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Abstract. The problem of constructing a matrix by its spectral information is called inverse eigenvalue
problem (IEP) which arises in a variety of applications. In this paper, we study an IEP for arrowhead
matrices in different cases. The problem involves constructing of the matrix by some eigenvalues of each
of the leading principal submatrices and one eigenpair. We will also investigate this problem and its vari-
ants in the cases of matrix entries being real, nonnegative, positive definite, complex and equal diagonal
entries. To solve the problems, a new method to establish a relationship between the IEP and properties
of symmetric and general form of matrices is developed. The necessary and sufficient conditions of the
solvability of the problems are obtained. Finally, some numerical examples are presented.
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1 Introduction

An IEP, is the problem of constructing a matrix by its spectral information. IEPs are categorized by
the available eigen information of the matrix to be constructed. Chu and Golub in [4] gave a perfect
characterization of IEPs. IEPs usually come with a practical background and its applications have been
studied in various scientific fields such as control, image processing, graph theory, finite element method.

An arrowhead matrix is the following matrix:

Bn =


h1 e1 e2 · · · en−1
f1 h2 0 · · · 0

f2 0 h3
. . .

...
...

...
. . . . . . 0

fn−1 0 · · · 0 hn

, (1)
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such that ei fi 6= 0, i = 1, . . . ,n−1. Variants of this matrix are well studied in many literatures and they
have many applications in orthogonal reduction method and other tridiagonalization processes, including
Householder transformation, Givens rotations, the Rutishauser method, and so on, and it may also be
used effectively to explore the arrow in graph theory [4]. Peng et al. in 2006 [11] studied arrowhead
matrices to model nonlinear control systems.

In [3, 6, 7, 12–15, 19], recursive methods to solve different IEPs for different matrices was studied.
For an n× n matrix, the graph of this matrix is a graph with n vertices such that off-diagonal entries
of the matrix represents the edges. The entry ai j 6= 0 if and only if there is an edge between vertices
i and j. IEP of matrices of graphs is a famous class of IEPs and it has attracted the attention of many
researchers in the past decade. Different variants of this problem for different graphs have been studied
in the literature [1, 8, 9, 17, 18]. They recursively constructed real matrices by the given eigendata. Also
Rundell and Sacks in [16] study an IEP for symmetric arrowhead matrices which correspond to a simple
star graph. It is worthwhile to mention that matrices corresponding to undirected graphs are symmetric
but matrices corresponding to directed graphs are not necessarily symmetric.

In this paper, we will investigate constructing of arrowhead matrices entries in different cases: real,
nonnegative, equal diagonal entries positive definite and complex by an eigenpair of the matrix to be con-
structed with one or two eigenvalues of each of its leading principal submatrices by a recursive method.
It appears in different applications including perturbation of control systems, directed star graphs and
Sturm-Liouville.

The paper is organized as follows: In Section 2, the relationship between symmetric and general
matrices and their IEPs are obtained. In Section 3, the conditions of existence of solutions in different
cases mentioned above are achieved. In Section 4, we test the results by a numerical example. Finally,
in Section 5, some concluding remarks are presented.

2 The relation between symmetric and general form of IEPs

In this section, we establish a relationship between matrices Bn defined as (1) and its similar symmetric
form. By this similarity we can further extend the results proved in the symmetric case to the general
form of matrices and IEPs. By considering that similar matrices have the same eigenvalues [5], we obtain
similar and symmetric matrices for Bn as follows.

Let

Sn =


γ1 ψ1 ψ2 · · · ψn−1
ψ1 γ2 0 · · · 0

ψ2 0
. . . . . .

...
...

...
. . . . . . 0

ψn−1 0 · · · 0 γn

, Dn = diag(d1,d2, . . . ,dn).

Now we construct the symmetric similarity matrix as follows:
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DnBnD−1
n =



h1
e1d1
d2

e2d1
d3

· · · en−1d1
dn

f1d2
d1

h2 0 · · · 0
f1d3
d2

0 h3
. . .

...
...

...
. . . . . . 0

fn−1dn
d1

0 · · · 0 hn


.

Hence, we should have

ei−1d1

di
=

fi−1di

d1
or d2

i =
ei−1d2

1
fi−1

, i = 2, . . . ,n.

