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Abstract. A multi-agent single machine scheduling problem with transportation constraints is studied.
We assume that there are several independent agents placed in different geographical locations, each of
them has several orders and each order includes different types of products. We use a simple and effective
model to obtain maximum profit of the products. To have desired on-time deliveries, the minimization
of the transportation costs and total tardiness costs are considered as objective functions. The main idea
of this research is to develop a simple and integrated scheduling and transportation model which can be
applied in many factories, chain stores, and so on. In order to solve this problem, a mixed integer linear
programming (MILP) model is presented. Moreover, since solving large instances of the proposed MILP
model is very time-consuming, a heuristic algorithm is presented. Implementing of two approaches on
a variety of datasets show that the heuristic algorithm can provide good-quality solutions in very short
time.

Keywords: Single machine scheduling problem, transportation constraints, mixed integer linear programming,
heuristic algorithm.
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1 Introduction and problem description

In many production and non-production environments, the response time to customer demand is a very
important issue and considered as a competitive advantage. One of the important factors affecting on
the response time is the transportation time. Therefore, many factories and researchers focus on the inte-
grated production planning/scheduling and transportation systems [9–11,15,24,25] . A review of studies
on scheduling and transportation problems can be found in [2,8,30]. Researches on this subject either do
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not consider the vehicle routing models or use these models leading to more complex problems. Multi-
agent scheduling, introduced by Baker and Smith [3], and observed in many real-world problems [21],
and has attracted a large amount of attention during the past decade [7, 12, 13, 20, 22, 26, 28, 29]. In this
environment, there are several agents that compete on the usage of common resources (machines); each
agent has several orders and has its own objective function. In this paper, we use a very simple and ef-
fective method to find best paths, instead of using more complex vehicle routing models. We generalize
this integrated scheduling and transportation problem to a multi-agent single machine scheduling and
transportation problem. We also assume that all orders of a given agent are delivered in a same geo-
graphical location. In order to have desired on-time deliveries, the minimization of total tardiness cost is
considered as one of our objective functions. Moreover, sequence dependent setup times are taken into
account, i.e. if two consecutively processed products are of different types, then a setup time between
them will be required. These two problem features, i.e. the total tardiness objective and the sequence
dependent setup times are widely used in the literature (see [1, 5, 16, 17, 23, 27]). Buyers (agents or cus-
tomers) are often interested in using quantity discounts in which the supplier will decrease a products
unit price if their customers order quantity exceeds some specified breakpoint. The two most common
types of quantity discount schedules are as follows [6]:

1. all-unit discounts in which every bought item is reduced in price,
2. incremental discounts in which the price reduction is applied to only those bought items above the

corresponding breakpoint.
In this paper, we use the all-unit discount and assume that each product type has its own particular

discount model and discount intervals. In the literature, few papers deal with the distinct discount models
in scheduling problems. To the best of our knowledge, only Lu et al. [31] and Lu et al. [32] investigate
the single-machine scheduling problem with outsourcing and distinct discount models. Because of un-
certainty in the customer demand for future planning periods and to prevent inventory shortages and to
have less setups, safety stocks are often taken into account, which are additional items over the stock
required to response the demand of customers ( [4, 18, 19]) . In this paper, it is assumed that for each
product type, a safety stock must be held, where its amount should not be less than a fixed and known
lower limit. Also, the weighted sum of safety stocks is considered as an objective (see Section 2). In
general, this problem is strongly NP-hard [14], and the results of literature review show that our studied
problem with all the above mentioned features has never been studied in the past, and is a very practical
problem that can be applied in many production and non-production environments such as packing and
distribution centers, chain stores, and so on. The remainder of this paper is organized as follows: In
Subsection 1.1, basic concepts and definitions of the problem are presented. Then, a mixed integer linear
programming (MILP) model to optimally solve the problem and an efficient heuristic algorithm to solve
the problem are proposed in Section 2. The performance of the proposed MILP model and the proposed
heuristics algorithm is evaluated by some test problems in Section 3. Concluding remarks are given in
Section 4.

