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Abstract. In this work, we study a data visualization problem which is classified in the field of shape-
preserving interpolation. When a function is known to be bounded, then it is natural to expect its inter-
polant to adhere boundedness. Two spline-based techniques are proposed to handle this kind of problem.
The proposed methods use quadratic splines as basis and involve solving a linear programming or a
mixed integer linear programming problem which gives C1 interpolants. An energy minimization tech-
nique is employed to gain the optimal smooth solution. The reliability and applicability of the proposed
techniques have been illustrated through examples.
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1 Introduction

Suppose a data set, say {(xi, fi)}n
i=1, is given. These data may be arising from a physical phenomenon

or be a sampling of a function. One wishes to gain more information about the original phenomenon by
constructing a suitable approximant for the given data. This is the main goal of many areas of research
such as data visualization, geometric design and approximation theory. Once we find a suitable approx-
imant, then it is possible to understand the original physical phenomenon or function with more insight
and detail. There are various approaches to handle this kind of problem and among them “Interpolation”
is the most popular one. Interpolation seeks for an approximant which passes through the data points.
Hence, it is assumed here that the data are sufficiently accurate to warrant interpolation.

The original function and thus the data set at hand may have some important features and properties
such as monotonicity, positivity and convexity. It is very natural to require the interpolant to preserve
these features. Therefore, we are generally faced with a “Shape-preserving interpolation” problem. This
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is a topic which arises in various fields of science such as computer graphics, geometric modeling,
numerical analysis, image processing, etc. It gives an insight and guide to understand some physical
phenomenon pertaining to the data which one would otherwise only have partial information about. It
is an effective way of communication as it helps to reflect the numeric data to a quickly understandable
pictorial display.

Various shape-preserving interpolation methods have been proposed and every approach has its own
advantages and drawbacks. More insight into the subject could be traced in the literature [5–7], and
some recent advances could be found in [1, 3, 4, 10] and in the references therein. The shape-preserving
interpolation techniques may be classified according to

• the base functions used to represent the closed form of the interpolant,

• the feature which is preserved by the technique,

• the degree of smoothness,

• whether there is a knot-insertion or not.

In this paper, we focus on a feature which has not been broadly studied in the literature: the “bound-
edness”. Suppose we have a data set generated from a sampling of a bounded function, this happens, for
example, when the data reflect the probability or efficiency of a process. To be precise, suppose a data set
{(xi, fi)}n

i=1, generated from a bounded function with m and M as lower and upper bounds respectively,
is given. When we try to approximate this data set by interpolation techniques, we need to ensure that
the interpolating curve adheres to these known properties. The bounded interpolation problem seeks for
a function g which interpolates the data set and is also bounded into [m,M] [9].

Actually, any monotonicity-preserving approach [5] could be employed to solve a bounded interpo-
lation problem. Especially when we know that the original function or phenomenon has a monotone
behavior. However, our data set could be a monotone sampling of an oscillatory phenomenon (func-
tion). In these cases, by imposing monotonicity, the interpolant would be bounded into [min fi,max fi],
whilst the original bound of the function is [m,M]. A bounded interpolation technique must allow the
approximant to attain values outside the range [min fi,max fi].

Generally, a bounded interpolation problem could be considered as a generalization of a positivity-
preserving interpolation. Once we have a positivity-preserving interpolation technique, one can apply it
to the data sets { fi−m} and {M− fi}, simultaneously.

There are a number of positivity-preserving techniques that could be used to handle the bounded case
as well. Here we propose a method based on quadratic splines. Quadratic visualization has the drawback
that the maximum smoothness supported by these functions is C1. However, it also has advantages; one
is that it is computationally cheap and simple. It should be noticed that, although smoothness is one of
the very important requirements for a pleasing visual display, the base functions providing C2 continuity,
for example cubic splines, usually result in semi-linear approximations [13].

The structure of the paper is as follows. In Section 2, quadratic splines with unknown derivative
parameters is used to provide a C1 bounded interpolant. Section 3 studies a weighted quadratic spline
method where the weights are suitably chosen to yield boundedness and maximum smoothness. An
energy minimization criterion is presented in Section 4 to gain approximations with higher order of
smoothness. Section 5 is devoted to examples and finally Section 6 concludes by summarizing the
highlights.
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2 Quadratic Hermite spline for bounded interpolation

Let [a,b] be an interval containing a mesh {xi}n
i=1 such that x1 < x2 < .. . < xn and let { fi}n

i=1 and {mi}n
i=1

be real numbers. For each sub-interval [xi,xi+1], i = 1, . . . ,n−1, we define hi = xi+1−xi and δi =
fi+1− fi

hi
.