So di’s, i = 2, . . . ,n, are multipliers of d1. Without loss of generality, let d1 be an arbitrary nonzero real
number, say d1 = 1. Hence

di =

√
ei−1

fi−1
, i = 2, . . . ,n,

and therefore,
ψi =

√
ei fi, i = 1, . . . ,n−1,

γi = hi, i = 1, . . . ,n,

then, Sn = DnBnD−1
n and as a result Bn and Sn are similar.

Let Qn = det(λ I−Bn) be the characteristic polynomial of Bn defined in (1) and B j, j = 1, . . . ,n be
the jth leading principal submatrix of Bn. We have the following lemmas.

Lemma 1. The sequence Q j(λ ), j = 1, . . . ,n satisfy the following recurrence relations:

Q1(λ ) = λ −h1,

Q2(λ ) = (λ −h2)Q1(λ )− e1 f1,

Q j(λ ) = (λ −h j)Q j−1(λ )− e j−1 f j−1

j−1

∏
i=2

(λ −hi), j = 3, . . . ,n. (2)

Proof. The recurrence relations can be verified by expanding the determinant.

Lemma 2. If (λ (n),Xn) is an eigenpair of Bn, then x1 6= 0 and the components of eigenvector Xn are
obtained as:

xi =
fi−1

λ (n)−hi
x1, i = 2, . . . ,n.

Proof. Since (λ (n),Xn) is an eigenpair of Bn, so BnXn = λ (n)Xn. We can obtain the result by expanding
this relation.

The following theorems are necessary in the sequel.

Theorem 1. [2] Let the matrix A ∈ Rn×n be symmetric. A is positive definite if and only if all of its
eigenvalues are positive.
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We know that a symmetric matrix A is positive definite if for every nonzero vector X , X tAX > 0 [5].

Theorem 2. (Cauchy’s interlacing theorem [10]). Let λ1 ≤ λ2 ≤ ·· · ≤ λn be the eigenvalues of an n×n
real symmetric matrix A and µ1 ≤ µ2 ≤ ·· · ≤ µn−1 be the eigenvalues of an (n−1)× (n−1) principal
submatrix of A, then

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ ·· · ≤ λn−1 ≤ µn−1 ≤ λn.

Also, it can be inferred that all the eigenvalues of Bn are distinct and real numbers [12, 13].
The important point is that there are two unknown set of entries in IEP of symmetric matrices, but

there are three unknown sets of entries in IEP of asymmetric matrices.
By regarding the Cauchy’s interlacing theorem, we will solve IEPs for matrix Bn in the next section.

3 Main problems

In this section, the problems statement in different cases of real, nonnegative, equal diagonal entries
positive definite and complex are presented and necessary conditions for solvability of them are proposd.
We briefly call them AIEP.

3.1 Real matrix

In this case, we construct the matrix Bn with real entries. The diagonal entries may be zero.

Problem 1 (AIEP1). The real and distinct numbers

λ
(n)
1 < λ

(n−1)
1 < · · ·< λ

(2)
1 < λ

(1)
1 < λ

(2)
2 < · · ·< λ

(n)
n ,

and real vector Xn = (x1, . . . ,xn)
T are given. Find matrix Bn such that the numbers λ

(i)
1 ,λ

(i)
i , i = 1, . . . ,n

are minimum and maximum eigenvalues of Bi, respectively and (λ
(n)
n ,Xn) is an eigenpair of Bn.

In the next theorem , we obtain the necessary and sufficient conditions for the existence and unique-
ness of a solution to AIEP1.

Theorem 3. The AIEP1 has a unique solution if and only if xi 6= 0, i = 1, . . . ,n.

Proof. Let xi 6= 0, i = 1, . . . ,n. It is easy to see that h1 = λ
(1)
1 . From Lemma 1, and noting that

Qi(λ
(i)
1 ) = Qi(λ

(i)
i ) = 0,

we obtain

h2 =
λ
(2)
2 Q1(λ

(2)
2 )−λ

(2)
1 Q1(λ

(2)
1 )

Q1(λ
(2)
2 )−Q1(λ

(2)
1 )

, (3)

and

hi =

Qi−1(λ
(i)
i )λ

(i)
i

i−1
∏
j=2

(λ
(i)
1 −h j)−Qi−1(λ

(i)
1 )λ

(i)
1

i−1
∏
j=2

(λ
(i)
i −h j)