1.1 Problem definition

The studied problem can be defined as follows. A single factory (machine/facility/distributor) has m
independent agents (customers) placed in different geographical locations. Each agent a (a = 1,2, . . . ,m)
has toa orders and each order includes several product (job) types. lbaop is the minimum required number
of products p for order o of agent a, determined by the agent, i.e. the factory can send (buy) more than
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lbaop to the agent as a surplus buy, but the total number of surplus products of type p for agent o should
not be greater than a predetermined limit ubap. In each order o of agent a, there are naop products of type
p. Processing (producing/packing/) time of one unit of product type p is tp. The parameter tpp′ is the setup
time between two consecutive products p and p′. Obviously, if two consecutively processed products are
of the same type, then the setup time between them is zero. Due to simplicity of the model, we assume
that all same-type products of each order are processed continuously and consecutively. There are V
vehicles for transporting the products to the agents. The capacity of each vehicle is given and denoted by
vcapv, and capacity needed by one unit of product type p is capp. The problem has multiple objectives
as follows:

(1) One of the objectives of the problem is to maximize the total profit of the products, without consid-
ering transportation and tardiness costs, since the problem under study is an integrated scheduling
and transportation problem and also considers tardiness costs. In calculating each product profit,
a discrete discount model is taken into account. We assume that each product p has Dp discount
intervals and epdp’s (dp = 1,2, . . . ,Dp) are corresponding break points. This means that if the fac-

tory sells NDdp
ap products of type p to agent a which is in interval [epdp ,epdp+1], then its one-unit

profit is equal to pro f itdp
p .

(2) Another objective is the minimization of the transportation costs which is the sum of the fixed costs
of vehicles selected and used in the system. It is assumed that each selected vehicle is applied for
only one travel from the factory to several agents. Moreover, we assume that the transportation
times are negligible in comparison with the processing times of the products, and so the orders
delivery times are equal to their completion times. In this paper, instead of using transportation
planning models and finding shortest paths which leads to a much more complex model, we use
a new, simple and effective constraint in which, two agents a and a′ can be consecutively served
by the same vehicle, if and only if the distance between them is less than or equal to a given limit
(distmax).

(3) The third objective is to minimize the total tardiness costs. Each order o of agent a has a due date
dueao and if its delivery time is greater than this due time, then a penalty cost tcao must be paid for
each unit-time tardiness.

Since objectives (1), (2) and (3) have the same dimension; we merge them as a single objective.

(4) In this objective, we look for solutions in which, less number of agents are served by each vehicle,
or less number of vehicles are applied to transport the orders of each agent. By using this objective,
the number of loading and unloading and the distance traveled by each vehicle is minimized.

(5) The fifth objective is to maximize the weighted sum of safety stocks. Weight (importance coef-
ficient) of safety stock of product p, denoted by σp, is determined by its price, demand, weight,
volume and other factors. Greater value of σp means that more safety stock should be held. How-
ever, each product p has a lower bound lb.ssp, i.e. its safety stock should not be less than this lower
bound.

The problem is to determine:

- How many products of different types are produced and delivered for each agent, taking into ac-
count its lower and upper limits (lbaop and ubap) and discount intervals?
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- The processing of each product type of each order is started at what time?
- Which vehicles are selected and used for transporting the orders to the agents?
- Which orders are transported by each used vehicle?
- How much safety stock is held in the system for each product type?

A comprehensive MILP model and a heuristic algorithm are developed in the next section. Other as-
sumptions considered in this paper are stated as follows:

- The products are independent of each other,
- The processing of the products is done without any interruption, i.e. no preemption is allowed,
- The processing of all the products can be started at time zero,
- The factory (machine) is continuously available during the planning horizon,
- All parameters of the problem are deterministic and there is no randomness.

2 The proposed solution approaches

In this section, we present two approaches to solve this problem, one based on an MILP optimization
and the other based on a heuristic algorithm.

2.1 Proposed mathematical model

In this subsection, a MILP model is presented for the problem. The notations used in this model are
defined as follows.

Indices and parameters:
m: number of agents,
n: total number of products,
toa: number of orders of agent a,
a: index of agents, a = 1,2, . . . ,m,
p: index of products, p = 1,2, . . . ,n,
o: index of orders, o = 1,2, . . . ,k,
v: index of vehicles, v = 1,2, . . . ,V ,
dp: index of discount intervals of product p, dp = 1,2, . . . ,Dp,
ob j: index of objective functions, ob j = 1,2,3,
distmax: maximum allowed distance between each two agents consecutively served by the same
vehicle,
σp: weight (importance coefficient) of safety stock of product p,
gaa′ : a binary parameter taking value 1 if the distance between two agents a and a′ is less than or
equal to distmax and 0 otherwise,
tp: processing time of product p,
vcapv: capacity of vehicle v,
capp: capacity needed by one unit of product p,
dueao: due time of order o of agent a,
pro f itdp

p : profit of product p in discount interval d,
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tcao: penalty of unit-time tardiness of order o of agent a,

f cv: fixed cost of vehicle v,

stpp′ : setup time between two consecutively processed products p and p′,

lb.ssp: lower bound of safety stock level of product p,

epdp : dth price break point of product p,

lbaop: minimum required number of product p for order o of agent a,

ubap: an upper bound on the surplus number of products p sold to agent a,

M: a big number.