The following is called the Hermite interpolation problem (HIP):

Problem 1. (HIP) Find a quadratic spline S with the fewest number of breakpoints such that

S(xi) := fi, S′(xi) = mi, i = 1, . . . ,n.

Schumaker has given a solution to this problem [12]. Schumaker’s quadratic spline is defined based
on the mi-values, the construction is done separately to each sub-interval [xi,xi+1], i = 1, . . . ,n−1.

• If mi +mi+1 = 2δi, then restriction of S on [xi,xi+1] is a parabola

S(x)≡ Si(x) := fi +mi(x− xi)+
mi+1−mi

2hi
(x− xi)

2. (1)

• If mi +mi+1 6= 2δi, then S on [xi,xi+1] is a quadratic spline with one breakpoint ξi, which can be
freely chosen in the interval (xi,xi+1)

S(x)≡ Si(x) =


fi +mi(x− xi)+

µi−mi

2tihi
(x− xi)

2, xi ≤ x < ξi,

di +µi(x−ξi)+
mi+1−µi

2(1− ti)hi
(x−ξi)

2, ξi ≤ x≤ xi+1,
(2)

where

ti =
ξi− xi

hi
, µi = 2δi− timi− (1− ti)mi+1, (3)

di = (1− ti) fi + ti fi+1 +
1
2

ti(1− ti)hi(mi−mi+1). (4)

Here 0 < ti < 1 and the values di and µi are defined so that C1 continuity is satisfied on [xi,xi+1],
that is, we have di = S(ξi) and µi = S′(ξi).

Schumaker’s quadratic spline, defined by equations (1) and (2), provides a solution to the HIP [12].
Now we state the positive Hermite interpolation problem (PHIP), which was studied by Lahtinen [8].

It should be noted here that, in this paper, the word “positive” is used as a synonym of non-negative, as
used by Lahtinen in [8].

Problem 2. (PHIP) For a positive set of data { fi}n
i=1 and known derivative values {mi}n

i=1, find a solu-
tion to the corresponding HIP which is positive on [a,b].

In [8], Lahtinen has given necessary and sufficient conditions, based on {mi}n
i=1 values, for the

corresponding interpolant to be positive. Here we study the bounded Hermite interpolation problem
(BHIP), which can be stated as follows.

Problem 3. (BHIP) For a data set { fi}n
i=1, generated from a bounded function, find a quadratic Hermite

interpolant spline which satisfies the same bounds.
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Here the derivative values are not given and this is a difference between our problem and the cases
studied by Schumaker and Lahtinen. In both HIP and PHIP, the methodology is based on the given
{mi}n

i=1 values. We assume that the { fi}n
i=1 values are a sample of a bounded function, say fi ∈ [m,M].

Without loss of generality, we can assume that m = 0 and M = 1. Therefore, we wish to find a quadratic
interpolant S(x) on [a,b] with 0≤ S(x)≤ 1.

Schumaker’s quadratic spline, defined by Eqs. (1) and (2), provides with a solution to the BHIP.
The basic idea can be summarized as follows: we impose conditions on the unknown derivative values
mi to make the resulting interpolant satisfy boundedness. Hence, the boundedness conditions as well
as C1-continuity conditions are put into a mixed integer linear programming (MILP) problem to obtain
suitable mi values.

The following theorem states the fundamental result.

Theorem 1. The quadratic spline S, defined by Eqs. (1) and (2), provides with a solution to the BHIP
when the following conditions are verified in each sub-interval [xi,xi+1]:

• If mi +mi+1 = 2δi, then the mi-values must satisfy

−2
hi

( fi +
√

fi fi+1)≤ mi ≤
2
hi
(1− fi +

√
(1− fi)(1− fi+1)), (5)

• If mi +mi+1 6= 2δi, then
2 fi+1−2

hi
≤ mi+1−mi ≤

2 fi+1

hi
, (6)

−2 fi

hi
≤ mi ≤

2−2 fi

hi
, (7)

2 fi+1−2
hi

≤ mi+1 ≤
2 fi+1

hi
. (8)

The idea of the proof is based on the following lemma from [11].

