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Abstract. This research describes a new fifth-order finite difference symmetrical WENO-Z scheme for
solving Hamilton-Jacobi equations. This method employs the same six-point stencil as the original fifth-
order WENO scheme (SIAM J. Sci. Comput. 21 (2000) 2126–2143) and a new WENO scheme recently
proposed (Numer. Methods Partial Differential Eq. 33 (2017) 1095–1113), and could generate better
results and create the same order of accuracy in smooth area without loss of accuracy at critical points
simultaneously avoiding incorrect oscillations in the vicinity of the singularities. The new reconstruction
is a convex combination of a fifth-order linear reconstruction and three third-order linear reconstruc-
tions. We prepare a detailed analysis of the approximation order of the designed WENO scheme. Some
benchmark tests in 1D, 2D and 3D are performed to display the capability of the scheme.
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1 Introduction

This research aims at obtaining numerical solutions for multi-dimensional Hamilton-Jacobi (HJ) equa-
tions of the form

∂φ

∂ t
(−→x , t)+H(−→x , t,φ ,∇φ) = 0, −→x = (x1, . . . ,xd) ∈ Rd . (1)

The Hamiltonian, H, depends on ∇φ , φ and possibly on −→x and t. This type of equations are often
appeared in many applications such as image processing, variational calculus, computer vision, material
science and geometric optics [8, 11, 27, 41].

Although the solutions of HJ equations are usually continuous, their derivatives are discontinuous;
even when the initial condition is smooth. Accordingly, it is better to study them in a suitable weak
formulation. Such a weak formulation is presented by so-called viscosity solutions (see [13, 14, 26, 28,
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42] and the references therein). Theoretically, the existence, uniqueness, and stability of the viscosity
solution for (1) are proved by Crandall and Lions through appropriate assumptions on the Hamiltonian
H and the initial condition φ(x,0) = φ0. Computationally, monotone schemes [12,15,42] can be applied
for approximation of these viscosity solutions. One of the weaknesses of monotone schemes is that they
are first order accurate, thus they are too dissipative for most practical applications.

Since the HJ equations are well known to be closely related to conservation laws, hence successful
numerical methods for them can be adjusted to approximate the solutions of the HJ equations [1–5].
Accordingly, in last decades, various schemes have been proposed for solving HJ equations (1). Among
them that are proper to this research, the schemes of Osher and Sethian [30] and Osher and Shu [31] can
be listed. These schemes are based on essentially non-oscillatory (ENO) schemes for approximating the
solutions of hyperbolic conservation laws in [19,39,40]. Authors of [22] proposed a compact high-order
method for solving the HJ equations. Their method is based on the weighted ENO (WENO) schemes
for solving hyperbolic conservation laws proposed by Jiang and Shu in [23] and Liu et al. in [29].
Qiu and Shu [32–34] proposed another approach for solving these equations. Their schemes are based
on original Hermite WENO reconstruction. Recently, Zheng and Qiu [46], Tao et al. [43], Zheng et
al. [47] and Tao and Qiu [44] proposed other approaches based on Hermite WENO reconstruction for
solving the HJ equations. ENO reconstruction with unstructured meshes for solving the HJ equations
was proposed by Lafon and Osher in [25]. Abgrall [6], Zhang and Shu [45] used WENO reconstruction
on triangular meshes for solving the HJ equations. In 2004, Serna and Qian applied Weighted power
ENO reconstructions accompanying with upwind fluxes for HJ equations [37]. These scheme are based
on power ENO schemes of [36] for solving conservation laws. Also, authors of [10] combined the
Weighted power ENO reconstruction [37] and the mapped WENO reconstruction [20] and proposed a
new method for solving HJ equations. In 2018, Ha et al. proposed a sixth-order finite difference WENO
scheme based on exponential polynomials for HJ equations [18].

In general, WENO schemes for obtaining the solutions of the HJ equations have three steps: a
monotone numerical Hamiltonian, a high-order WENO type reconstruction and an ordinary differential
equations (ODE) solver. Osher and Shu in [31] performed a good and prefect discussion on monotone
numerical Hamiltonians.

In literature, various ODE solvers have been introduced. The most popular ODE solvers are the
strong-stability preserving Runge-Kutta (SSPRK) schemes [39, 40]. Later, Gottlieb et al. [16, 17] ex-
tended SSPRK schemes. Also, Shu [38] proposed a class of total variation diminishing (TVD) multi-step
methods. Recently, a class of linear multi-step total variation bounded (TVB0) schemes was proposed by
Ruuth and Hundsdorfer [35]. These schemes need fewer CPU (central processing unit) time compared to
SSPRK schemes. Another advantage of TVB0 schemes compared to SSPRK or other multi-step methods
is to avoid undershoots for great time steps. According to these aforementioned advantages, in this paper
TVB0 method of Ruuth and Hundsdorfer [35] is used.