Decision variables:

Caop: completion time of product p of order o of agent a,

Naop: number of product p produced and delivered for order o of agent a,

DTao: delivery time of order o of agent a,

TARao: tardiness of order o of agent a,

NDdp
ap : number of product p of agent a which is sold at price of discount interval d,

SSp: value of safety stock of product p,

Hv: a binary variable taking value 1, if vehicle v is selected and used and 0 otherwise,

Yaov: a binary variable taking value 1, if order o of agent a is transported by vehicle v and 0 other-
wise,

Y 1av: a binary variable taking value 1, if one or more orders of agent a is transported by vehicle v,
and 0 otherwise,

αaopa′o′p′ : a binary variable taking value 1, if the processing of product p of order o of agent a
precedes the processing of product p′ of order o′ of agent a′, and 0 otherwise,

Xdp
ap : a binary variable taking value 1, if product p of agent a is sold at price of discount interval d

and 0 otherwise.

The proposed mixed integer non-linear programming (MINLP) model is given below:

max Z = [∑
a

∑
p

∑
dp

NDdp
ap× pro f itdp

p ]−∑
a

toa

∑
o

tcao×TARao−∑
v

f cv×Hv, (1)

min u1 = ∑
v

∑
a

Y 1av, (2)

max u2 = ∑
p

σp×SSp, (3)
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such that:

∑
a

∑
o6toa

∑
p

capp×Naop×Yaov 6 vcapv; ∀v, (4)

DTao >Ca′p′o′ −M(2−Yaov−Ya′o′v); ∀a′,o′,v,o 6 a, p′, toa, toa′ , (5)
Caop 6Ca′o′p′ − ((Na′o′p′ −SSp′)tp′)− stpp′ +M(1−αaopa′o′p′); ∀a, p,o 6 toa,a′, p′,o′, p < p′, toa′ , (6)
Ca′o′p′ 6Caop− ((Naop−SSp)tp)− stp′p +M×αaopa′o′p′); ∀a, p,o 6 toa,a′, p′,o′, p < p′, toa′ , (7)
TARao > DTao−dueao; ∀a,o 6 toa, (8)
Yaov 6 Hv; ∀a,o 6 toa,v, (9)

∑
a

Y 1av−1 6 ∑
a′

∑
a

gaa′ ×Y 1a′v×Y 1av; ∀v, (10)

Yaov 6 Y 1av; ∀a,o 6 toa,v, (11)

∑
v

Yaov = 1; ∀a,o 6 toa, (12)

Naop > lbaop; ∀a, p,o 6 toa, (13)

∑
o6toa

Naop 6 ∑
o6toa

lbaop +ubap; ∀a, p, (14)

∑
o6toa

Naop = ∑
d

NDdp
ap; ∀a, p, (15)

SSp > lb.ssp; ∀p, (16)

(epdp− epdp−1)X
dp
ap 6 NDdp−1

ap < (epdp− epdp−1)X
dp−1
ap ; ∀a, p,dp, (17)

TARao,SSp,Naop,NDdp
ap,DTao,Caop > 0; ∀a, p,o 6 toa, (18)

Yaov,Y 1av,Hv,αaopa′o′p′ ,X
dp
ap ∈ {0,1}; ∀v,a, p,o 6 toa,d,a′, p′,o′ 6 toa′ . (19)

The relations (1), (2) and (3) are the objective functions. The first objective function (1) is to maximize
the total profit taking into account the selling price discounts, the total tardiness costs and the total
vehicle costs. The second objective function (2) is the minimization of the number of agents served by
each vehicle; and the third objective function (3) is the weighted sum of safety stocks. Constraint (4)
is related to the capacity of vehicles and ensures that the total volume of the products carried by each
vehicle does not exceed its capacity. Constraint (5) computes the delivery times of orders; the delivery
time of each order of each agent is equal to the maximum completion time of the products belonging to
this order. Constraints (6) and (7) guarantee that processing of the products do not overlap. Constraint (8)
calculates the tardiness of orders. According to constraint (9), orders can be assigned to vehicle v only if
the vehicle is selected to be used (Hv = 1). By constraint (10), two agents a and a′ can be consecutively
served by the same vehicle, if and only if the distance between them does not exceed the maximum
allowed distance (distmax). Constraint (11) is a relationship between variables Yaov and Y 1av; based on
these constrains that the variable Y 1av takes value 1, if at least one order of agent a is transported by
vehicle v. Constraint (12) ensures that order o of agent a is transported by only one vehicle. Constraint
(13) ensures that the number of product p for order o of agent a is not less than its lower limit (lbaop).
Constraint (14) takes care of the requirement that the total number of surplus products of type p for agent
o is not greater than its upper limit (ubap). Constraint (15) computes the total number of product type p
that is sold to agent a. Constraint (16) guarantees that the value of safety stock of each product type p
is not less than its lower bound (lb.ssp). Constraint (17) indicates the discount limit, which represents
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the amount of produces that are provided at that discount interval. Constraint (18) is a non-negativity
constraint, and constraint (19) defines the binary variables. Overall, in the proposed MINLP model, the
maximum number of variables and constriants are