Lemma 1. A quadratic polynomial S is positive on [xi,xi+1] if and only if the following conditions hold:

S(xi)≥ 0, S(xi+1)≥ 0, 2S(xi+1)− (xi+1− xi)S′(xi+1)≥−2
√

S(xi)S(xi+1).

This lemma is a straightforward corollary of Proposition 3 in [11], and it can be deduced by a simple
change of variable.

In order to prove Theorem 1, we distinguish two cases and impose the desired bounding conditions
for each of the cases separately. In each case, Lemma 1 is employed to impose positivity conditions on
the functions S and 1−S, simultaneously. A detailed proof is presented in the Appendix.

2.1 Algorithm Description

Here we explain the technique which is used to obtain suitable mi values according to the boundedness
conditions. For each sub-interval [xi,xi+1] a variable Zi = |mi +mi+1− 2δi| is defined. For Case 1, we
have Zi = 0 and for Case 2, Zi would be a positive value. To be able to switch between these two cases
(which impose different constraints on mi), we define two binary variables pi and qi with the constraint
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pi + qi = 1. With this notation, it is possible to put constraints of Case 1 and Case 2 in a single MILP
problem. Whenever the objective implies Case 1, then the program must ignore the constraints of Case
2. To do so, we need to define some auxiliary constants. We assume M and K be sufficiently large
values and ε be a relatively small positive constant. Now the constraints of the MILP problem can be
summarized as follows. 

Zi ≥ mi +mi+1−2δi,
Zi ≥−(mi +mi+1−2δi),
ε pi ≤ Zi ≤Mpi,

−Kqi−
2
hi
( fi +

√
fi fi+1)pi ≤ mi ≤

2
hi
(1− fi +

√
(1− fi)(1− fi+1))pi +Kqi,

−K pi +
2 fi+1−2

hi
qi ≤ mi+1−mi ≤ 2 fi+1

hi
qi +K pi,

−K pi− 2 fi
hi

qi ≤ mi ≤ 2−2 fi
hi

qi +K pi,

−K pi +
2 fi+1−2

hi
qi ≤ mi+1 ≤ 2 fi+1

hi
qi +K pi.

Remark 1. In implementing the corresponding MILP problem, we have confined M and K to be greater
than 50 and set ε < 0.1.

3 Weighted quadratic spline method

The quadratic Hermite spline method, presented in the previous section, uses unknown derivative values
to adjust the shape of the curve to attain boundedness. In this section we use a quadratic spline function
equipped with control parameters to solve the bound-preserving interpolation problem. Once the shape
parameters are suitably chosen, the method provides with a C1 bounded interpolant. For each interval
[xi,xi+1], we define

τ(x)≡ τi(x) := li(x)+αi(x− xi)(x− xi+1), i = 1, . . . ,n, (9)

where li(x) =
fi+1− fi

hi
(x−xi)+ fi is the linear interpolant and αi is a control parameter (weight), hence

the name “weighted quadratic spline”.
The C1 continuity condition, τi(xi+1) = τi+1(xi+1), implies the following linear system of equations

hiαi +hi+1αi+1 = f [xi+1,xi+2]− f [xi,xi+1], i = 1, . . . ,n−2, (10)

where f [xi,xi+1] is the Newton’s divided difference. In order to have a bounded quadratic spline, i.e.
0≤ τ ≤ 1, we impose this condition to each sub-interval to have 0≤ τi ≤ 1. Now we can employ Lemma
1, which in turn forces the parameters αi, i = 1, . . . ,n, to satisfy

−( fi + fi+1 +2
√

fi fi+1)

h2
i

≤ αi ≤
2− fi− fi+1 +2

√
(1− fi)(1− fi+1)

h2
i

. (11)

Therefore, one should solve a constrained system of linear equations which results in a linear program-
ming (LP) problem subject to conditions (10) and (11) above. One can state these constraints as sufficient
conditions for having a solution to the BHIP.

