Journal of Mathematical Modeling
Vol. 10, No. 3, 2022, pp. 487-498. Research Article CJ MM >

A descent family of hybrid conjugate gradient methods with
global convergence property for nonconvex functions

Mina Lotfi

Department of Applied Mathematics, Tarbiat Modares University, P.O.Box 14115-175, Tehran, Iran
Email(s): minalotfi@modares.ac.ir

Abstract. In this paper, we present a new hybrid conjugate gradient method for unconstrained optimiza-
tion that possesses sufficient descent property independent of any line search. In our method, a convex
combination of the Hestenes-Stiefel (HS) and the Fletcher-Reeves (FR) methods, is used as the conjugate
parameter and the hybridization parameter is determined by minimizing the distance between the hybrid
conjugate gradient direction and direction of the three-term HS method proposed by M. Li (A family of
three-term nonlinear conjugate gradient methods close to the memoryless BFGS method, Optim. Lett.
12 (8) (2018) 1911-1927). Under some standard assumptions, the global convergence property on gen-
eral functions is established. Numerical results on some test problems in the CUTEst library illustrate
the efficiency and robustness of our proposed method in practice.
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1 Introduction
We consider the following unconstrained optimization problem :
minf(x), xeR" (1)

where f: R" — R is a continuously differentiable function and its gradient is denoted by g(x) = V f(x).
Conjugate gradient (CG) methods are among the most popular methods for solving (1), especially for
large-scale problems [3, 8, 16,26]. The iterative formula of a CG method is given by

Xpp1 =Xk + Sk, Sk = ogdy, k>0, ()

where x; is the current approximation to a solution, and di € R" is a search direction defined by
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in which the B (called here CG parameter) is a scalar, which distinguishes a CG method, and the step
length oy > 0 is usually determined to satisfy the strong Wolfe line search conditions

[+ oydy) — fxi) < Sougy dy, 4)

(i + audi) " di| < ogf dl, )

where 0 < 0 < %, 0 < 0 < 1. Several famous formulas for f3; are Fletcher-Reeves (FR) method [11],
the Dai—Yuan (DY) method [9], the Hestenes—Stiefel (HS) method [15], and the Polak—Ribiere—Polyak

(PRP) method [23, 24], with the following parameters, respectively,
[R _ H8k+1H2 kDY _ H8k+1H2
1812 dy v
S g,{Hyk PRP g,{Hyk
Ay’ llgell*”
where y; = gr+1 — gk and ||.|| stands for Euclidean norm. Although all these methods are equivalent

when f is convex quadratic function and the step size oy obtained by the exact line search, for general
functions, they have different performances. It is well known that the FR and DY have strong conver-
gence properties, but they may have modest computational performance. On the other hand, although
the PRP and HS methods are computationally efficient, they may fail to converge for non-convex func-
tions [29]. In recent years, much efforts has been made to find the methods having nice convergence
properties and efficient numerical performance by hybridizing the CG methods. We refer the interested
readers to [1,2,5,6,19,21].

In an attempt to develop a modified HS method, Dai and Liao (DL) [7] presented a class of CG
methods, in which the CG parameter is given by

T T
pL _ Sk+1Yk _Angsk

A0 (6)
k diy dl yk

By using the truncation technique of [12], Dai and Liao also established their convergence for general
functions. Although the DL method seldom generates uphill search direction in an actual computation,
this search direction is not necessarily a descent one in theory. This motivated many researchers to make
various modifications on the DL method, in order to achieve some descent properties, see [4, 10,20, 29].
Note that, if set A = 0 then ﬁkDL reduces to the CG parameter proposed by Hestenes and Stiefel. In [14],
Hager and Zhang (HZ) proposed a subclass of DL method that is named CG-DESCENT. In this method
the CG parameter is computed by

T 2,T
d 1
HZ 8k+1Yk [[vicll* 8y 1Ak 6> . @)