Qi−1(λ
(i)
i )

i−1
∏
j=2

(λ
(i)
1 −h j)−Qi−1(λ

(i)
1 )

i−1
∏
j=2

(λ
(i)
i −h j)

, i = 3, . . . ,n, (4)

Arrowhead Inverse eigenvalue Problem
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ψ
2
i−1 = ei−1 fi−1 =

(λ
(i)
i −λ

(i)
1 )Qi−1(λ

(i)
1 )Qi−1(λ

(i)
i )

Qi−1(λ
(i)
i )

i−1
∏
j=2

(λ
(i)
1 −h j)−Qi−1(λ

(i)
1 )

i−1
∏
j=2

(λ
(i)
i −h j)

, i = 2, . . . ,n.

Since BnXn = λ
(n)
n Xn, thus

fi−1 =
(λ

(n)
n −hi)xi

x1
, i = 2, . . . ,n. (5)

By substituting hi and fi−1 in Eq. (2) and from Lemma 1, we obtain

e1 =
(λ

(2)
2 −h2)Q1(λ

(2)
2 )

f1
, (6)

ei−1 =
(λ

(i)
i −hi)Qi−1(λ

(i)
i )

fi−1
i−1
∏
j=2

(λ
(i)
i −h j)

, i = 3, . . . ,n. (7)

Hence, there exists real solution to the problem if e j f j > 0, j = 1, . . . ,n−1. Since

Q j−1(λ ) = (λ −λ
( j−1)
1 )(λ −λ

( j−1)
2 ) · · ·(λ −λ

( j−1)
j−1 ),

therefore, we obtain

Q j−1(λ
( j)
j )> 0 and (−1) j−1Q j−1(λ

( j)
1 )> 0.

So

(λ
( j)
j −λ

( j)
1 )(−1) j−1Q j−1(λ

( j)
1 )Q j−1(λ

( j)
j )> 0.

Let

N j−1 = Q j−1(λ
( j)
1 )Q j−2(λ

( j)
j )−Q j−1(λ

( j)
j )Q j−2(λ

( j)
1 ), (8)

then by the same reasons (−1) j−1N j−1 > 0 and so

e j f j > 0, j = 1, . . . ,n−1.

With regard to Lemma 1, we obtain a unique solution for AIEP1.
Conversely, assume that there exists a solution to AIEP1 and Xn be an eigenvector of Bn. By Lemma

2, the component x1 is nonzero, so we obtain xi 6= 0, i = 1, . . . ,n which completes the proof.

The following algorithm is presented to solve AIEP1.
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Algorithm 1 ( Solving AIEP1)
1: Input:
2: Real numbers λ

(n)
1 < λ

(n−1)
1 < · · ·< λ

(2)
1 < λ

(1)
1 < λ

(2)
2 < · · ·< λ

(n)
n , and the

3: real vector Xn = (x1, . . . ,xn)
T .

4: If one of xi = 0, i = 1, . . . ,n, Stop. (Problem 1 can not be solved by this algorithm)
5: Set h1 = λ

(1)
1 ,

6: Set
7: h2 =

λ
(2)
2 Q1(λ

(2)
2 )−λ

(2)
1 Q1(λ

(2)
1 )

Q1(λ
(2)
2 )−Q1(λ

(2)
1 )

,

8: f1 =
(λ

(n)
n −h2)x2

x1
,

9: e1 =
(λ

(2)
2 −h2)Q1(λ

(2)
2 )

f1
.

10: Set
11: Q1(λ ) = λ −h1,
12: Q2(λ ) = (λ −h2)Q1(λ )− e1 f1,
13: For i = 3, . . . ,n

14: hi :=
Qi−1(λ

(i)
i )λ

(i)
i

i−1
∏
j=2

(λ
(i)
1 −h j)−Qi−1(λ

(i)
1 )λ

(i)
1

i−1
∏
j=2

(λ
(i)
i −h j)

Qi−1(λ
(i)
i )

i−1
∏
j=2

(λ
(i)
1 −h j)−Qi−1(λ

(i)
1 )

i−1
∏
j=2

(λ
(i)
i −h j)

,

15: fi−1 := (λ
(n)
n −hi)xi

x1
,

16: ei−1 := (λ
(i)
i −hi)Qi−1(λ

(i)
i )

fi−1
i−1
∏
j=2

(λ
(i)
i −h j)

.