The aim of this paper is to construct a high-order WENO type reconstruction. To construct a new
method, the ideas of previous studies for hyperbolic conservation laws [7, 9, 21] will be used and ex-
tended. First, a six-point stencil will be chosen. Then, an optimum polynomial of fourth degree in a
space of Legendre basis polynomials through this stencil is constructed. Now, four polynomials are
required. Three of them are quadratic. It should be noted that these quadratic polynomials are based
on four-point stencils, obtained from the six-point stencil. The last polynomial is achieved by simple
algebraic calculations among the optimum function and the three functions previously computed. The
role of the last function is only to recovery the accuracy in the smooth regions while in discontinuous
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regions this polynomial is automatically removed by the procedure. Finally, similar to the procedure of
WENO-Z scheme the non-linear weights are computed with the linear weights. Any symmetric selection
of the constants, named the linear weights, will obtain the desired accuracy. Sum equals one is the only
requirement for these symmetric constants.

This paper continuous as follows: the construction and implementation of new scheme for Hamilton-
Jacobi equations will be described in Section 2. Section 3 demonstrates the accuracy and the resolution
capability of the new scheme by several numerical examples. Concluding remarks are provided in Sec-
tion 4.

2 Reconstruction of symmetrical WENO-Z scheme in Legendre basis

This section presents the framework of symmetrical WENO-Z scheme for solving the HJ equations
briefly and afterwards develops the procedures of the new finite difference WENO method for both one
and multi-dimensional HJ equations in detail.

2.1 Notations and preliminaries

First, consider the one-dimensional Hamilton-Jacobi equation with suitable boundary conditions,

φt(x, t)+H(x, t,φ ,φx) = 0, (x, t) ∈Ω× (0,∞), (2)

φ(x, t = 0) = φ0(x). (3)

For the sake of the simplicity, a uniform mesh with cells Ix = [x−∆x,x] is supposed. Let |Ix|= ∆x to be
the length of Ix. Also, the notations φ j ≡ φ j(t) = φ(x j, t) and ∆−φ j = φ j−φ j−1 are considered. Consider
the following semi-discrete method for Eq. (2)

dφ j(t)
dt

=−Ĥ(x j, t,φ j,φ
−
x, j,φ

+
x, j) = F(φ j(t)), (4)

where the term
Ĥ := Ĥ(x j, t,φ j,φ

−
x, j,φ

+
x, j),

is the numerical flux function. The numerical flux is subject to the common conditions for numerical
fluxes, such as Lipschitz continuity and consistency in the sense that Ĥ(x, t,φ ,φx,φx) = H(x, t,φ ,φx). In
this research the Lax-Friedrichs flux is used:

Ĥ(x, t,φ ,u−,u+) = H(x, t,φ ,
u−+u+

2
)+α

u−−u+

2
, (5)

where α = maxu |H1(u)|. Here H1 is the partial derivative of H with respect to φx.

2.2 Reconstruction from point-values

Now, we would like to reconstruct the approximations of φx, j from the right and left sides of x j. The
remaining subsection describes by detailing the construction of the new finite difference WENO method



282 R. Abedian

for solving HJ equations. The Legendre orthogonal monic polynomials, modified for the domain [−1,0],
are given by

L0(x) = 1, L1(x) = x+
1
2
, L2(x) = x2 + x+

1
6
,

L3(x) = x3 +
3
2

x2 +
3
5

x+
1
20

, L4(x) = x4 +2x3 +
9
7

x2 +
2
7

x+
1
70

.

S−1 ,S
−
2 and S−3 are used to denote the stencils {Ix j−2 , Ix j−1 , Ix j}, {Ix j−1 , Ix j , Ix j+1} and {Ix j , Ix j+1 , Ix j+2}, re-

spectively. Also, S+1 ,S
+
2 and S+3 are used to denote the stencils {Ix j−1 , Ix j , Ix j+1}, {Ix j , Ix j+1 , Ix j+2} and

{Ix j+1 , Ix j+2 , Ix j+3}, respectively. The notations S± are applied to denote the larger stencils S±1 ∪ S±2 ∪ S±3 .
Two polynomials of degree four, named optimal polynomials, are considered. These optimum poly-
nomials, presented by p−0 (x) = ∑

4
i=0 aiLi(

x−x j
∆x )i on the left-biased stencil S−, p+0 (x) = ∑

4
i=0 biLi(

x−x j
∆x )i,

on the right-biased stencil S+, are obtained to approximate φx(x j, t) from left and right, respectively.
Following [22, 48], p±0 (x) are uniquely generated by the equations

∫

Ix j+l

p−0 (x)dx = ∆
−

φ j+l, l =−2, . . . ,2, (6)

∫

Ix j+l

p+0 (x)dx = ∆
−

φ j+l, l =−1, . . . ,3. (7)

