y € P, (rg,r1,L), then

4w
(Tix) (1) + (Tay) ( / G(t.0)b(0)e Va6~ [ n(0.y(0 - )G (r.0)do
t
/Gt@ (6)e "0 gg.

From (3) and (6), we get
(Tix) () + (Toy) (1) < wA1b1 < 1.
According to (3), (7) and (10), we deduce that
(Tix) (1) + (Tay) (1) > wAgboe """ — (ry +hi) wA; > w [Agboe™ "™ — (ury +hi) Ar] > ro.

Consequently,
ro < (Thx) (1) + (Tay) (1) < 1, (14)

for all x,y € P, (ro,r1,L).
Now, let 1,7, € [0,w], then

[(Tix+Tay) (12) — (Tix+ Tay) (t1)| < [(Tix) (12) — (T1x) (t1)| + [(T2y) (t2) — (Toy) (t1)] -

We have

|(T1x) (22) — (Thx) (11) ] =

H+w 4w

G(1,0)b(8)e ™ O)gg —

131

e —yP)(o) e )
—|[ G(1,0)b(0)e 46 + G(1,0)b(0)e do
5]

131

G(tl,O)b(O)e_Vx[z]w)dG’

b+w 1 +w
+ [ G, 0)b(8) e Oag— [ G(n,0)b(0) e ()de‘

H+w I3l

So

_yl2l Lt+w 2]
(T1x) (12) — (Tix) (1 |</ G(t2,0)b(0)e <6)d6+/2 G(t,0)b(0)e " " do
t

1+w

t|+w 2]
+/ G(12,0)—G(11,0)|b(0)e ™ "db.
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By virtue of (3) and (4), we obtain

|(T1x) (12) — (Tlx) (l1)| < 2A:b; ’tz — ‘ + b1Away ’tz —t1’
=A1b; (2+wa1)|t2—t1\. (15)

On the other hand, we have

(Ty) (12) = (Toy) (1)] = [’2+Wh<e,y<e_T>>G<t2,e>d9_ /“*W

2 1

h(@,y(@—r))G(tl,G)dG‘

/,t] h(@,y(e—r))G(tz,G)dG—I—/ttl+wh(9,y(6—‘L'))G(tz,e)de

+ Twh(ejy(e —1)G(1,0)d6 ‘/tﬁwh(e’yw -oe, e)de‘ '
So
(29) )~ () 0] = [ 0(0,5(0 - )G (1,0)a0 + [ h(0.5(0 ~ )G (1, 0)a0

t1+w
+ [ 16(2,6)~G(1,0)[1(6,5 (6 7)) do.
n
Thanks to (3), (4) and (10), we arrive at

(Tay) (t2) — (T2y) (t1)| < 241 (ry +hy) [ — 1|+ (1 +hy) Ayway [t — |
:Al(ur1+h1)[2+wa1]\t2—t1|. (16)

According to (8), (15) and (16), we obtain
[(Tix+Toy) (12) — (Tix+ Toy) ()| < L2 — 1], (17)

for all x,y € P, (ro,r1,L) and 11,1, € [0,w].
Finally, it follows from (14) and (17) that (T1x) + (T2y) € Py (ro,r1,L). O

Lemma 4. Assume that the condition (9) holds. Then, T, is a contraction.

Proof. For all x,y € P, (ro,r1,L), we have

(00— W] < [ 6(,0)h(6,5(8 1)~ h(0,3(0 — )] de.
Taking into account (3) and the Lipschitz condition (5) we get
[Tox = Toy|| < wAp [lx— |- (18)
From (9) we infer that 75 is a contraction. O

Lemma 5. The mapping Ty is completely continuous on P,, (ro,r,L).
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Proof. Since P, (ro,r1,L) is a compact subset of P,, and since any continuous operator maps every com-
pact set into compact one, then to show that 77 is a compact operator it’s suffices to show that it is
continuous. For all x,y € P, (ro,r1,L), we have

-nlle)y  —nlle)
e —e

t+w
(B0 (0 =T 0= [ G(.6)b(6)

By virtue of the Green’s function property (3) and the estimate (11), we obtain
ITix — Thy|| < wA1byy (1+L) lx— I, (19)

and accordingly operator 77 is Lipschitz continuous and hence continuous. Therefore, 77 is continuous
and compact which means that it is a completely continuous operator. O

Now, we state and prove our first existence theorem.