(2n+V +2)(
m

∑
a=1

toa)+2m(
n

∑
p=1

Dp)+n+V +mV +(
n2−n

2
)(

m

∑
a=1

toa)
2,

and

2V +nV (
m

∑
a=1

toa)
2 +2(

n2−n
2

)(
m

∑
a=1

toa)
2 +(2V +n+2)(

m

∑
a=1

toa)+2mn+n+m(
n

∑
p=1

Dp),

respectively.

2.2 Mathematical model linearization

Now, we linearize constraints (4) and (10) as follows and convert the MINLP model to an MILP model.
For constraint (4), we use the following two constraints instead of them:

∑
v

N′aopv > Naop (20)

N′aopv 6 M×Yaov (21)

We can also linearize constraint (10) in the proposed model by replacing the non-linear term Y 1a′v×Y 1av

in constraint (10) with a variable Y 2aa′v and adding the following constraints to the model as follows:

Y 1a′v +Y 1av−1 6 Y 2aa′v (22)

Y 1a′v +Y 1av > 2×Y 2aa′v (23)

Example 1. A numerical example: In order to demonstrate the performance of the proposed mathemat-
ical model, a numerical example is solved by the model and by using CPLEX solver of GAMS software.
In this example, it is assumed that there are 4 agents, each of which can have up to 3 orders, along with
6 different product types and 7 vehicles. The values of parameters for this example are given as follows:

distmax = 500, M = 10000, tp = [5 5 4 6 5 2],

capp = [4 3 7 5 5 3], σp = [1 1 1 1 1 1],

vcapv = [1000 1500 2500 3000 3500 3800 4200],

f cv = [1000 1500 3000 3500 4000 4300 4500],

lb.ssp = [10 10 10 10 10 10], toa = [1 3 2 1],
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gaa′ =


0 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0

 , dueao =


500 − −
500 550 800
650 500 −
390 − −

 , tcao =


300 − −
260 200 250
500 260 −
350 − −

 ,

pro f itdp
p =



1800 1700 − − −
800 700 600 550 −
1500 1400 1300 1200 −
1100 1000 800 700 600
1000 950 − − −
2000 1800 − − −

 , epdp =



0 70 − − −
0 20 50 100 −
0 10 50 90 −
0 20 30 50 90
0 80 − − −
0 70 − − −

 ,

ubap =


− − 10 5 10 −
10 30 − − 10 −
10 10 − 20 − 20
− 10 − 30 20 −

 , stpp′ =



0 3 3 2 0 1
3 0 6 5 0 1
3 6 0 2 0 1
2 5 2 0 0 1
0 0 0 0 0 1
1 1 1 1 1 0

 ,

lbaop =



− − 9 5 4 −
− − − − 5 2
− 3 11 13 − −
1 8 2 − 4 4

10 12 − − − −
5 5 − 3 10 9
1 1 − 9 10 −


.

The results of solving the example by CPLEX solver of GAMS software are as follows:

TARao =


17.000 − −
35.333 0 0

0 79.500 −
19.000 − −


SSp = (10 10 10 10 49695.500), Z = 279193.333, u1 = 4.0, u2 = 49745.5

In this solution, vehicles 1, 2 and 3 are selected and used to transport the orders of agents (see Figure 1).

2.3 Proposed heuristic algorithm

Since the proposed model has many numbers of variables and constraints, solving it directly by GAMS
is time consuming, thus in this subsection, a heuristic algorithm is proposed to solve the problem. The
details of the algorithm are presented in Algorithm 1. It should be noted that this algorithm improves
only the first objective function (Z) which is the most important one. The algorithm is based on a greedy
process and implemented in three phases, and the maximum amount of profit obtained from these three
phases and corresponding solution is considered as its output. In the first phase of the above algorithm,
the minimum amount of products (lbaop) is assigned to each order and corresponding total profit (Z1) is
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Figure 1. Optimal solution of the numerical example (selected vehicles and their routes). 