Now, by solving these linear systems the coefficients can be obtained explicitly to specify p±0 (x) and,
later, the smoothness indicators can be computed

a0 =
∆−φ j

∆x
,

a1 =
11∆−φ j−2−82∆−φ j−1 +82∆−φ j+1−11∆−φ j+2

120∆x
,

a2 =
−3∆−φ j−2 +40∆−φ j−1−74∆−φ j +40∆−φ j+1−3∆−φ j+2

56∆x
,

a3 =
−∆−φ j−2 +2∆−φ j−1−2∆−φ j+1 +∆−φ j+2

12∆x
,

a4 =
∆−φ j−2−4∆−φ j−1 +6∆−φ j−4∆−φ j+1 +∆−φ j+2

24∆x
,

(8)

and

b0 =
∆−φ j

∆x
,

b1 =
−27∆−φ j−1−110∆−φ j +192∆−φ j+1−66∆−φ j+2 +11∆−φ j+3

120∆x
,

b2 =
25∆−φ j−1−44∆−φ j +10∆−φ j+1 +12∆−φ j+2−3∆−φ j+3

56∆x
,

b3 =
−3∆−φ j−1 +10∆−φ j−12∆−φ j+1 +6∆−φ j+2−∆−φ j+3

12∆x
,

b4 =
∆−φ j−1−4∆−φ j +6∆−φ j+1−4∆−φ j+2 +∆−φ j+3

24∆x
.

(9)
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p−1 (x)=∑
2
i=0 αiLi(

x−x j
∆x )i and p+1 (x)=∑

2
i=0 α̃iLi(

x−x j
∆x )i are two quadratic functions defined on S−1 and S+1 ,

respectively. Following a similar discussion, the coefficients of these two polynomials can be obtained
∫

Ix j+l

p−1 (x)dx = ∆
−

φ j+l, l =−2,−1,0, (10)

∫

Ix j+l

p+1 (x)dx = ∆
−

φ j+l, l =−1,0,1, (11)

p−2 (x) =∑
2
i=0 βiLi(

x−x j
∆x )i and p+2 (x) =∑

2
i=0 β̃iLi(

x−x j
∆x )i are two second degree polynomials defined on S−2

and S+2 , respectively. Following the above procedure, the coefficients of both function can be acquired
∫

Ix j+l

p−2 (x)dx = ∆
−

φ j+l, l =−1,0,1, (12)

∫

Ix j+l

p+2 (x)dx = ∆
−

φ j+l, l = 0,1,2, (13)

p−3 (x) = ∑
2
i=0 γiLi(

x−x j
∆x )i and p+3 (x) = ∑

2
i=0 γ̃iLi(

x−x j
∆x )i are two quadratic functions defined on S−3 and S+3 ,

respectively. Following the above procedure, the coefficients of these functions can be calculated
∫

Ix j+l

p−3 (x)dx = ∆
−

φ j+l, l = 0,1,2, (14)

∫

Ix j+l

p+3 (x)dx = ∆
−

φ j+l, l = 1,2,3, (15)

where

α0 =
∆−φ j

∆x
, α̃0 = β0 =

∆−φ j

∆x
,

α1 =
∆−φ j−2−4∆−φ j−1 +3∆−φ j

2∆x
, α̃1 = β1 =

−∆−φ j−1 +∆−φ j+1

2∆x
,

α2 =
∆−φ j−2−2∆−φ j−1 +∆−φ j

2∆x
, α̃2 = β2 =

∆−φ j−1−2∆−φ j +∆−φ j+1

2∆x
,

β̃0 = γ0 =
∆−φ j

∆x
, γ̃0 =

3∆−φ j+1−3∆−φ j+2 +∆−φ j+3

∆x
,

β̃1 = γ1 =
−3∆−φ j +4∆−φ j+1−∆−φ j+2

2∆x
, γ̃1 =

−5∆−φ j+1 +8∆−φ j+2−3∆−φ j+3

2∆x
,

β̃2 = γ2 =
∆−φ j−2∆−φ j+1 +∆−φ j+2

2∆x
, γ̃2 =

∆−φ j+1−2∆−φ j+2 +∆−φ j+3

2∆x
.

(16)

The new symmetrical WENO-Z reconstruction on cells Ix j = [x j−1,x j] and Ix j+1 = [x j,x j+1] is considered
as follow

R±(x) =
w±0
d0

[
p±0 (x)−d1 p±1 (x)−d2 p±2 (x)−d3 p±3 (x)

]
+w±1 p±1 (x)+w±2 p±2 (x)+w±3 p±3 (x). (17)

Here, p±m(x), m = 1,2,3, determined by Eqs. (10)-(15), are the third-order reconstruction on stencil S±m ,
m = 1,2,3, p±0 (x), determined by Eqs. (6) and (7), is the fifth-order reconstruction on stencil S±. Also,
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the set {d0,d1,d2,d3} is the associated linear weights, and the set {w±0 ,w±1 ,w±2 ,w±3 } is the associated non-
linear weights. The WENO reconstruction (17) is a non-linear convex combination of the polynomials
p±m(x), m = 0,1,2,3, thus their ideal weights can be any positive constants with only condition that their
sum equals to one. In this paper, the ideal weights are a symmetrical choice, therefore the reconstruction
(17) is named as symmetrical WENO reconstruction. The smoothness indicators β±m , m = 0,1,2,3 are
calculated to measure the smoothness of p±m(x),m = 0,1,2,3 on cells Ix j and Ix j+1 , respectively, and are
computed by applying various order derivatives. The smaller β±m , m= 0,1,2,3, the smoother p±m(x), m=
0,1,2,3 are in different target cells. The smoothness indicators are computed as follows [48]