Theorem 2. The weighted quadratic spline τ , defined by Eq. (9), provides with a solution to the BHIP
when conditions (10) and (11) are verified.
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4 Energy minimization technique

So far, we have proposed two methods to solve the bounded interpolation problem using quadratic
splines. Both methods require solving an LP or an MILP problem. However, in both cases, when
there is a solution it may not be unique. So it arises the matter of choosing the “optimal solution” in
some sense. A possibility is proposed in Burmeister et al. [2], where they have presented an energy min-
imization method which results in an interpolating spline with minimum energy. It is generally based on
minimizing the curvature of the spline which is represented by

E =
∫ x=xn

x=x1

S′′2(x)

(1+[ f ′2(x)])
5
2

dx. (12)

Wolberg and Alfy [13] have used different, but closely related, quantities to express the energy of a
spline. They introduce a discrete energy measure

ED =
n−1

∑
k=2

(S′′(x−k )−S′′(x+k ))
2, (13)

which is based on second derivative discontinuities. Then it has simplified to be linear with the first
derivatives so that an LP procedure can be applied. The simplification is done by using the absolute
values of the discontinuities:

ẼD =
n−1

∑
k=2
|S′′(x−k )−S′′(x+k )|. (14)

Slack variables, sk, are defined to be the absolute value of the discontinuity for each xk. Using inequality
constraints

S′′(x−k )−S′′(x+k )≤ sk, − [S′′(x−k )−S′′(x+k ]≤ sk, (15)

the discrete energy, ẼD, can be written as

ẼD =
n−1

∑
k=2

sk. (16)

The same techniques is applied here and we try to reach bound-preserving interpolant splines with min-
imum energy. In both methods, introduced in Sections 2 and 3, we put ẼD as an objective function and
minimize it subject to the following constraints:

• For the quadratic Hermite spline method (QHSM), proposed in Section 2:

– Absolute value constraints: Eq. (15),

– Boundedness constraints: Eqs. (6), (7) and (8),

(of course we requires an MILP problem to handle this case).

• For the weighted quadratic spline method (WQSP), presented in Section 3:

– Absolute value constraints: Eq. (15),

– C1 continuity constraints: Eq. (10),
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– Boundedness constraints: Eq. (11).

The solution to these problems lead to a vector of values F∗ in each case:

F∗ =

{
(m0, . . . ,mn,s1, . . . ,sn−1)

t , for QHSM,

(α1, . . . ,αn−1,s1, . . . ,sn−1)
t , for WQSM,

which identifies a solution to the BHIP.

5 Numerical tests

In this section, we implement the proposed methods for numerical examples. To be able to compare the
results, we consider data sets which are samples of known bounded functions. The error is calculated by
maximum norm through a uniform partitioning with 10 points at each subinterval.

Example 1. Consider the data set in Table 1, which is a uniform sampling of the function

f (x) =
11e

−x
4

1+ e1− x
4
− 11e

−x
4

1+ e1− x2
16

+
1
2
.

Table 1: Data set of a sampling.
xi 1 2 3 4 5 6 7 8 9
fi 0.8377 0.8784 0.7363 0.5000 0.2641 0.1200 0.1024 0.1702 0.2614

The QHSM is applied to this data set and then an energy minimization method (EMM) is used to
get interpolants with minimum curvature. Figure 1 represents the original function (blue), the QHSM
solution (green) and the EMM result (red). It is seen that the maximum error of QHSM solution is
0.0024, where the corresponding error for the EMM is 0.0020.

1 2 3 4 5 6 7 8 9
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Figure 1: QHSM (green) and EMM (red) re-
sults of Example 1.
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Figure 2: WQSM (green) and EMM (red) re-
sults of Example 1.
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The WQSM is also applicable to Table 1 and the results are represented in Figure 2. Here the
maximum error of the WQSM solution is 0.0387, while the corresponding EMM error is 0.0096. The
QHSM ensures a better accuracy than the WQSM. However the latter has a simpler implementation.

Example 2. Table 2 presents data sampled from the function f (t) = .0077t3− .1154t2 + .4846t.

Table 2: Data set from Example 2.
xi 1 2 3 4 5 6 7 8 9
fi 0.3769 0.5692 0.6231 0.5848 0.5005 0.4164 0.3787 0.4336 0.6273

The QHSM solution and the corresponding EMM result as well as the original curve are depicted in
Figure 3. The maximum error in QHSM solution is 0.0860, while with an energy minimization technique
it reduces to 0.0044. This example clearly shows the effect of EMM that results in a curve with minimum
oscillations. Figure 4 illustrates the results of the WQSM.

1 2 3 4 5 6 7 8 9

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Figure 3: QHSM (green) and EMM (red) re-
sults of Example 2.

1 2 3 4 5 6 7 8 9

0.35
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0.45

0.5

0.55

0.6

0.65

Figure 4: WQSM (green) and EMM (red) re-
sults of Example 2.