 

 

Figure 1: Optimal solution of the numerical example (selected vehicles and their routes).

calculated. In the second phase, the minimum amount of products (lbaop) plus the maximum amount of
products (ubap) is assigned to each order and corresponding total profit (Z2) is calculated. Finally, in the
third phase, starting with the minimum amount of products (lbaop) assigned to each order, in an iterative
process, one unit is added to a product of an order selected to be sent (if it does not exceed the maximum
allowed number of that product per agent) at each step. This is done by using an auxiliary matrix am,
which is a zero matrix in first iteration, and only one unit is added to the sum of its elements in each
next iteration (if the value of each matrix element does not exceed the value of corresponding element
in matrix ubap). Each of these iterations is considered as a feasible solution and its objective value (total
profit) is calculated. Z3 is considered as the best objective value obtained from this phase. At the end,
the best objective value obtained from the above three phases and corresponding solution is considered
as the output of the algorithm.

We use the following auxiliary symbols in the algorithm:
Toi ,Tmax−oi ,Tam−oi : processing time of order oi in phases 1, 2 and 3, respectively,
Coi ,Cmax−oi ,Cam−oi : the total capacity of order oi in phases 1, 2 and 3, respectively,
[am]A×P: auxiliary matrix of size A×P,
amap: element ap of matrix am.
The above values are obtained from the following equations:

Toi = ∑
a

∑
p

lbaoi p× tp, Coi = ∑
a

∑
p

lbaoi p× capp,

Tmax−oi = ∑
a

∑
p
(lbaoi p +ubap)× tp, Cmax−oi = ∑

a
∑
p
(lbaoi p +ubap)× capp,

Tam−oi = ∑
a

∑
p
(lbaoi p +amap)× tp, Cam−oi = ∑

a
∑
p
(lbaoi p +amap)× capp.
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We use these values at the beginning of each phase of the algorithm as a criterion to select and assign an
order to a vehicle.

Algorithm 1. Heuristic Algorithm
Input:
a: index of agents, a = 1,2, . . . ,m,
p: index of products, p = 1,2, . . . ,n,
o: index of orders, o = 1,2, . . . ,k,
v: index of vehicles, v = 1,2, . . . ,V ,
dp: index of discount intervals of product p, dp = 1,2, . . . ,Dp,
tp: processing time of product p,
vcapv: capacity of vehicle v,
capp: capacity needed by one unit of product p,
dueao: due time of order o of agent a,
pro f itdp

p : profit of product p in discount interval d,
tcao: penalty of unit-time tardiness of order o of agent a,
f cv: fixed cost of vehicle v,
epdp : dth price break point of product p,
lbaop: minimum required number of product p for order o of agent a,
ubap: an upper bound on the surplus number of product p sold to agent a,
gaa′ : a binary parameter taking value 1, if the distance between two agents a and a′

is less than or equal to distmax and 0 otherwise,
Output:
ZA: first objective function (Z).

/* Phase 1 (Steps 1-4) */
1: Set Z1 = 0.
2: Assign the minimum number of products (lbaop) to each order o of agent a and then compute the total

processing time {To1 ,To2 , . . . ,Tok} and the total capacity {Co1 ,Co2 , . . . ,Cok} required for all k orders {o1,o2, . . . ,ok}.
3: for i=1 to k

Find order oi with minimum processing time value (Toi ). Then, find a vehicle vt whose capacity is nearest
to the capacity of order oi.
Compute Z1 = Z1 +∑p NDdp

ap× pro f itdp
p − f cvt − tcaoi ×TARaoi , where NDdp

ap is the number of product
p of agent a, which is sold at price of discount status d.

4: end for
/* Phase 2 (Steps 5-8) */
5: Set Z2 = 0.
6: Assign the minimum (lbaop) plus the maximum (ubap) number of products to each order and then compute

the total processing time {Tmax−o1 ,Tmax−o2 , . . . ,Tmax−ok} and the total capacity {Cmax−o1 ,Cmax−o2 , . . . ,Cmax−ok}
required for each order,

7: for i = 1 to k
Find order oi with minimum processing time value (Tmax−oi ). Then, find a vehicle vt whose capacity is
nearest to the capacity of order oi.
Given the discount status d, compute Z2 = Z2 +∑p NDdp

ap× pro f itdp
p − f cvt − tcaoi ×TARaoi .

8: end for
/* Phase 3 (Steps 9-19) */
9: Define auxiliary matrices [am]A×P, [am′]A×P and set [am]A×P = 0.
10: Set Z3 = Z1, Z′ = Z3.
11: while (∑A

i ∑
P
j ami j 6 ∑

A
i ∑

P
j ubi j)

12: Set Z3 = 0.
13: Construct a matrix am′, such that ∑

A
i ∑

P
j am′i j 6 ∑

A
i ∑

P
j ami j +1 .