17: Qi(λ ) := (λ −hi)Qi−1(λ )− ei−1 fi−1
i−1
∏
j=2

(λ −h j).

18: end for.
19: Output: Bn.

3.2 Nonnegative matrices

In this case, we construct the matrix Bn such that all its entries are nonnegative numbers.

Problem 2 (AIEP2). The real and distinct numbers

λ
(n)
1 < λ

(n−1)
1 < · · ·< λ

(2)
1 < λ

(1)
1 < λ

(2)
2 < · · ·< λ

(n)
n ,

and real vector Xn = (x1, . . . ,xn)
T are given. Find matrix Bn with nonnegative entries such that the

numbers λ
(i)
1 ,λ

(i)
i , i = 1, . . . ,n are minimum and maximum eigenvalues of Bi, respectively and (λ

(n)
n ,Xn)

is an eigenpair of Bn.

Theorem 4. Problem 2 has a unique solution if and only if

λ
(1)
1 > 0, (9)

λ
(i)
i

i−1

∏
j=2

(λ
(i)
1 −h j)

(λ
(i)
i −h j)

> λ
(i)
1

Qi−1(λ
(i)
1 )

Qi−1(λ
(i)
i )

, i = 2, . . . ,n, (10)

x1xi > 0, i = 1, · · · ,n. (11)
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Proof. Let from Theorem 3 the matrix Bn exists with the form of its solutions as given in Eqs. (3), (4),
(5), (6), and (7) with nonnegative entries. We find the conditions under which the solution is nonnegative.
First, h1 = λ

(1)
1 > 0.

Set

ni−1 = Qi−1(λ
(i)
i )λ

(i)
i

i−1

∏
j=2

(λ
(i)
1 −h j)−Qi−1(λ

(i)
1 )λ

(i)
1

i−1

∏
j=2

(λ
(i)
i −h j).

Since Bn and Sn are similar matrices, hence they have the same eigenvalues and the Cauchy’s theorem
guarantees the following inequality

λ
(n)
1 < λ

(n−1)
1 < · · ·< λ

(2)
1 < λ

(1)
1 < λ

(2)
2 < · · ·< λ

(n)
n .

From Theorem 3 and Eq. (8), for i = 2, . . . ,n,

hi =

Qi−1(λ
(i)
i )λ

(i)
i

i−1
∏
j=2

(λ
(i)
1 −h j)−Qi−1(λ

(i)
1 )λ

(i)
1

i−1
∏
j=2

(λ
(i)
i −h j)

Qi−1(λ
(i)
i )

i−1
∏
j=2

(λ
(i)
1 −h j)−Qi−1(λ

(i)
1 )

i−1
∏
j=2

(λ
(i)
i −h j)

=
(−1)i−1ni−1

(−1)i−1Ni−1
> 0,

where (−1)i−1Ni−1 > 0, so (−1)i−1ni−1 > 0 and as a result Eq. (10) holds. In addition, fi > 0, by

considering fi−1 =
(λ

(n)
n −hi)xi

x1
, i = 2, . . . ,n, it concludes Eq. (11) .

Conversely, assume that Eqs. (9), (10) and (11) hold. From Eq. (9), λ
(1)
1 = h1 > 0. From condition

(10) we see that

(−1)i−1ni = (−1)i−1Qi−1(λ
(i)
i )λ

(i)
i

i−1

∏
j=2

(λ
(i)
1 −h j)+(−1)i−2Qi−1(λ

(i)
1 )λ

(i)
1

i−1

∏
j=2

(λ
(i)
i −h j)> 0,

by the Cauchy’s theorem and condition (9), 0 < λ
(1)
1 < λ

( j)
j . By the proof of Theorem 3 we obtain

Qi−1(λ
(i)
i ) > 0 and (−1)i−1Qi−1(λ

(i)
1 ) > 0, so h j =

n j−1
N j−1

> 0. If x1xi > 0, then fi−1 = (λ
(n)
n −hi)xi

x1
> 0,

i = 2, . . . ,n. From Theorem 3, ei fi > 0, so e j > 0 and it completes the proof.

3.3 Equal diagonal entries

We construct the matrix Bn such that diagonal entries have the same values by one eigenpair and maxi-
mum eigenvalue of each leading principal submatrix.

