Journal of Mathematical Modeling
Vol. 10, No. 2, 2022, pp. 203-212. Research Article CJMM >

On the stability functions of second derivative implicit
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Abstract. In the construction of efficient numerical methods for the stiff initial value problems, some
second derivative multistep methods have been introduced equipping with super future point technique.
In this paper, we are going to introduce a formula for the stability functions of a class of such methods.
This group of methods encompasses SDBDF methods and their extensions with advanced step-point
feature. This general formula, instead of obtaining the distinct stability functions for each of methods,
will facilitate stability analysis of the methods.
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1 Introduction

Several attempts have been made to derive efficient numerical methods for solving stiff initial value
problems (IVPs) in ordinary differential equations (ODEs)

Y (%) = fxy(x),  x € o, X],

1
y(x0) = Yo, M

where f : R”™ — R™ and m is the dimensionality of the system. Most of the constructed methods in
the class of linear multistep methods (LMMs) are improvements on backward differentiation formulae
(BDF) by using some techniques such as higher derivatives of the solutions, oft-step points and super
future points. Extended BDF methods (EBDF) which utilizes a future point was introduced by Cash [8] to
improve the stability properties and pass Dahlquist second barrier [ 12] on the existing A-stable methods.
EBDF methods were modified to MEBDF (modified EBDF) [10] and MF-MEBDF (matrix free MEBDF)
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methods [20] to optimize the necessary computations of EBDF. Also, to increase the stability region, by
inserting a free parameter in BDF and EBDF algorithms, the blended methods A-BDF [15] and A-
EBDF [18] were introduced.

Among the main directions in searching for higher order A-stable methods, the use of the second
derivative of the solution has been one of the effective techniques for the construction of methods of
higher order with extensive region of stability. Second derivative multistep methods (SDMMs) intro-
duced by Enright [ 13] and second derivative BDF methods (SDBDF) [ 16] were the first second derivative
LMMs, meanwhile they have been also base for other modifications of second derivative methods in this
class. Using of the second derivative of the solution has been also successfully applied to Runge—Kutta
methods to introduce TDRK methods [11,22]. Second derivative general linear methods (SGLMs) as
a unifying framework for the traditional methods incorporating second derivative of the solution were
introduced by Butcher and Hojjati in [ 7] and were studied more by Abdi and Hojjati in [3-5] to study the
properties of the methods and to formulate new methods with clear advantages over the traditional ones.
For more details of SGLM one can see [1,2,06].

The SDMMs equipped with super future point technique have led to successful methods. A set of
second derivative extended backward differentiation formulas (E2BD) was derived by Cash [9] in two
classes which are very highly stable. Considering these methods from SGLMs point of view, made it
possible to improve their stability properties by introducing new classes of methods, so-called ME2BD,
PME2BD and FPME2BD, with the same order but more extensive region of absolute stability [21]. A
class of SDMMs equipped with the super future point technique based on SDBDF methods, so called
ESDMMs, and their modification, MESDMMs, were constructed in [19]. Furthermore, some perturba-
tions of these methods which improve their stability properties while preserve their order, were studied
in [14]. In an another attempt, to implement the methods in parallel computers, a scheme was investi-
gated in [17] based on SDBDF possessing super future point technique, so-called PMESDMM, which
let them be faster on the vast majority of the problem.

For each of the above-mentioned methods analyzing the stability properties goes through the increas-
ingly complicated calculations. In this paper, we are going to derive a general formula that generates the
stability functions of the implicit advanced step-point SDMMs (IASS) encompassing SDBDF, ESDMM,
MESDMM and PMESDMM. Such general formulae can provide us with a glimpse of the theoretical
and computational difficulties encountered during the investigation of multi-stage methods. Also, the
study on this general formula for the stability functions of the mentioned class of methods can assist in
maneuvering on the structure of the methods to introduce methods with improved stability properties. A
similar general formula for a group of implicit advanced step-point methods incorporating only the first
derivative of the solution has been given in [23].