14: Set [am]A×P = [am′]A×P.
15: Assign the minimum number of products (lbaop) plus the auxiliary matrix (amap) to each order o
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and then compute the total processing time {Tam−o1 ,Tam−o2 , . . . ,Tam−ok} and the total capacity
{Cam−o1 ,Cam−o2 , . . . ,Cam−ok} required for each order.

16: for i = 1 to k
Find order oi with minimum processing time value (Tam−oi ). Then, find a vehicle vt whose capacity
is nearest to the capacity of order oi.
Given the discount status d, compute Z3 = Z3 +∑p NDdp

ap× pro f itdp
p − f cvt − tcaoi ×TARaoi .

17: end for
18: if (Z3 > Z′) then set Z′ = Z3.
19: end of while
20: Set Z3 = Z′.
21: ZA = Max(Z1,Z2,Z3).
22: Return ZA as output.

Now, we analyze the time complexity of the proposed algorithm. Let the total number of orders be
N = k. In all three phases of the algorithm, the calculations of processing times (Toi) and capacities (Coi)
for all orders take a time of O(N). As mentioned earlier, in the first and second phases, for each order, a
suitable vehicle is found at each step and the order is assigned to it; this has the running time of O(N) for
each order, and so needs time of O(N2) for all orders. The third phase also needs the same time, except
that the while loop is repeated τ times, therefore the running time of the third phase will be O(τN2),
where τ = ∑

A
i ∑

P
j ubi j, and since it is a constant value, the total running time of the heuristic algorithm

will be O(N2).

3 Experimental results

In this section, we compare the computational results of two approaches (i.e., MILP and the heuristic
algorithm) on a variety of datasets. In these datasets, the number of agents (m) is from 2 to 20, the
number of orders (k) is from 1 to 5, the number of products (n) is from 4 to 50, and the number of
available vehicles (V ) is from 3 to 25. The values of parameters for these datasets are random integers
from the uniform distribution in ranges given in Table 1. We implement our proposed heuristic algorithm
in C++ programming language. The mathematical model is also run in GAMS software. Both the
mathematical model and the heuristic algorithm are run on an Intel (R) Core (TM) i7 CPU and 12 GB
RAM computer with the Windows 10 operating system.

These results of computational studies are presented in Tables 2, 3 and 4. In these tables, column
m represents the number of agents, column k represents the maximum number of orders for each agent,
column n represents the number of products, and column V represents the number of available vehicles.
The results of solving the mathematical model by GAMS software and the heuristic algorithm are given
in columns GAMS and heuristic, respectively, in terms of the value of the objective function (Z), the
execution time (Time (s)) and Gap. The column (Gap percent) shows the percentage error of the objective
function value of the corresponding method (i.e. GAMS or heuristic) that is calculated as follows:

Gap =
(ZBest −ZM)

ZBest
×100.

In the above relation, ZM is the objective function value of the corresponding method (i.e. GAMS or
heuristic) and ZBest is the best objective value obtained by the two approaches for the considered instance.
All running times in seconds are also reported in column Time(s). Since optimally solving the larger size
instances by GAMS software was very time-consuming, the running time of each instance was limited
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Table 1: The ranges of parameter values for generated datasets.

Parameter Range
tp 1-50
capp 10-50
vcapv 1000-10000
f cv 1000-10000
toa 1-5
pro f itdp

p 1000-5000
ubap 10-100
lbaop 1-50
stpp′ 0-10
dueao 100-1000
σp 1-4
Dp 1-5
distmax 500
tcao 100-1000
lb.ssp 10-100
epdp 0-200

to 3600 CPU seconds. In Tables 2, 3 and 4, non-bold rows denote the optimal solutions obtained by the
GAMS and bold rows denote the best solutions obtained by the GAMS after 3600 seconds.

Herein, we statistically compare the results of the heuristic and the GAMS by some statistical exper-
iments performed by the statistical software SPSS. First, using the results of the three instances set (i.e.
instances 1-30, 31-60 and 61-100), three one-way analysis of variance (ANOVA) tests are performed to
test the null hypothesis that the means of the two approaches (i.e. the heuristic and the GAMS), are equal
at a significance level of 5 percent. The results of these ANOVA tests are given in Tables 5, 6 and 7,
respectively. We also perform the same ANOVA test for all 100 instances and report its results in Table 8.
As it can be seen from all these tables, there is no significance difference between the means of the two
approaches for all three instance sets. Taking into account that the running time of the heuristic is much
less than the GAMS and less than 2 seconds, we can conclude that the heuristic has better performance
and can be applied to generate good-quality and competitive solutions for real-world problems in very
short execution time.