β
−
i =

r

∑
k=1

∆x2k−1
∫

Ix j

(
dk p−i (x)

dxk

)2

dx, i = 0,1,2,3, (18)

and

β
+
i =

r

∑
k=1

∆x2k−1
∫

Ix j+1

(
dk p+i (x)

dxk

)2

dx, i = 0,1,2,3. (19)

For i = 0, r equals four and if i = 1,2,3, requals two. Note that, the smoothness indicators can be written
as the sum of square terms explicitly

β
−
0 =

13
3
(
− 11

260
∆
−

φ j−2 +
87
130

∆
−

φ j−1−
163
130

∆
−

φ j +
87
130

∆
−

φ j+1−
11

260
∆
−

φ j+2
)2

+
( 1

12
∆
−

φ j−2−
2
3

∆
−

φ j−1 +
2
3

∆
−

φ j+1−
1
12

∆
−

φ j+2
)2

+
1421461

2275
( 1

24
∆
−

φ j−2−
1
6

∆
−

φ j−1 +
1
4

∆
−

φ j−
1
6

∆
−

φ j+1 +
1
24

∆
−

φ j+2
)2

+
781
20
(
− 1

12
∆
−

φ j−2 +
1
6

∆
−

φ j−1−
1
6

∆
−

φ j+1 +
1
12

∆
−

φ j+2
)2
,

β
−
1 =

13
3
(1

2
∆
−

φ j−2−∆
−

φ j−1 +
1
2

∆
−

φ j
)2

+
(1

2
∆
−

φ j−2−2∆
−

φ j−1 +
3
2

∆
−

φ j
)2
,

β
−
2 =

13
3
(1

2
∆
−

φ j−1−∆
−

φ j +
1
2

∆
−

φ j+1
)2

+
(
−1

2
∆
−

φ j−1 +
1
2

∆
−

φ j+1
)2
,

β
−
3 =

13
3
(1

2
∆
−

φ j−∆
−

φ j+1 +
1
2

∆
−

φ j+2
)2

+
(
−3

2
∆
−

φ j +2∆
−

φ j+1−
1
2

∆
−

φ j+2
)2
,

β
+
0 =

13
3
(
− 11

260
∆
−

φ j−1 +
87
130

∆
−

φ j−
163
130

∆
−

φ j+1 +
87
130

∆
−

φ j+2−
11

260
∆
−

φ j+3
)2

+
( 1

12
∆
−

φ j−1−
2
3

∆
−

φ j +
2
3

∆
−

φ j+2−
1
12

∆
−

φ j+3
)2

+
1421461

2275
( 1

24
∆
−

φ j−1−
1
6

∆
−

φ j +
1
4

∆
−

φ j+1−
1
6

∆
−

φ j+2 +
1
24

∆
−

φ j+3
)2

+
781
20
(
− 1

12
∆
−

φ j−1 +
1
6

∆
−

φ j−
1
6

∆
−

φ j+2 +
1
12

∆
−

φ j+3
)2
,

β
+
1 =

13
3
(1

2
∆
−

φ j−1−∆
−

φ j +
1
2

∆
−

φ j+1
)2

+
(1

2
∆
−

φ j−1−2∆
−

φ j +
3
2

∆
−

φ j+1
)2
,

β
+
2 =

13
3
(1

2
∆
−

φ j−∆
−

φ j+1 +
1
2

∆
−

φ j+2
)2

+
(
−1

2
∆
−

φ j +
1
2

∆
−

φ j+2
)2
,

β
+
3 =

13
3
(1

2
∆
−

φ j+1−∆
−

φ j+2 +
1
2

∆
−

φ j+3
)2

+
(
−3

2
∆
−

φ j+1 +2∆
−

φ j+2−
1
2

∆
−

φ j+3
)2
.

(20)
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As can be seen from Eq. (20), the computation of smooth indicator is a heavy section in the total
computation of WENO reconstruction (17). The computational cost of β

±
0 is comparable to the sum of

the other three β±m , m = 0,1,2, hence is too heavy. If there exists a discontinuity crossing the stencil
of the discretization scheme, the smoothness β

±
0 will always detect it, whatever the location of this

discontinuity. Initially, β
±
0 is associated with p±0 (x) of which the role is to help to recover the optimum

polynomial p±0 (x) when the solution is smooth on the discretization stencil. On the contrary, when the
solution becomes discontinuous, p±0 (x) must always be discarded and the procedure must select between
the polynomials p±1 (x), p±2 (x) or p±3 (x). This is the main reason why the definition of β

±
0 is somewhat

different from that of β±m , m = 1,2,3. From Taylor series expansions at x j, we have