Problem 3 (AIEP3). Real distinct numbers λ (1) < λ (2) < · · · < λ (n−1) < λ (n), and real vector Xn =
(x1, . . . ,xn)

T are given. Construct the matrix Bn such that λ ( j) is the maximum eigenvalue of B j and
(λ (n),Xn) is an eigenpair of Bn and diagonal entries of Bn have the same value.

Theorem 5. There exists a real solution to Problem 3 if and only if xi 6= 0, i = 1, . . . ,n.

Proof. Let xi 6= 0, i = 1, . . . ,n, and the value of diagonal entries be a real number h. It is clear that
hi = h = λ1. From Q j(λ

( j)) = 0, by Lemma 1, we get

e1 f1 = (λ (2)−h)Q1(λ
(2)),
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ψ
2
j−1 = e j−1 f j−1 =

(λ ( j)−h)Q j−1(λ
( j))

j−1
∏
i=2

(λ ( j)−h)
=

Q j−1(λ
( j))

(λ ( j)−h) j−3 , j = 3, . . . ,n.

By the Cauchy’s theorem, we have λ (1) < λ (2) < · · · < λ (n−1) < λ (n), so λ ( j)− h > 0, j = 2, . . . ,n,

Q j−1(λ
( j))> 0. Therefore, e j−1 f j−1 > 0, j = 2, . . . ,n. From Lemma 2, fi−1 =

(λ (n)−h)x j
x1

, i = 2, . . . ,n, so

e1 =
(λ (2)−h)Q1(λ

(2))

f1
,

and

e j−1 =
Q j−1(λ

( j))

f j−1(λ ( j)−h) j−3 , j = 3, . . . ,n.

Conversely, if there is a real solution to the problem, then it is easy to see that xi 6= 0, i = 1, . . . ,n.

3.4 Symmetric positive definite matrix

The conditions for the existence of a positive definite solution is given in Theorem 1. Since a positive
definite matrix is symmetric, so ei = fi. Therefore, we just need to set the following condition on the
input set to obtain a positive definite solution with

0 < λ
(n)
1 < λ

(n−1)
1 < · · ·< λ

(2)
1 < λ

(1)
1 < λ

(2)
2 < · · ·< λ

(n)
n ,

and from Algorithm 1 we get

h1 = λ
(1)
1 , (12)

e1
2 = (λ

(2)
2 −h2)Q1(λ

(2)
2 ), (13)

hi =

Qi−1(λ
(i)
i )λ

(i)
i

i−1
∏
j=2

(λ
(i)
1 −h j)−Qi−1(λ

(i)
1 )λ

(i)
1

i−1
∏
j=2

(λ
(i)
i −h j)

Qi−1(λ
(i)
i )

i−1
∏
j=2

(λ
(i)
1 −h j)−Qi−1(λ

(i)
1 )

i−1
∏
j=2

(λ
(i)
i −h j)

, i = 2, . . . ,n, (14)

ei−1
2 =

(λ
(i)
i −hi)Qi−1(λ

(i)
i )

i−1
∏
j=2

(λ
(i)
i −h j)

, i = 3, . . . ,n. (15)

Without loss of generality, we take the maximum as ei.

3.5 Complex matrix

If any of the eigenvalues or any component of the vector Xn =(x1, . . . ,xn)
T are complex, then it is possible

that some entries of Bn become complex. In this case, by eliminating the inequality in Problem 1, we get
the same solutions.
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Corollary 1. 2n−1 distinct scalars λ
(1)
1 ,λ

(2)
1 ,λ

(2)
2 , . . . ,λ

(n)
1 ,λ

(n)
2 and vector Xn = (x1, . . . ,xn)

T are given.
Arrowhead matrix Bn of the form (1) with entries

h1 = λ
(1)
1 ,

h2 =
λ
(2)
1 Q1(λ

(2)
1 )−λ

(2)
2 Q1(λ

(2)
2 )

Q1(λ
(2)
1 )−Q1(λ

(2)
2 )

,

hi =

Qi−1(λ
(i)
2 )λ

(i)
2

i−1
∏
j=2

(λ
(i)
1 −h j)−Qi−1(λ

(i)
1 )λ

(i)
1

i−1
∏
j=2

(λ
(i)
2 −h j)

Qi−1(λ
(i)
2 )

i−1
∏
j=2

(λ
(i)
1 −h j)−Qi−1(λ

(i)
1 )

i−1
∏
j=2

(λ
(i)
2 −h j)

, i = 3, . . . ,n,

fi−1 =
(λ

(n)
n −hi)xi

x1
, i = 2, . . . ,n,

ei−1 =
(λ

(i)
2 −hi)Qi−1(λ

(i)
2 )

fi−1
i−1
∏
j=2

(λ
(i)
2 −h j)

, i = 2, . . . ,n,

exists if and only if xi 6= 0, i = 1, . . . ,n.