To see the differences between the two approaches (i.e. the heuristic and the GAMS) for different
values of m,k, n and V , we now investigate them graphically. Figures 2, 3, 4 and 5 show a graphical
comparison of the average Gap percent of the two methods for different values of these parameters.
Therefore, for each value of these parameters (i.e. m,k,n and V ), the Gap percent reported in these
figures is average Gap percent of instances corresponding to that value among all 100 instances. As it
can be seen from these figures, the results of heuristic algorithm are totally better than those of GAMS.
In Figures 2, 4 and 5, the heuristic generates better solutions than the GAMS for larger size instances,
but for Figure 3, the GAMS has better performance for larger instances. As shown in this figure, the
heuristic does not generate good-quality solutions for larger values of k.



Multi-agent single machine scheduling problem with transportation constraints 379

Table 2: Experimental results for the datasets with 2, 3 and 4 agents.

GAMS Heuristic
Instance m k n V ZG Time(s) Gap ZH Time(s) Gap
1 1 4 3 67700 0.03 0.00 67700 0 0.00
2 2 5 3 169450 15 0.00 169450 0 0.00
3 2 6 3 219700 330 0.00 218400 0 0.59
4 2 8 3 186450 35 0.00 186450 0 0.00
5 2 2 10 3 171500 584 0.00 171500 0 0.00
6 2 12 3 198800 2481 0.00 189600 0 4.63
7 3 4 3 140800 0.08 0.00 140800 0 0.00
8 3 5 4 170500 253 0.00 165000 0 3.23
9 3 6 4 192200 1892 0.00 189500 0 1.40
10 3 8 4 176300 3600 0.00 170000 0 3.57
11 1 4 3 165320 0.6 0.00 165320 0 0.00
12 1 5 3 195000 7.3 0.00 195000 0 0.00
13 1 6 3 191000 526 0.00 189500 0 0.79
14 2 5 4 200450 34 0.00 200450 0 0.00
15 3 2 6 4 201700 766 0.00 194300 0 3.67
16 2 8 4 220140 2432 0.00 210600 0 4.33
17 2 10 4 215950 3600 0.00 200950 0 6.95
18 3 6 4 81690 3600 0.00 76690 0 6.12
19 3 7 4 101800 3600 0.00 95210 0 6.47
20 3 8 4 95760 3600 0.00 92220 0 3.70
21 1 4 4 227500 3 0.00 227500 0 0.00
22 1 5 4 230220 111 0.00 228300 0 0.83
23 1 6 4 235500 648 0.00 229500 0 2.55
24 2 4 5 192600 3116 0.00 183600 0 4.67
25 4 2 6 5 226400 3600 0.00 212200 0 6.27
26 2 8 5 239220 3600 0.00 215330 0 9.99
27 3 5 5 95520 3600 0.00 90500 0 5.26
28 3 6 5 71540 3600 0.00 70520 0 1.43
29 3 8 5 72480 3600 0.00 68050 0 6.11
30 3 10 5 105500 3600 0.00 95500 0 9.48

In summary, the results of computational experiments show that the proposed heuristic algorithm can
generate good-quality and competitive solutions, even for large size instances, in very short running time
(less than 2 seconds).

4 Conclusions

The main idea of this research is to develop a simple and integrated scheduling and transportation model
which can be applied in many factories, packing and distribution centers, chain stores, and so on. We
present a mixed integer linear programming model for the problem. Due to the high complexity of the
problem, we also develop a new heuristic algorithm to solve large–scale instances of the problem. The
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Table 3: Experimental results for the datasets with 5, 6 and 7 agents.