As it is seen in the solution curves, unlike Example 1, here the WQSM results in a curve with fewer
oscillations compared to the curve obtained by QHSM. The maximum error is 0.0129, while with EMM
it reduces to 0.0033. So in this example the WQSM is more promising than QHSM.

The two reported examples are evidences of the fact that it is difficult to establish the superiority
of one method over another. These examples could be considered as a sample of similar numerical
experiments. In some cases the QHSM proves to be superior, while in some other the WQSM gives
more accurate approximations. However, in each method when the EMM is employed one observes
notable improvement in the approximations.

6 Conclusions

The bounded interpolation problem may be handed by monotonicity preserving techniques piece-wisely.
However, thereby the resulting spline would be bounded by the extreme values of the original data and
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not by the bounding values of the original function. Therefore, in order to gain a really bounding in-
terpolating curve one may consider it as two simultaneous positivity-preserving problems. Employing
the positivity preserving conditions and using quadratic splines, we have proposed two techniques which
result in linear programming problems. Once we have the solution candidates we apply energy mini-
mization techniques to gain a curve with minimum curvature.
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A Appendix: Proof of Theorem 1

The quadratic spline, S, defined in Eqs. (1) and (2), must satisfy the bounding constraints 0≤ S≤ 1. We
get advantage of Lemma 1 to impose positivity conditions on S and 1−S, in each case.

A.1 Case 1: mi +mi+1 = 2δi

According to Lemma 1, in order to have S(x) ≥ 0 on [xi,xi+1], the fi-values must satisfy the following
inequalities:

fi ≥ 0, fi+1 ≥ 0, 2 fi+1−himi+1 ≥−2
√

fi fi+1.

We assumed that 0≤ fi ≤ 1, so the first two inequalities are satisfied. The third one reads

mi+1 ≤
1
hi
(2 fi+1 +2

√
fi fi+1),

which, in turn, by substituting mi+1 = 2δi−mi leads to

mi ≥
−2
hi

( fi +
√

fi fi+1). (17)

On the other hand, for condition S(x) ≤ 1 to hold, we can impose positivity conditions on 1− S(x).
Employing Lemma 1, we come to the restriction

mi ≤
2
hi
(1− fi +

√
(1− fi)(1− fi+1)). (18)

Inequalities (17) and (18) must hold simultaneously so this completes the proof for Case 1.

A.2 Case 2: mi +mi+1 6= 2δi

In this case there is a breakpoint, ξi, in the definition of the quadratic spline in each sub-interval. We
denote

P1 = Pi,1 := fi +mi(x− xi)+
µi−mi

2tihi
(x− xi)

2, xi ≤ x < ξi,

P2 = Pi,2 := di +µi(x−ξi)+
mi+1−µi

2(1− ti)hi
(x−ξi)

2, ξi ≤ x≤ xi+1.

We observe that the di, which is defined in Eq. (4), has an equivalent representation

di = fi +
1
2
(mi +µi)(ξi− xi). (19)
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First, we need to verify the following results which will be needed in our forthcoming calculations.

mi+1−mi ≤
2 fi+1

hi
=⇒ di ≥ 0, (20)

mi+1−mi ≥
2( fi+1−1)

hi
=⇒ di ≤ 1. (21)

For (20), we see that

mi +µi = mi +2δi−
ξi− xi

hi
mi−

xi+1−ξi

hi
mi+1 = 2δi +

xi+1−ξi

hi
(mi−mi+1),

which results in

1
2
(mi +µi)(ξi− xi) = {δi +

xi+1−ξi

2hi
(mi−mi+1)}(ξi− xi) = { fi+1− fi +

xi+1−ξi

2
(mi−mi+1)}

ξi− xi

hi

≥ { fi+1− fi +
xi+1−ξi

2
−2 fi+1

hi
}ξi− xi

hi
≥− fi

ξi− xi

hi
,

where we have used the assumption mi+1−mi ≤ 2 fi+1
hi

, in the first inequality. Now we can conclude

di = fi +
1
2
(mi +µi)(ξi− xi)≥ fi +

(
− fi

ξi− xi

hi

)
= fi

xi+1−ξi

hi
≥ 0.

In order to prove (21), one observes that

mi−mi+1 ≤
2(1− fi+1)

hi
≤ 2(1− fi+1)

xi+1−ξi
,

which gives
(mi−mi+1)(xi+1−ξi)≤ 2(1− fi+1).