After the present introduction, a briefly review on general form of SDMMs and conventional SDBDF
methods is given in Section 2. In Section 3, the stability analysis of MESDMMs are discussed and the
stability functions of each method in the class of IASS methods are individually obtained. Section 4
is devoted to introduce a general formula which generates the stability functions of SDBDF and IASS
methods. Finally, the paper is closed by giving some concluding remarks in Section 5.
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2 A review on the SDMMs

A k-step SDMM in general form for solving (1) can be written as

k k k
ajyn-i-]:h l}jfn-i-j—i_hz ?/jgn+ja I’l:071,,N—k, (2)
j=0 =0 =0

J

J

J

where aj, B; and y; are parameters to be determined. The SDMM (2) is implicit if ﬁkz + }/,g #0. Here, y,1;
is an approximation to the solution of (1) at the point X,+, fut; = f(Xn+j,Vn+j)s 8n+j = &(Xntj>Vntj)
with g(x,y) :=y" = fi+ ff., h is the stepsize, and Nh = X — x(. Using Taylor expansion it can be seen
that the method (2) is of order p if and only if

k k k
Y aiji=qY Bij " +alg+1) Y v,
j=0 j=0 Jj=0

with 0 < g < p. In the implementation of such methods, using of the second derivative of the solution
does not impose additional computational cost; indeed, in the implementation of the implicit methods
for stiff autonomous systems y'(x) = f(y(x)), to solve the obtained non-linear algebraic equations, we
usually need to compute d f/dy, so the second derivative of the solution at the step points can be approx-
imated by g(y) = (df/dy)f(y) without any additional computational cost [13].

2.1 The stability function of SDBDF

SDBDF methods, inspired from BDF, have been designed such that in which the structure of the stability
function allows to get better absolute stability properties than general form of SDMMs. A k-step SDBDF
takes the form

k
Aynsj = hBef k) + 208 Onik), ©)
=0

J

in which, o = 1 and the other coefficients are chosen such that the method has order p = k+ 1. To
analyze the linear stability behavior of the SDBDF (3), we apply the method to the standard test problem
of Dahlquist [12]

y =24y, AeC, (4)
and get
k
Z CSDBDF, j (Z)yn+ j= 0, (5)
j=0

where z = hA and
Cspppri(z) = 1 — 2B — 2%,

Cspspr,j(2) = &, j=0,1,...,k—1.

(6)
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Therefore, the linear stability properties of the SDBDF methods are determined by the stability function

k
Dspppr(w,z) = Z Cspapr,j(z)w’. @)
j=0
Now, the linear stability criterion of the SDBDF in terms of the roots of ®(w,z) requires that all the
roots w; = w;(z), i = 1,2,...,k, lie inside the unit circle with only simple roots on the boundary. SDBDF
methods are A-stable up to order p =4 (k = 3) and A(a)-stable up to order p = 11 (k= 10) [16]. So,
by these methods the Dahlquist second barrier was passed. Similar to the directions of construction
algorithms based on BDF, SDBDF methods because of their accuracy and stability properties, have been
extended to some classes of reliable methods. A group of such methods, IASS methods, are reviewed
from the point of view theie stability function in the next section. For the SDBDF methods, the stability
function (7) is obtained easily, but as we will see in the next section, things become messier for IASS
methods mentioned in Section 1.

3 The stability functions of IASS methods

In this section, we discuss the stability functions of IASS methods encompassing ESDMMs, MESDMMs
and PMESDMMs. These group of the implicit schemes have been introduced in [17, 19]. The stability
analysis of ESDMMs and PMESDMMs have been already studied and here we concisely recall the
stability functions of these methods. For MESDMMs, we present a detailed account of the stability
function which does not given in [19].

3.1 The stability function of ESDMMs

The ESDMM is an implicit scheme which uses two SDBDF predictors and one implicit SDMM corrector
given by the formula

k ~
Y Qynij = hBifari+ W (Wensk — Vet 18nkr1)- 3
j=0

Here 0 = 1 and the coefficients 0j, j =0,1,...,k— 1, B\k’ Y Yet1 are chosen so that (8) has the order
p =k-+2. The coefficients of the k-step methods of class (8) are given in [19]. Assuming that the solution
values of y,, Vn+1,--.,Ynrk—1 are available, the ESDMM approach goes as follows:

e Stage 1. Use the SDBDF (3) as predictor to compute y,,, , as

k—1

Vork + Y, QY =hBifok + N0k ©)
j=0

where f, = f(Xnk, Tns) and 8y g = 8 (Xn+k: Fnak)-

e Stage 2. Use the SDBDF (3) as predictor to compute y, ., as

k=2

Vuskrt T Ok 1Fnst + Y Ontjrt = hBef i + ST, (10)
=0

where f,, i1 = f(Xniki1> Vnrar1) a0 g1 = 8Xntkt 1> Vnrhi1)-
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e Stage 3. Compute y,.; as the solution of the corrector