4 Numerical Results

In this section, we present the numerical results of the problem AIEP1. The computational results are
provided by MATLAB software.

Example 1. To compare the computations accuracy, we define the matrix Bn for k = 1, . . . ,n, n =
1, . . . ,50 as follows:

hk =−
1

k(k+1)
, ek = 3− 1

k
, fk = 2+

1
k
.

The extremal eigenvalues of each leading principal submatrices and the eigenvector of Bn are computed,
then they are set as inputs of Algorithm 1. We call the output of Algorithm 1 and its extremal eigenvalues,
λ̃
(n)
1 , λ̃

(n)
n , respectively and compute relative error

e
λ (n) =

∥∥∥λ (n)− λ̃ (n)
∥∥∥

2∥∥λ (n)
∥∥

2

,

with λ (n) = (λ
(n)
n ,λ

(n)
1 ) and λ̃ (n) = (λ̃

(n)
n , λ̃

(n)
1 ). Figure 1 shows variation of this error.

Example 2. In AIEP2, we define the matrix Bn for k = 1, . . . ,n, n = 1, . . . ,50 as follows:

hk = k, ek =
1
k
, fk = sin2(k).

In AIEP3, this matrix Bn for k = 1, . . . ,n, n = 1, . . . ,50 is defined as the following form:
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Figure 1: Relative error for eigenvalues in AIEP1.
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Figure 2: Relative error for eigenvalues in AIEP2.

hk = 10, ek =
k

k+1
, fk =

√
k.

Also, in corollary 1, the matrix Bn for k = 1, . . . ,n, n = 1, . . . ,50 has the following definition:

hk =
1
k
, ek = e−2ki, fk =−10+

ki
10

.

By similar definition of Example 1 for e
λ (n) , Figures 2, 3 and 4 show variations of the errors.

Example 3. For positive definite case, we consider

λ
(1)
1 = 3, λ

(2)
1 = 2.25, λ

(2)
2 = 3.2, λ

(3)
1 = 2, λ

(3)
3 = 3.8,

λ
(4)
1 = 1.5, λ

(4)
4 = 4, λ

(5)
1 = 1, λ

(5)
5 = 4.5,
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Figure 3: Relative error for eigenvalues in AIEP3.
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Figure 4: Relative error for the eigenvalues in Corollary 1.

By applying Eqs. (12), (13), (14) and (15) we get

A5 =


3.0000 0.3873 0.7809 0.7878 1.2496
0.3873 2.4500 0 0 0
0.7809 0 2.9148 0 0
0.7878 0 0 2.1813 0
1.2496 0 0 0 2.4836

 .
We compute the spectra of all of the principal submatrices of A5 to verify the results:

σ(A5) = {1.0000,2.2594,2.4530,2.81724.5000},
σ(A4) = {1.5000,2.3887,2.6574,4.0000},
σ(A3) = {2.0000,2.5648,3.8000},
σ(A2) = {2.2500,3.2000},
σ(A1) = {3.0000}.
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5 Conclusion

In this study, we have considered partially described inverse eigenvalue problems of arrowhead matrices
under different conditions. Such problems are important when all spectral information is unavailable.
The necessary and sufficient conditions for the existence of solution in different cases were obtained
by the similar symmetric matrix. Then, the necessary and sufficient conditions for the solvability of
AIEPs were discussed. The problems were studied under different cases: matrix entries being real and
nonnegative, equal entries on diameter solution and complex matrix.

Matrices with complex entries are used in perturbation of one-dimensional Schrodinger equations.
We also considered the case in which the matrix entries are nonnegative and it is applied in nonlinear
control perturbation problem. Numerical algorithms were provided for the problems and illustrative
examples were also given to test the algorithm.
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