β
−
0 = φ

′′2
j ∆x2−φ

′′
j φ
′′′
j ∆x3 +(

1
3

φ
(4)
j φ

′′
j +

4
3

φ
′′′2
j )∆x4 +(−5

4
φ
(4)
j φ

′′′
j −

1
12

φ
(5)
j φ

′′
j )∆x5 +O(∆x6),

β
−
1 = φ

′′2
j ∆x2−φ

′′
j φ
′′′
j ∆x3 +(−1

3
φ
(4)
j φ

′′
j +

4
3

φ
′′′2
j )∆x4 +(−37

12
φ
(4)
j φ

′′′
j +

3
4

φ
(5)
j φ

′′
j )∆x5 +O(∆x6),

β
−
2 = φ

′′2
j ∆x2−φ

′′
j φ
′′′
j ∆x3 +(

2
3

φ
(4)
j φ

′′
j +

4
3

φ
′′′2
j )∆x4 +(−17

12
φ
(4)
j φ

′′′
j −

1
4

φ
(5)
j φ

′′
j )∆x5 +O(∆x6),

β
−
3 = φ

′′2
j ∆x2−φ

′′
j φ
′′′
j ∆x3 +(−1

3
φ
(4)
j φ

′′
j +

4
3

φ
′′′2
j )∆x4 +(

5
4

φ
(4)
j φ

′′′
j −

1
4

φ
(5)
j φ

′′
j )∆x5 +O(∆x6),

β
+
0 = φ

′′2
j ∆x2 +φ

′′
j φ
′′′
j ∆x3 +(

1
3

φ
(4)
j φ

′′
j +

4
3

φ
′′′2
j )∆x4 +(

5
4

φ
(4)
j φ

′′′
j +

1
12

φ
(5)
j φ

′′
j )∆x5 +O(∆x6),

β
+
1 = φ

′′2
j ∆x2 +φ

′′
j φ
′′′
j ∆x3 +(−1

3
φ
(4)
j φ

′′
j +

4
3

φ
′′′2
j )∆x4 +(−5

4
φ
(4)
j φ

′′′
j +

1
4

φ
(5)
j φ

′′
j )∆x5 +O(∆x6),

β
+
2 = φ

′′2
j ∆x2 +φ

′′
j φ
′′′
j ∆x3 +(

2
3

φ
(4)
j φ

′′
j +

4
3

φ
′′′2
j )∆x4 +(

17
12

φ
(4)
j φ

′′′
j +

1
4

φ
(5)
j φ

′′
j )∆x5 +O(∆x6),

β
+
3 = φ

′′2
j ∆x2 +φ

′′
j φ
′′′
j ∆x3 +(−1

3
φ
(4)
j φ

′′
j +

4
3

φ
′′′2
j )∆x4 +(

37
12

φ
(4)
j φ

′′′
j −

3
4

φ
(5)
j φ

′′
j )∆x5 +O(∆x6).

(21)

As can be seen from Eq. (21), all the β±m , m = 0,1,2,3 have the same leading term, therefore have the
comparable values in smooth area. For this reason, practically, the definition of β

±
0 may be simplified by

using max(β±1 ,β±2 ,β±3 ) instead.
In order to complete the reconstruction of (17), we calculate the non-linear weights based on the

associated linear weights and the smoothness indicators to obtain the fifth-order accuracy for smooth
areas and non-oscillatory performance near singularities and discontinuities. Accordingly, we consider

w±i =
α
±
i

∑
3
k=0 α

±
k

, α
±
i = di(1+

τ±

∆x2 +β
±
i
), i = 0,1,2,3, (22)

where τ± is simply calculated as

τ
± = |β±1 −β

±
3 |. (23)

Now, we have a new WENO reconstruction for solving HJ equations which its order of accuracy will be
discussed in the following. From Taylor series expansions for the polynomials p±0 (x), p±1 (x), p±2 (x) and
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p±3 (x) at x j, it can be observed

p±0 (x j) = u(x j)±
1
60

u(5)(x j)∆x5 +O(∆x6),

p−1 (x j) = u(x j)−
1
4

u′′′(x j)∆x3 +O(∆x4),

p−2 (x j) = p+1 (x j) = u(x j)+
1

12
u′′′(x j)∆x3 +O(∆x4),

p−3 (x j) = p+2 (x j) = u(x j)−
1

12
u′′′(x j)∆x3 +O(∆x4),

p+3 (x j) = u(x j)+
1
4

u′′′(x j)∆x3 +O(∆x4),

(24)

where we apply u(x j) and u(k)(x j) to denote ∂

∂x φ(x, tn)|x=x j and ∂ k+1

∂xk+1 φ(x, tn)|x=x j , respectively. It should
be noted that p±0 (x j)=∑

3
i=1 γ

±
i p±i (x j) where (γ−1 ,γ−2 ,γ−3 )= (0.1,0.6,0.3) and (γ+1 ,γ+2 ,γ+3 )= (0.3,0.6,0.1).