~dly @dl'ye)? 4

They showed that the search direction in this method satisfies the sufficient descent condition g,{dk <
(75 — Dllgx|* and also, to guarantee the global convergence, /% is updated as below

1
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where 1 € (0, 1). Numerical results showed that CG-DESCENT method outperforms many existing CG
methods.
Recently, Li [18] introduced a descent class of three-term HS method in which the directions (shown

by d[' %5 ) are defined by
T 2.7 T
8k+1Yk ||)’kH gk+1dk gk_Hdk
Al = —grp1 + — di+1 Yk ©)
i " dl yi (dl'yi)? dl yy
where

[yl

In [18], it is shown that the THS method satisfies the sufficient descent condition and it is also computa-
tionally superior to the CG-DESCENT method.

In this paper, motivated by the strong theoretical properties and computational efficiency of the THS
method suggested by Li, we propose a new hybrid CG method. We consider the following convex
combination of S5 and B{® methods:

T
t:min{0.3, max{0,1 — Vi Sk }

BECC = (1 - 6,)BIS + 0B, (10)

where the scalar 6; € [0,1] is called the hybridization parameter. Notice that, if 6; < 0, then we set
6 = 0, and if 6; > 1, then we set 6 = 1. So, B“C is used as our (CG parameter) in place of B in
(3) and our proposed parameter 6; is obtained by minimizing the distance between the CG search di-
rection and search direction proposed by Li [18]. Under standard assumptions, the global convergence
of the proposed method are proved for general functions. The new method is implemented in MATLAB
environment and tested on some test problems from CUTEst collection. Numerical results illustrate effi-
ciency and robustness of our proposed method in practice. The rest of this paper is organized as follows.
In Section 2, we present details of the new CG method and its computational algorithm. Section 3 is
devoted to establish the global convergence property of the new algorithm under standard assumptions.
Numerical result is obtained on unconstrained optimization problems are reported in Section 4.

2 The new algorithm

This section is devoted to describe the structure of a new hybrid CG method. To this end, let d;’%%

dlC = —gi1 + By, (11

in which
(1C0 = (1-60)B" + 6B ™.

Then to derive our new hybridization parameter 6;, we take advantage of theoretical properties and
computational efficiency of the three-term HS (THS) method proposed by Li [18], and similar to the
approach of [6], we suggest the following least-squares problem to compute the desired value of 6,
satisfying

- || JHCG _ JTHS
argrrg{n\ldkﬂ —diiy |l
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Obviously, from (11) and (9) for d¢C ; dTH5 | and the fact that y = ;C% is the optimal solution of

k+1 k+1 o
argminy ||y — yx||, we get the following new hybridization parameter

(819 llill? (Ilye Il | — £ (df yi)?)
(dg yi) i *E ’

6; =

where ¢ is the parameter used in (9) and E = (g7, y¢)||8k[|* = l|gk+11/* (4} y«). In order to avoid a division
by zero, we define 6 as follows:

0;, if 6, €0,1], and E #0,
=1 1, 67 >1, (12)
0, 6;<0orE=0.

Here, to increase computational efficiency and robustness of our method, we use the truncation technique

in [25] and update ,fICG as below:

{0 = (1- 8B + 0B (13)
where [3,{1 5T = max{0, B{5}. Then to ensure the new search direction satisfies the descent condition, we
employ the idea of the modified HS method of [27], and propose the following search direction

THCG+ HCG+ HeG+ 819k
A7 =g+ BT T d— By 5 8k+1 do = —go. (14)
8k+1
An attractive feature of the proposed method is that the search direction dkTﬁCG+ always satisfies the

following sufficient descent condition, which is independent of any line search.

gindi T = —llgen |- (15)

Now, we rewrite the structure of our proposed method in the following algorithm:

Algorithm 1. New Hybrid Conjugate Gradient Algorithm

Step 0 : Consider constants € > 0 and 0 < d < %,5 < 0 < 1, choose an initial point xy € R" and set
k= 0, d() = —&0-

Step 1 : Stop if || gk < €.