k—1

Yntk + Z a6jyn+j = hﬁkfn+k + hz(?kgnwc - ?A’k+1§n+k+1 )~
j=0

The overall k-step ESDMM is of order p = k+ 2. Applying the overall ESDMM to the Dahlquist test
problem (4), we get

k

Z Cespmm, j(2)yn+j =0, (11)
=0

with .
Cespmm k(2) = 1 — 2B — 2%,

N N (12)
CESDMM,j(Z):aj+Z2Yk+1dj7 j:()717"'7k_17
in which A = 1 — z; — 2%y and
Ol —
d() = aOA;( 1 )
o0 o (13)
00— -1 .
dj= 2 A j=12,..k—1
Therefore, the stability function of ESDMMs scheme takes the form
k .
Prspym (w,z) = Z Cespmm, j(2)w’. (14)

j=0
ESDMMs are A-stable up to order p = 6 (k = 4) and A()-stable up to order p = 14 (k = 12). Angles
of A(o)-stability of ESDMMs are reported in Table 2.
3.2 The stability function of MESDMMs

In each stage of ESDMM scheme, the algebraic equations are solved using a modified form of Newton.
The Jacobian matrix for stages 1 and 2 is the same but it differs for Stage 3. In order to unify the Jacobin
matrix in all three stages with the aim of reducing the computational cost, a modification of ESDMM,
so-called MESDMM, was introduced in which the third stage is replaced by the following formula

e Stage 3*. Compute y, as the solution of the corrector

k-1 R _ R
Ynsk+ Y, @yt =h(Be = Be) f ik + PBiSwsk + 1 (% — %) 8k (15)
=0

—hz?A’lc+1§n+k+1 + W Yiegn-sk-

This modification does not affect on the order of methods while there is an improvement on the stability
regions for all values of k in MESDMMs.
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The stability analysis MESDMMs has not been discussed in [19], so we study it here. Using of the
test problem (4) and substituting it into the first predictor (9) gives

B 1 k—1
Vusk = =7 X Oy (16)
j=0

and into the second predictor (10), also using (16), gives

k—1
Vorki1 = Y djynt ), (17)
=0

where the coefficients d; are given by (13). Now, by applying the corrector (15) to the test problem (4),
using (16) and (17), we get the difference equation

k
Y Cuespmm,j(2)ynr; =0, (18)

=0
in which
Cuespmmi(z) = 1 — 2B — 2%,

BB+ 20— - . (19
O Z(Bk ﬁk)AZ (’}/k Yk)Otj+Z2?’k+1dj, ]:0’177]{71

Therefore, the stability function of MESDMMs scheme takes the form

Cumespmm,j(2) = 0 +

k

DPyespmm (W, z) = Z CmESDMM, | (z)w. (20)
=0

Angles of A(a)-stability of MESDMMs which are larger than those of ESDMMs are reported in Table
2.
3.3 The stability function of PMESDMMs

A class of methods possessing a parallel feature has been introduced in [17]. These three-stage methods
which are based on MESDMMs, so-called PMESDMMs, may grant the possibility of their efficiently
using on a parallel computer. Assuming that the solution values y,,v,11,...,V,+k—1 are available, the
PMESDMMs take the following form

e Stage 1. Use the SDBDF (3) as predictor to compute y, ;.

e Stage 2. Use the following predictor to compute ¥, 1, |

k—1
_ — - _ 2— _
Yntke1 T Z & jyn+j = B f k1, Yk 1) H 0 Vi 18Xtk 15 Vi 1), (21
j=0
where the coefficients &, j =0,1,...,k—1, Bk 41 and ¥, reported in [17], are chosen so that

(21) has order k+ 1.
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e Stage 3. Compute the corrected solution y,,; using (15).

The parallel feature is because of independent of the second predictor of the first one. The overall k-step
PMESDMMs is of order p = k+2. The numerical experiments reported in [17] indicate that the accuracy
of the PMESDMMs is very satisfactory. Even a little improvement happens in the stability properties of
PMESDMMs respect to MESDMMs.