By using Eq. (24), the WENO reconstruction (17) can be written as follows:

u±j :=
w±0
d0

[ 3

∑
i=1

γ
±
i p±i (x j)−d1 p±1 (x j)−d2 p±2 (x j)−d3 p±3 (x j)

]

+w±1 p±1 (x j)+w±2 p±2 (x j)+w±3 p±3 (x j)

=
3

∑
i=1

(γ
±
i −di

d0
w±0 +w±i

)
p±i (x j)

=
3

∑
i=1

γ
±
i p±i (x j)+

3

∑
i=1

(γ
±
i −di

d0
w±0 +w±i − γ

±
i

)
p±i (x j)

=

(
u(x j)+O(∆x5)

)
+

3

∑
i=1

(γ
±
i −di

d0
w±0 +w±i − γ

±
i

)
u(x j)

+
3

∑
i=1

(γ
±
i −di

d0
w±0 +w±i − γ

±
i

)
A±j ∆x3

+
3

∑
i=1

(γ
±
i −di

d0
w±0 +w±i − γ

±
i

)
O(∆x4),

(25)

where
(

A−1 ,A
−
2 = A+

1 ,A
−
3 = A+

2 ,A
+
3

)
=

(
− 3

12 ,
1
12 ,− 1

12 ,
3
12

)
u′′′(x j).

Since ∑
3
i=1 γ

±
i = ∑

3
i=0 di = ∑

3
i=0 w±i = 1, one can easily obtain

3

∑
i=1

(γ
±
i −di

d0
w±0 +w±i − γ

±
i

)
= 0, (26)

accordingly, in order to have the fifth-order of accuracy, we only need to have

3

∑
i=1

(γ
±
i −di

d0
w±0 +w±i − γ

±
i

)
A±j ≤ O(∆x2), (27)
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or




w±0 −d0 ≤O(∆x2),

(3d1−d2 +d3)w−0 −3d0w−1 +d0w−2 −d0w−3 ≤O(∆x2),

(−d1 +d2−3d3)w+
0 +d0w+

1 −d0w+
2 +3d0w+

3 ≤O(∆x2).

(28)

Using Eqs. (21) and (23), the truncation error of τ± is

τ
± = |13

3
φ
(4)
j φ

′′′
j −φ

(5)
j φ

′′
j |∆x5 +O(∆x6). (29)

Thus, it can be seen that
(

1+
τ±

∆x2 +β
±
i

)
= 1+O(∆x3), i = 0,1,2,3. (30)

It is essential to point out that Eq. (30) hold even at the critical points where the first and the higher
derivatives are zero. Because of the Taylor expansion

1
1+ x

= 1− x+ x2−·· · ,

and from Eq. (22), it is easy to derive

w±i = di +O(∆x3), i = 0,1,2,3. (31)

Hence

(3d1−d2 +d3)w−0 −3d0w−1 +d0w−2 −d0w−3 =

(3d1−d2 +d3)d0−3d0d1 +d0d2−d0d3 +O(∆x3) = 0+O(∆x3),

(−d1 +d2−3d3)w+
0 +d0w+

1 −d0w+
2 +3d0w+

3 =

(−d1 +d2−3d3)d0 +d0d1−d0d2 +3d0d3 +O(∆x3) = 0+O(∆x3),

(32)

therefore, the condition (28) is satisfied and the designed fifth-order accuracy for the new reconstruction
is obtained even near the critical points where the first and higher derivatives zero.

3 Computational results

In this section, the numerical results of the proposed scheme, named as SWENO-A, will be reviewed and
compared with WENO-ZQ [48] and WENO-JP [22] schemes. It should be noted that SWENO-A uses
the fifth-order five-step high-order linear multi-step scheme, TVB0(5,5) [35], to progress in time. The
constant CFL number c = 0.3 is considered. The “dimension-by-dimension” technique is used to extend
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the described scheme to solve the multi-dimensional problems. Let u(x j, tn) and wn
j be the exact solution

and the reconstructed solution respectively at (x j, tn). Then the norms of the error are given by:

L1− error : ||u−w||1 =
N

∑
j=1
|u(x j, tn)−wn

j |∆x,

L∞− error : ||u−w||∞ = max
16 j6N

|u(x j, tn)−wn
j |.

Example 1. As the first example, we examine the accuracy and order of convergence of schemes by the
Burgers’ equation in two and three dimensional space. First, consider the following non-linear scalar 2D
Burgers equation:

φt +
1
2
(φx +φy +1)2 = 0, −2≤ x,y≤ 2, (33)

with the initial condition φ(x,y,0) =−cos(π(x+ y)/2) and periodic boundary conditions. The solution
is still smooth at T = 0.5/π2. The results are computed at that time and the errors and orders of accuracy
by methods are shown in Table 1. It can be observed that the order is achieved and the SWENO-A
scheme can get better results and is more efficient than WENO-JP and WENO-ZQ. Now, consider the
following non-linear scalar 3D Burgers’ equation

φt +
1
2
(φx +φy +φz +1)2 = 0, −3≤ x,y,z≤ 3, (34)

with the initial condition φ(x,y,z,0) = −cos(π(x+ y+ z)/3) and periodic boundary conditions. The
results are computed at T = 0.5/π2 and the errors and orders of accuracy by all schemes are demonstrated
in Table 2. We can see that the order is achieved and the SWENO-A scheme can get better results and is
more efficient than WENO-JP and WENO-ZQ.