Therefore we can conclude

(mi−mi+1)
xi+1−ξi

hi
≤ 2−2 fi +2 fi−2 fi+1

hi
=

2−2 fi

hi
−2δi ≤

2−2 fi

ξi− xi
−2δi,

so it would lead to

2δi +
xi+1−ξi

hi
(mi−mi+1)≤

2−2 fi

ξi− xi
,

which, in view of the definition of µi (Eq. (3)), results in

mi +µi ≤ 2−2 fi
ξi−xi

=⇒ (mi +µi)(ξi− xi)≤ 2(1− fi) =⇒ di = fi +
1
2(mi +µi)(ξi− xi)≤ 1.

This completes the reasoning for inequalities (20) and (21).
To have constraints 0 ≤ S ≤ 1, one can employ Lemma 1 to impose the positivity conditions on P1,

1−P1, P2 and 1−P2, simultaneously.
We will study each case separately.
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• P1 ≥ 0

According to Lemma 1, a sufficient condition reads

P1-1: fi ≥ 0,

P1-2: di ≥ 0,

P1-3: 2di− (ξi− xi)µi ≥−2
√

fidi.

The first condition is satisfied according to assumptions of the problem. For the second one (di ≥
0), we stated a sufficient condition in (20). For the third one we assume that mi ≥ −2 fi

hi
, in this way

we have
mi ≥

−2 fi

hi
≥ −2 fi

ξi− xi
,

leading to

2( fi +
1
2

mi(ξi− xi)+
1
2

µi(ξi− xi))−µi(ξi− xi)≥ 0,

which, from the definition of di, results in

2di−µi(ξi− xi)≥ 0≥−2
√

fidi,

and this is the desired condition P1-3.

So far we have verified that a sufficient condition for P1 to be positive is to have

mi ≥
−2 fi

hi
and mi+1−mi ≤

2 fi+1

hi
,

which the latter appears in one side of Eq. (6) and the former in Eq. (7).

• P1 ≤ 1

Again, employing Lemma 1 we come to the following sufficient conditions to have 1−P1 ≥ 0:

P1-4: 1− fi ≥ 0 =⇒ fi ≤ 1,

P1-5: 1−P1(ξi)≥ 0 =⇒ di ≤ 1,

P1-6: 2(1−di)− (ξi− xi)(−µi)≥−2
√
(1− fi)(1−di).

Here, the first condition is a part of our general assumptions. For the second one we have already
given a sufficient condition in (21). A sufficient condition for P1-6 to hold would be mi ≤ 2(1− fi)

hi
,

in this way we have

mi ≤
2(1− fi)

hi
≤ 2(1− fi)

ξi− xi
=⇒ mi(ξi− xi)≤ 2−2 fi,

which gives

2−2( fi +
1
2
(mi +µi)(ξi− xi))+(ξi− xi)µi ≥ 0.
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Now, from the definition of di, one concludes that

2−2di +(ξi− xi)µi ≥ 0≥−2
√

(1− fi)(1−di).

This completes our task.

We see that the two constraints mi+1−mi ≥ 2( fi+1−1)
hi

and mi ≤ 2(1− fi)
hi

appear in Eqs. (6) and (7).

In this way, it is verified that the conditions in Eqs. (6) and (7) are sufficient conditions for 0 ≤
P1 ≤ 1 to hold.

• P2 ≥ 0

Sufficient conditions for positivity of P2 would be

P2-1: di ≥ 0,

P2-2: fi+1 ≥ 0,

P2-3: 2 fi+1− (xi+1−ξi)mi+1 ≥−2
√

fi+1di.

The first two constraints are satisfied according to the previous cases. For the third one to hold, we
impose the condition mi+1 ≤ 2 fi+1

hi
, which provides a sufficient condition for P2-3 to be valid.

This constraint apears in the right hand side of Eq. (8).

• P2 ≤ 1

Employing Lemma 1 on 1−P2, gives us the following set of sufficient conditions

P2-4: di ≤ 1,

P2-5: fi+1 ≤ 1,

P2-6: 2(1− fi+1)+(xi+1−ξi)mi+1 ≥−2
√

(1− fi+1)(1−di).

Here we just need to satisfy P2-6, where we see that mi+1 ≥ 2 fi+1−2
hi

would provide a sufficient
condition. This constraint appears in Eq. (8).

In view of the four mentioned cases, we see that the expressions Eqs. (6), (7) and (8) provide with
sufficient conditions for the quadratic spline of the form (2) to satisfy 0 ≤ Si ≤ 1. This completes the
proof.
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