Applying the overall PMESDMM to the test problem (4), we get

k

Y. Ceuespun,j(2)ynsj =0, (22)
=0

with

Cemespmum i(2) = 1— 2B — 2%,
(BB +2Fi— Y1 — .
Cpmespmm,j(z) = 0 + (e ﬁk)A ( yk)aj— }%{Haj, j=0,1,...k—1.

in which A = 1 —z8, +1 — ZTs1- Therefore, the stability function of PMESDMM s scheme takes the
form

(23)

k

Dpyesomm(W,2) = Y, Comespmm.j(2)w. (24)
j=0

Angles of A(a)-stability of PMESDMMs are reported in Table 2. PMESDMMs are A-stable up to order
p =06 (k=4) and A(a)-stable up to order p = 14 (k = 12).

4 A general formula for the stability functions of SDBDF and IASS meth-
ods

In the previous sections, the stability functions of SDBDF and IASS methods were given individually. As

it is seen, this investigation needs complicated calculations when the algorithm is multi-stage because of

using future point technique. In this section, we introduce a general formula which generates the stability

functions of SDBDF and IASS methods without needing to go through the increasingly complicated
calculations for each case.

Theorem 1. Suppose that
i) o, B and Yy are the coefficients of SDBDF (3);

i) o, B\k’ Y and Y41 are the coefficients of ESDBDF (8);

ii) o, Bk 11 and Yy, | are the coefficients of SDBDF (21).

Then, for any permitted order and step-point k, the stability functions of the distinct schemes ESDMM:ss,
MESDMMs and PMESDMMs, collectively named IASS methods, together with the stability function of
SDBDF method can be obtained from the general formula

k
D(w,z) = Y Ci(z)w/, (25)
j=0
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where
Ce(z) =1 —z(Bx+bx) — 22 (Y + ),

2B — B+ 2T — 1)
A

(26)

(V—l)aj)

Cj(z):(l—9+[.1 >06j—|—9aj+9227k+1(\/d]’+ T

in which the other coefficients for each method are given in Table 1. The largest values of step-point k
for SDBDF and IASS methods take k = 10 and k = 12, respectively.

Table 1: The coefficients in (26).

bk Ck 2] u 1
SDBDF 0 0 0 0 free
ESDMMs Be—=B Te-wm 1 0 1
MESDMMs 0 0 11 1
PMESDMMs 0 0 11 0

Proof. For the proof, one can obtain the stability function for each of the mentioned methods separately
by the standard linear stability analysis and then verify the general formula (25) with the coefficients
(26). O

The general formula given in Theorem 1 provides the expected results for the stability functions
which can be of substantial assistance in stability analysis of the methods. Also, by using this general
formula and developing a MATLAB code, one can plot the stability regions and drive the angles of A(a)-
stability of the methods. In Table 2, we report the angles of A(a)-stability of SDBDF and IASS methods
fork=1,2,...,12. Such a general formula is also important as they can provide ideas for designing new
algorithms with better stability properties.

5 Conclusion

The stability properties of the numerical methods for stiff IVPs play an important role in the success of the
methods. In the linear stability analysis of the methods, these properties are determined by their stability
functions. For multi-stage methods which utilize the second derivative of the solution and equipped with
the super future point technique, deriving the stability function requires complicated calculations. The
introduced general formula for the stability functions IASS methods, as well as SDBDF, facilitates the
stability analysis of these methods. Moreover, this formula can assist to follow that how maneuvering on
the structure of the method can be useful in improving its stability properties.
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Table 2: The angles of A(a)-stability of SDBDF and IASS methods for k = 1,2,...,12.

SDBDF ESDMM MESDMM PMESDMM

k p a p a p a p a

1 2 90° 3 90° 3 90° 3 90°

2 3 90° 4 90° 4 90° 4 90°

3 4 90° 5 90° 5 90° 5 90°

4 5 89.36° 6 90° 6 90° 6 90°

5 6 86.35° 7 89.81° 7 89.86° 7 89.91°
6 7 80.82° 8 88.35° 8 88.49° 8 88.66°
7 8 72.53° 9 85.28° 9 85.83° 9 85.74°
8 9 60.71° 10 80.47° 10 80.81° 10 81.02°
9 10 43.39° 11 73.58° 11 76.34° 11 76.21°
10 11 12.34 12 63.98° 12 69.19° 12 64.75°
11 2 — 13 50.36° 13 59.37° 13 51.50°
12 13 — 14 29.90° 14 44.24° 14 31.55°
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