Example 2. Now to investigate the behavior of the proposed scheme close to the steep gradients, the
linear equation φt +φx = 0 with the following initial condition is considered

φ(x,0) =





1
6(G(x,z−δ )+G(x,z+δ )+4G(x,z)), −0.6≤ x≤−0.4,
1−10|x|, −0.1≤ x≤ 0.1,
1
6(F(x,a−δ )+F(x,a+δ )+4F(x,a)), 0.4≤ x≤ 0.6,
0, otherwise,

(35)

where G(x,z) = e−β (x−z)2
and F(x,a) = (max(1−α2(x− a)2,0))1/2. The constants in these functions

are: a= 0.5, z=−0.5, δ = 0.005, α = 10 and β = (log2)/36δ 2. In this problem, the periodic boundary
conditions are assigned. Eq. (35) contains a Gaussian, a sharp triangle wave, and a half ellipse. The
numerical results obtained at the final time T = 10, in which the computational domain [−1,1] is divided
into N = 150 sub-equal intervals, are shown in Fig. 1. As can be seen, all numerical schemes have
produced almost non-oscillatory solutions and the Gibbs oscillations are not significant, but in general
the SWENO-A scheme has better results for all types of waves than the other schemes.

Example 3. Now in this example, the 1D non-linear Burgers’ equation

φt +
1
2
(φx +1)2 = 0, −1≤ x≤ 1, (36)
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Table 1: L1 and L∞ errors and the order of convergence for Eq. (33). (A(−e) := A×10−e)
WENO-JP WENO-ZQ

N L1-error L1-order L∞-error L∞-order L1-error L1-order L∞-error L∞-order
10 2.83(-02) - 4.70(-02) - 1.57(-02) - 2.03(-02) -
20 1.20(-03) 4.56 2.40(-03) 4.29 5.42(-04) 4.86 1.31(-03) 3.95
40 4.13(-05) 4.86 7.20(-05) 5.06 8.75(-06) 5.95 1.59(-05) 6.36
80 1.47(-06) 4.81 2.30(-06) 4.97 2.21(-07) 5.31 3.41(-07) 5.54
160 4.42(-08) 5.06 7.01(-08) 5.04 6.66(-09) 5.05 1.14(-08) 4.90
320 1.46(-09) 4.92 2.27(-09) 4.95 2.13(-10) 4.97 3.31(-10) 5.11

SWENO-A
N L1-error L1-order L∞-error L∞-order
10 2.19(-03) - 2.77(-03) -
20 5.94(-05) 5.20 2.05(-04) 3.76
40 9.26(-07) 6.00 2.41(-06) 6.41
80 2.91(-08) 4.99 4.11(-08) 5.87
160 7.36(-10) 5.31 1.89(-09) 4.50
320 2.53(-11) 4.86 4.14(-11) 5.46

Table 2: L1 and L∞ errors and the order of convergence for Eq. (34). (A(−e) := A×10−e)
WENO-JP WENO-ZQ

N L1-error L1-order L∞-error L∞-order L1-error L1-order L∞-error L∞-order
20 2.83(-04) - 1.85(-03) - 1.56(-04) - 6.35(-04) -
40 1.41(-05) 4.33 1.67(-04) 3.47 6.03(-06) 4.69 6.69(-05) 3.25
80 5.39(-07) 4.71 6.68(-06) 4.64 2.31(-07) 4.71 2.90(-06) 4.53
160 2.02(-08) 4.74 2.36(-07) 4.82 7.49(-09) 4.95 9.83(-08) 4.88
320 6.72(-10) 4.91 7.23(-09) 5.03 2.44(-10) 4.94 3.23(-09) 4.93

SWENO-A
N L1-error L1-order L∞-error L∞-order
20 2.24(-05) - 7.01(-05) -
40 6.72(-07) 5.06 7.48(-06) 3.23
80 3.16(-08) 4.41 3.63(-07) 4.36
160 8.25(-10) 5.26 1.52(-08) 4.58
320 3.09(-11) 4.74 3.88(-10) 5.29

with the initial condition φ(x,0) = −cos(πx) and the periodic boundary conditions is solved. The so-
lution to this equation has discontinuous derivative when T = 1.5/π2, so the results of the schemes at
this time are shown in Fig. 2. From this figure it can be concluded that the results of the schemes are
comparable and SWENO-A has produced good results for this test case.

Example 4. Now consider, the 2D non-linear HJ equations

φt +H(φx,φy) = 0, −2≤ x,y≤ 2, (37)

with the initial condition φ(x,y,0) = −cos(π(x+ y)/2) and periodic boundary conditions. In this ex-
ample, two types of Hamiltonian are considered, one convex H(u,v) = 1

2(u + v + 1)2 and the other
non-convex H(u,v) = −cos(u+ v+1). It should be noted that the singularity occurs at time T = 1/π2
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Figure 1: Top: Example 2 at the finial time T = 10 and N = 150. Bottom: Zoomed region.

for the convex Hamiltonian and near this time for the non-convex case. The results of SWENO-A for the
two types of Hamiltonian after the formation of singularity at time T = 1.5/π2 are shown in Fig. 3 and
can be seen to provide good results.

Example 5. In this example, a 2D non-convex Riemann problem [31]

φt + sin(φx +φy) = 0, −1≤ x,y≤ 1, (38)

with the initial condition φ(x,y,0) = π(|y|−|x|) and fixed boundary conditions is solved. The results are
compute up to T = 1 with Nx×Ny = 40×40. We present the numerical resolution of SWENO-A in Fig.
4 and the results compare well with those reported in [48].