Theorem 1. If the conditions (5)-(9) hold, then Eq. (1) has at least one positive periodic solution in
[)W(I"(),I"I,L).

Proof. In view of Lemmas 3-5 all requirements of the Krasnoselskii’s fixed point theorem are fulfilled,
so T =T + T> has at least one fixed point x € P, (rg,r1,L) such that T (x) = x, which means that x is a
positive periodic solution to equation (1). O

Next, we establish the existence and uniqueness of the positive periodic solution.

Theorem 2. If the conditions (5)-(9) and the following estimate:
wA (biry(1+L)+u) <1, (20)
hold, then Eq. (1) has one and only one positive periodic solution.

Proof. First, we notice that under the same conditions of Lemma 3 and by using the same technique as
that in its proof, we can prove that T’ maps P, (ro,r1,L) into itself.
Next, from (18) and (19) we get

ITx = Tyl| < wA; (bry(1+L) +p) [lx =y,

for all x,y € P, (ro,r1,L). It follows from (20) that T is a contraction mapping and thereby by virtue
of the contraction mapping principle, 7 has one and only one fixed point in P, (rg,r1,L), which is the
unique positive periodic solution of Eq. (1). O

Now, we prove that the unique solution depends continuously upon the harvesting term 4 and the
production rate b.

Theorem 3. Suppose that the conditions of Theorem 2 hold. Then, the unique solution of (1) depends
continuously on parameters b and h.
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Proof. Let x be the unique solution of Eq. (1), so x satisfies the integral equation (2), i.e.,

t+w (e t+w
x(t) = G(1,0)b(0)e ! >de—/ h(6,x(6—1))G(,0)d6,
t

t
and let X be a solution of the perturbed equation with small perturbations in the harvesting term and
the production rate which satisfy the requirements of Theorem 2. So, X satisfies the following integral

equation:
" t+w -~ (0 t+w __ "
x(t):/ G(1,0)5(0)e 7 <>de—/ 7(6,5(6—1))G(1,8)d6.
t t

where b and / are the perturbed parameters.
We have

x (1) =x(1)| < /tHWG(r, 0) ‘b(e)e’yx[z](") _z(g)ewue)‘d@
+ /t“fWG(;, 0) ‘h((—),x(G —17))—h(0,%(6— T))‘dg
< / 6o b(8)e ) —p (g) e O)
+5(0)e O _j(g) e O ’ 46
+ [0 |ne.x(0 ) -he.x(0-7)
+h(6.x(0 1)) ~h(6,7(6 - 1))|d6.

So
t+w
KO -FOI< [ b(6)|e O~ 7O 1,0)d6
t

t+w ~
+/ e P(0) ’b(@) —b(@)’G(t,B)dG
t

+/tt+w ‘h(@,x(@ )= (6,x(0— r))‘ G(1,0)d0

t+w
“)
t
Using (3), (5) and (11) we get
(1) — % (6)] < wA; [|B]| 7 (1 +L) ||x — 7| + wA, Hb—ZH WA Hh—EH FwA -]

h(6,x(0 —1))—h(6,%(6— r))‘ G(t,6)d6.

= wy (bl (1+ L) + ) v = 31+ wy |[b =B + way [ =]

Thus - ~
o= (1= wAy (1617 (14+2) + ) < was (([p=5] + || =] ).

By virtue of the condition (20), we arrive at

b=3< 74 (Hbvuw;l(l YL +p) (Hb_ZH + Hh—%H) ‘

This completes the proof. OJ




Iterative survival model of red blood cells with harvesting 525

4 Illustrative examples

To validate our main results on the existence, uniqueness and continuous dependence of positive periodic
solutions, we provide the following examples:

Example 1. Let us consider the following iterative Lasota-Wazewska differential equation:

L)