Step 2 : Determine the step length o such that satisfy the strong Wolfe line search conditions (4) and
(5).

Step 3 : Let xx11 = x¢ + ody.

Step 4 : Compute 6 by (12).

Step 5 : Calculate B,f{CG+ by (13) and compute d;. by (14).

Step 6 : Set k =k + 1, Go to Step 1.

3 Convergence analysis

In this section, we investigate the global convergence of the proposed method, under the following as-
sumptions.
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Assumption 3.1 The level set . = {x € R"|f(x) < f(xo)} is bounded, namely, there exists a constant
B > 0 such that

x| <B, Vxe.Z. (16)

Assumption 3.2 In some neighborhood .4 of ., f is continuously differentiable and its gradient is
Lipschitz continuous, namely, there exists a positive constant L > 0 such that

18(x) =gl < Lix—yl, Vx,y € N (17)
Remark: Assumption 1 implies that there exists a positive constant M such that

lg(x)|| <M, VxeZ. (18)

To prove the global convergence of Algorithm 1, we need to refer to the following useful Lemma, which
is known as Zoutendijk condition [30].

Lemma 1. Suppose that the Assumptions 3.1 and 3.2 hold. Consider any method of the form (2) and (3),
where dy is a descent direction and oy satisfies the Wolf line search conditions, then

oo T 2
y e (19)

k=0 HdkHz

Lemma 2. Let Assumptions 3.1 and 3.2 hold. If {x; } are generated by Algorithm 1, then we have

(o —1)gid
oy > —t 20
AL 0
Proof. From (5), (17) and (2) we have
(6 —1)gfd < (gk+1— k) di < gkt — gklllldill < Low||di)?,
which implies
(o —1)gf dx
O 2> ——F 15—
T Ll
This completes the proof of lemma. O

Lemma 3. Let Assumptions 3.1 and 3.2 hold, and {x;} be generated by Algorithm 1. If there exists a
constant (L > 0 such that that

lgll > m, Vk>0. 21)

then there exists positive constant C such that

B <c. (22)
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Proof. We get from the strong Wolfe condition (5) and (15), that
df yi = d (g1 —8x) > —(1—0)d{ g = (1—0)||&l>. (23)
From (17), (2), (18), (23), (21), (16) and the fact that 6,?4 € [0, 1], we conclude

|B}?CG+’ —_ |(1_9k) ]5IS+_’_9 ﬁFR

= (I—G)max{gzﬂyk 0} + 6

ky H

)

Il gk1]?
gl |

lgrrllllyell , llgrs1ll?
T (1=o)llgll®  llgkl*
ML[s| | M*
T (I-o)ur  p*’

ML (|| || + [lxell) | M°
- (1-o)u? p
2MLB+ (1 — o)M?

- u*(1-o)

)

(24)

2MLB+(1—0)M?

2o Ve have |ﬁkHCG+| < C. The proof is completed. O

By setting C =

In order to prove the global convergence for general function, we assume that the step lengths are
bounded below by a positive constant. The following theorem, which is similar to Theorem 3.2 in [26],
establishes global convergence property of the proposed method.

Theorem 1. Suppose that Assumptions 3.1 and 3.2 hold. If there exists a positive constant a* such that
oy > a* >0, forall k > 0, and {x;} are generated by Algorithm 1, then either ||gx|| = 0 for some k or

liminf||g;|| = 0. (25)
k—yo0

Proof. Suppose that (25) does not hold, i.e., there exists a constant y > 0 such that

lgell > p,  Vk=>0. (26)
By (2) and (16), we conclude that
< el bl
ldill = < a S5 v (27)

where ¥ = 2B/a*. It follows from (15), (26) and (27) that

- - ||<§'1<||4
Z ||dk||2 Z ||dk||2 -

=0

SO NI

k=0

*<N':

which contradicts (19). So, the proof is complete. 0
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4 Numerical results