Example 6. In this example, we solve a 2D non-convex problem, known as Eikonal equation,

φt +
√

φ 2
x +φ 2

y +1 = 0, 0≤ x,y≤ 1, (39)

with initial condition φ(x,y,0) = 1
4(cos(2πx)−1)(cos(2πy)−1)−1 and periodic boundary conditions.

This problem arises in geometric optics [24]. The data after singularity at T = 0.6 is recorded with
Nx×Ny = 40×40 and the numerical solution of SWENO-A is presented in Fig. 5. The results compare
well with those reported in [48].

Example 7. In this example, a problem from optimal control

φt − (siny)φx +(sinx+ sign(φy))φy−
1
2

sin2 y− (1− cosx) = 0, −π ≤ x,y≤ π, (40)
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Figure 2: Example 3 by N = 40. Left: Burgers’ equation. Right: Zoomed regions.
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Figure 3: Example 4 by Nx×Ny = 40×40. Left: Convex Hamiltonian. Right: Non-convex Hamiltonian.

with initial condition φ(x,y,0) = 0 and periodic boundary conditions is considered. Numerical results by
the new proposed scheme at T = 1 with Nx×Ny = 40×40 is plotted in Fig. 6 and the results compare
well with those reported in [48].

Example 8. Finally, the problem of a propagating surface, introduced in [30],

φt − (1− εK)
√

φ 2
x +φ 2

y +1 = 0, 0≤ x,y≤ 1, (41)

with initial condition φ(x,y,0) = 1− 1
4(cos(2πx)− 1)(cos(2πy)− 1) and periodic boundary conditions

is considered. Here ε is a small constant and K is the mean curvature defined by

K =−
φxx(1+φ 2

y )−2φxyφxφy +φyy(1+φ 2
x )

(1+φ 2
x +φ 2

y )
3
2

,

that it is computed by using central differences. The numerical results generated by SWENO-A are
plotted in Fig. 7. It should be noted that the solution at T = 0.1 for ε = 0.1 is shifted downward in order
to show the details of the solution at later time. The results compare well with those reported in [48].

Now to compare the schemes from CPU times perspective, Table 3 shows the CPU times of each
schemes for a number of examples. Since SWENO-A has an additional reconstruction compared to
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Figure 4: Example 5 by Nx×Ny = 40×40 at T = 1.
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Figure 5: Example 6 by Nx×Ny = 40×40 at T = 0.6.

WENO-ZQ and WENO-JP, the speed-up (“speed-up” is obtained as the ratio of the CPU time of SWENO-
A to that of WENO-JP and WENO-ZQ) of SWENO-A is greater than 1, which means that SWENO-A
reconstruction is more expensive than WENO-ZQ and WENO-JP reconstructions, but the speed-up is
always close to 1. This means that extra work is minor compared to the necessary WENO reconstruction
steps. Therefore, the extra computational time of SWENO-A is not significant to obtain higher accuracy
and resolution. Finally, a numerical stability study, checking the stability properties of 3D schemes, is
presented. The relative L1 errors for Example 1 (Eq. (34)) while varying the CFL number are shown in
Fig. 8. The stability properties of SWENO-A are similar to the stability properties of WENO-ZQ and
WENO-JP, but SWENO-A enjoys smaller L1 errors and hence is more accurate after the formation of the
singularity. Since non-smooth cases are expected for WENO schemes, we prefer to employ SWENO-A
for solving HJ equations after the singularity formation.

4 Conclusion

In this paper, a new symmetrical WENO interpolation procedure for 1D HJ equations is constructed.
Afterwards, this procedure is straightforwardly extended to multi-dimensional HJ equations. This inter-
polation results from a convex combination of various polynomials. Combined with TVB0(5,5) method
for advancing in time, this procedure produces a fifth-order scheme in smooth areas and maintains non-
oscillatory properties for problems with strong discontinuous derivative. In comparison with WENO-
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Figure 6: Example 7 by Nx×Ny = 40× 40 at T = 1. Left: surfaces of the solution. Right: the optimal control
ω = sign(φy).

Table 3: Computational times in seconds for some examples presented in this work. Top to Bottom:
Example 1 Eq. (33), Example 1 Eq. (34) and Example 8 at T = 0.6 with ε = 0.1

Number of cells WENO-JP WENO-ZQ SWENO-A ratio= SWENO−A
WENO−JP ratio= SWENO−A

WENO−ZQ
320×320 4.117 3.993 4.216 1.024047 1.055848

320×320×320 27.381 26.261 27.891 1.018626 1.062069
40×40 46.391 44.763 48.003 1.034748 1.072381

JP [22] and WENO-ZQ [48] schemes for solving HJ equations, it was observed that SWENO-A scheme
gives better resolution than WENO-JP and WENO-ZQ schemes and has smaller errors after the singu-
larity formation. Similar to WENO-JP and WENO-ZQ schemes, the order of accuracy of SWENO-A
scheme has been reduced after the formation of the singularity.
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