D x()+ert)e 200 (e, 1)

dt
with
2n 2n 1 1 x(t—n1)
t) =0.01+0.009 g ) =0.02+0.03cos® —=¢ = —
e1(t) = 0.01 + (cos 19>, cx(1) = 002+ 0.036052 01, ext) = g+ 15

in the set P, (ro,r1,L) = Pi9(0.8,4.25,0.6). Here ¢ (¢) is the death rate of red blood cells, ¢, (?) is related
to the production of red blood cells per unit time and c¢3(¢) is the harvesting function 2. We choose a

period of 19 days since the period can vary from a few weeks up to few months.
We have

1 1
a1=0.019, by=0.02, by =0.05, Ag~2.6806, Ay ~44562, y= 15, p=17g

1
20 =y and h) =

g
So
wA1b1 = 4.2334 < r; =4.25,
w (Aoboe " — (ry +hy)Ar) ~0.81676 > rg = 0.8,
A (24way) (b1 +uri +h) = 0.52691 <L =0.6,
wA 1~ 0.00094678 < 1.
The additional condition (20) in Theorem 2
wA (b1y(1+L)+pn) ~0.33962 < 1,

is fulfilled. Furthermore, if x is the unique solution of Eq. (21) and if X is a solution of the perturbed
equation with the perturbed parameters b and /, then we arrive at

Il — 7| < (128.21) (Hb—ZH + Hh—%”) .
Since all the conditions of Theorems 2 and 3 are satisfied, Eq. (21) has a unique positive periodic solution
in P19 (0.8,4.25,0.6) that depends continuously on the harvesting term % and the production rate b.

The next example highlights the power of Theorem 1 to establish an existence result even when the
Banach fixed point theorem cannot be applied.

Example 2. Let us consider the same iterative Lasota-Wazewska differential equation (21) with the same
period in the subset P, (ro,r1,L) = Pj9 (0.8,4.25,3.8). We have

wAy (b1y(1+L)+p) ~1.017 > 1.

So, the additional condition (20) in Theorem 2 is not fulfilled while all the conditions of Theorem 1
are satisfied which means that Eq. (21) in this case admits at least one positive periodic solution in
P19 (0.8,4.25,3.8) which is not necessarily unique.
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Example 3. Let us consider the following iterative Lasota-Wazewska differential equation:

d 2 2 !
di; __ <0.02+ 0.009 <sin2 1?:) ) x(t)+ <0.01 +0.04 <sin2 171rt>> exp <—5xm (t)>

_( 1 N 1 x(t—1) >’ (22)

177> 1975 1+x(t — 1)

1
in the set P, (ro,r1,L) = Pi; (O.13,2.357 2>. We have

1 1
=0.029, bg=0.01, b; =0.05, Ayg~2.4692, A1 ~4.233 =- =—
ai y» 00 y Yl ) 0 9 ) 1 y v 5’ u 197[5

Thus

WA]bl ~2.3282 < ry = 235,
w (Aoboe """ — (1ri +hi) A1) ~0.14199 > ry = 0.13,

1
A (24 way) (b +h) 049667 < L =7,
wA; 1t ~ 0.0080083 < 1.

The additional condition in Theorem 2
wA1 (b1y(1+L) + ) =~ 0.70645 < 1,

is fulfilled. We conclude by Theorem 2 that Eq. (22) possesses one only one periodic positive solution
in Pjg (0.13,2.35, %) Moreover, let x be the unique solution of Eq. (22) and let X be a solution of the

perturbed equation with the perturbed parameters b and h. We get
e — 7| < (158.62) (Hb—EH + Hh—ZH) ,

which proves that the unique positive periodic solution x depends continuously upon the harvesting term
h and the production rate b.

5 Conclusion

The present paper was devoted to study a revisited survival red blood cells model with an iterative pro-
duction term and a delayed harvesting one. By virtue of the Krasnoselskii’s fixed point theorem together
with Arzela- Ascoli theorem and some useful properties of an obtained Green’s function and by assuming
also that the harvesting function and the coefficients in the model are positive, continuous and common
periodic, we derived some sufficient conditions that enabled us to prove the existence of at least one
positive periodic solution. Furthermore, under an additional condition and by means of the Banach fixed
point theorem, the existence and dependence continuous of the unique positive periodic solution on the
production rate b and the harvesting function & are established. Our theoretical results which extend
some related works in the literature were justified by three examples.
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