GAMS Heuristic
Instances m k n V ZG Time(s) Gap ZH Time(s) Gap
31 1 4 4 242300 6.8 0.00 242300 0 0.00
32 2 4 4 331480 152.5 0.00 331480 0 0.00
33 2 6 4 372600 336 0.00 370020 0 0.69
34 2 8 4 255000 24.1 0.00 255000 0 0.00
35 5 3 10 4 299350 921 0.00 280500 0 6.30
36 3 12 4 322470 3600 0.00 311000 0 3.56
37 3 4 5 301450 2.7 0.00 301450 0 0.00
38 4 5 5 277600 119 0.00 273200 0 1.59
39 4 6 5 194420 2855 0.00 180150 0 7.34
40 4 8 5 196000 3600 0.00 185500 0 5.36
41 1 4 4 285220 20.9 0.00 285220 0 0.00
42 1 5 4 287720 89.2 0.00 287720 0 0.00
43 2 6 4 272320 302 0.00 271150 0 0.43
44 2 8 5 355000 652 0.00 342600 0 3.49
45 6 3 6 5 175520 1502 0.00 163200 0 7.02
46 3 8 5 186400 2157 0.00 174000 0 6.65
47 3 10 5 188450 3600 0.00 173520 0 7.92
48 4 6 6 152300 3600 0.00 139500 0 8.40
49 4 7 6 155520 3600 0.00 148500 0 4.51
50 4 8 6 164800 3600 0.00 156900 0 4.79
51 1 4 5 215000 7.7 0.00 215000 0 0.00
52 1 5 5 220800 25.3 0.00 220800 0 0.00
53 2 6 5 187500 860 0.00 181500 0 3.20
54 2 4 5 95020 3600 0.00 86500 0 8.97
55 7 2 6 6 112500 3600 0.00 108080 0 3.93
56 2 8 6 153600 3600 0.00 143600 0 6.51
57 3 6 6 336000 3600 0.00 318900 0 5.09
58 3 8 6 300850 3600 0.00 286600 0 4.74
59 4 8 6 122000 3600 0.00 113000 0 7.38
60 4 10 6 152550 3600 0.00 139200 0 8.75

results of computational experiments show that the proposed heuristic algorithm has good performance
and can obtain good–quality solutions in comparison with the solutions obtained by MILP model in
GAMS software, especially for large–scale instances. Some directions for future work are suggested as
follows:

– Solving the model with different meta–heuristic algorithms,
– Taking into account other discount models such as continuous discount models,
– Applying the vehicle routing models to more decrease the transportation costs,
– Applying the inventory control models,
– Applying the time periods.
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Table 4: Experimental results for the datasets with 8 to 20 agents.

GAMS Heuristic
Instances m k n V ZG Time(s) Gap ZH Time(s) Gap
61 1 6 6 320750 166 0.00 319900 0 0.27
62 2 6 6 355300 702 0.00 345000 0 2.90
63 2 8 6 352000 1524 0.00 343500 0 2.41
64 3 8 7 272500 3600 0.00 261100 0 4.18
65 8 3 10 7 288500 3600 0.00 269420 0 6.61
66 4 8 7 312500 3600 0.00 300800 0 3.74
67 4 9 7 313400 3600 0.00 301700 0 3.73
68 4 10 7 355500 3600 0.00 340500 0 4.22
69 5 6 8 186620 3600 0.00 169800 0 9.01
70 5 8 8 214500 3600 0.00 200240 0 6.65
71 1 6 7 155000 330 0.00 155000 0 0.00
72 2 6 7 125000 2444 0.00 116500 0 6.80
73 2 8 7 147750 3600 0.00 144000 0 2.54
74 3 8 7 227000 3600 0.00 215050 0 5.26
75 9 3 10 8 76200 3600 1.68 77500 0 0.00
76 4 8 8 166500 3600 0.00 159000 0 4.50
77 4 10 8 175800 3600 0.00 166200 0 5.46
78 5 8 8 262500 3600 0.00 250700 0.1 4.50
79 5 9 9 368200 3600 0.46 369900 0.5 0.00
80 5 10 9 357500 3600 0.00 350000 0.4 2.10
81 1 8 9 122400 412 0.00 122400 0 0.00
82 2 8 9 102500 3600 0.00 99500 0 2.93
83 2 10 9 122250 3600 6.14 130250 0 0.00
84 3 8 9 151000 3600 0.00 150050 0.3 0.63
85 3 10 9 169300 3600 1.86 172500 0.8 0.00
86 10 4 6 10 295000 3600 0.00 290000 0.8 1.69
87 4 8 10 288560 3600 2.35 295500 0.8 0.00
88 4 10 10 342200 3600 8.13 372500 0.2 0.00
89 5 8 10 186000 3600 6.74 199450 0.5 0.00
90 5 10 10 180400 3600 4.80 189500 0.8 0.00
91 1 20 10 1000020 3600 5.21 1055000 0 0.00
92 2 20 10 1338000 3600 12.15 1523000 0.2 0.00
93 12 1 20 15 1922000 3600 10.42 2145500 0.1 0.00
94 2 25 15 1565800 3116 8.89 1718500 0 0.00
95 15 1 25 18 2336430 3600 8.70 2559200 0 0.00
96 2 30 18 2002790 3600 14.18 2333650 1.2 0.00
97 17 2 25 20 1738300 3600 6.84 1866000 0.9 0.00
98 3 30 20 3237700 3600 16.32 3869200 1.8 0.00
99 20 2 40 25 4292230 3600 10.79 4811150 1.1 0.00
100 3 50 25 Out of memory 3600 – 3620050 1.6 0.00
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