This section reports the computational results obtained from the implementation of the Algorithm 1,
denoted by THCG+” and some other existing algorithms on some test problems. All algorithms were
written in MATLAB and ran on a PC (CPU 2.5 GHZ, RAM 3.8GB) with Linux operating system. The
test problems were taken from the CUTEst library [13]. The dimensions of the problems range from at
least 50 and up to 10,000. Table 3 lists those problems with their dimensions. For all algorithms, we
used the strong Wolfe line search conditions with 7 = 0.01, o = 0.1 and using Algorithm 3.5 in [22].
Here, for the first iteration we set the initial trial value ¢ o = 1, and for the subsequent iterations we set
it to

s dics1] [
el T 0 B e
where u = 0.5, [5]. All algorithms were stopped when the number of iterations exceeded 10000 or
gl < 10-°.

We compare our results with those of the following CG methods:
- HZ+-: Algorithm proposed in [14];
- ADHCGI1”: Algorithm ADHCG in [19] which the scaling parameter is defined by 6; = min{ﬁETkaz, 1};
- IFD”: Algorithm proposed in [17] with f; = B{FP;
- THS+": method proposed in [18];
- TTHS”: method proposed in [28];
- HCGB”: method proposed in [6].
We utilized the performance profile of Dolan and More [10] (in /og; scale) to present numerical results
of the algorithms. Given a set of problems %7 and a set of solvers S, we define i, ; as the number of
iterations required to solve problem p by solver s. The performance ratio is given by

O+1,0 = U

r — ip7s
P2 min{iy, s € S}

Then, the performance profile is defined by

{size pe P| r,s <w}
Bilw) = size P ’
These algorithms are compared based on the number of iterations (n;), the number of function evaluations
(nr) and the number of gradient evaluations (n,). In Tables 1 and 2 we present the percentage of the test
problems that are solved by each algorithm with the lowest value of n;, ny, and n,.

Figs. 1, 2 and 3 present the performance profiles of THCG+, HZ+, ADHCGI1 and TTHS according
to the number of iterations, the number of function evaluations, the number of gradient evaluations,
respectively. As these figures illustrate, it can be seen that the method THCG+ performs better than the
three other methods.

In Fig. 4, we compare the performance profile of THCG+, THS+, HCGB and IFD methods based on
number of iterations. From Fig. 5, it is concluded that THCG+- is more efficient than others, with respect
to the number of function evaluations. We observed that THCG+ method solves about 71% of the test
problems with the least number of function evaluations. Fig. 6 shows that THCG+ method performs
slightly superior to THS+, HCGB and IFD methods with respect to the number of gradient evaluations.
Numerical results show that MDL method solves about 74% of the test problems with relatively least
number gradient evaluations.
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Figure 1: Performance profile of methods in terms  Figure 2: Performance profile of methods in terms
of number of iterations. of number of function evaluations.

—— THCG+

—— THS+

—=— HCGB
IFD

Figure 3: Performance profile of methods in terms  Figure 4: Performance profile of methods in terms
of number of gradient evaluations. of number of iterations.

5 Conclusions

In this paper, we propose a new hybrid conjugate gradient method for unconstrained optimization. As a
remarkable feature, the search directions of the proposed method satisfy the sufficient descent condition,
independently of line searches. Under some standard assumptions, the global convergence of the pro-
posed method is proved for general functions. Numerical comparisons on some test problems indicate
the efficiency and robustness of the proposed method in practice.
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Figure 5: Performance profile of methods in terms  Figure 6: Performance profile of methods in terms
of number of function evaluations. of number of gradient evaluations.

Table 1: Percentage of the test problems that each method solves with the lowest value of n;, ny and ng.

THCG+ (%) HZ+(%) ADHCG1(%) TTHS(%)

n; 72 20 28 26
ny 74 18 30 23
ng 74 16 29 23

Table 2: Percentage of the test problems that each method solves with the lowest value of n;, ny and n.

THCG+ (%) THS+ (%) HCGB(%) IFD(%)

ni 64 40 25 21
ny 71 30 23 21
ng 74 31 23 21
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