Existence of positive solutions for a *p*-Laplacian equation

 \sqrt{a}

✘

∎ a

 \leq

Seshadev Padhi†, Jaffar Ali‡, Ankur Kanaujiya \S , Jugal Mohapatra \S^*

with applications to Hematopoiesis

† *Department of Mathematics, Birla Institute of Technology, Mesra, Ranchi, India* ‡*Department of Mathematics, Florida Gulf Coast University FortMyres, Florida, USA* §*Department of Mathematics, National Institute of Technology Rourkela, India Email(s): spadhi@bitmesra.ac.in, jashaulhameed@fgcu.edu, kanaujiyaa@nitrkl.ac.in, jugal@nitrkl.ac.in*

Abstract. This paper is concerned with the existence of at least one positive solution for a boundary value problem (BVP), with *p*-Laplacian, of the form

$$
(\Phi_p(x'))' + g(t)f(t, x) = 0, \quad t \in (0, 1),
$$

$$
x(0) - ax'(0) = \alpha[x], \quad x(1) + bx'(1) = \beta[x],
$$

where $\Phi_p(x) = |x|^{p-2}x$ is a one dimensional *p*-Laplacian operator with $p > 1, a, b$ are real constants and α, β are the Riemann-Stieltjes integrals

$$
\alpha[x] = \int_{0}^{1} x(t) dA(t), \quad \beta[x] = \int_{0}^{1} x(t) dB(t),
$$

with *A* and *B* are functions of bounded variation. A Homotopy version of Krasnosel'skii fixed point theorem is used to prove our results.

Keywords: Fixed point, positive solution, *p*-Laplacian, non-local boundary conditions, boundary value problem. *AMS Subject Classification 2010*: 47H10, 34B18.

1 Introduction

In this paper, we discuss the existence of at least one positive solution to the *p*-Laplacian nonlinear differential equation

$$
(\Phi_p(x'))' + g(t)f(t, x) = 0, \quad t \in (0, 1),
$$
\n(1)

[∗]Corresponding author.

c 2022 University of Guilan <http://jmm.guilan.ac.ir>

Received: 25 April 2021 / Revised: 8 August 2021/ Accepted: 25 August 2021 DOI: 10.22124/jmm.2021.19445.1670

192 S. Padhi, J. Ali, A. Kanaujiya, J. Mohapatra

together with the non-local boundary conditions (BCs)

$$
x(0) - ax'(0) = \alpha[x],
$$

\n
$$
x(1) + bx'(1) = \beta[x],
$$
\n(2)

where *a*,*b* are positive constants, α and β are the linear functionals on $C[0,1]$), defined by the Riemann-Stieltjes integrals

$$
\alpha[x] = \int_0^1 x(t) dA(t), \quad \beta[x] = \int_0^1 x(t) dB(t), \tag{3}
$$

with *A* and *B* are nondecreasing functions of bounded variation, $f : [0,1] \times [0,\infty) \to [0,\infty)$ is a continuous function, $g : [0,1] \to [0,\infty)$ and g does not vanish identically on any subinterval of $[0,\infty)$. In [\(1\)](#page-0-0), the function $\Phi_p(x) = |x|^{p-2}x$ is a one-dimensional *p*-Laplacian operator with $p > 1$, and the inverse operator Φ_q is defined by $\Phi_q(x) = |x|^{q-2}x$ with $\frac{1}{p} + \frac{1}{q} = 1$.

In order to obtain our existence results, we assume the following conditions throughout this paper.

(A1) $0 < \alpha[1] < 1$ and $0 < \beta[1] < 1$;

The Riemann-Stieltjes integral $\alpha[x]$ and $\beta[x]$, defined in [\(3\)](#page-1-0) satisfying the conditions in (A1), can be reduced to simple and easily verifiable nonlocal conditions, such as:

(i) If

$$
\alpha[x] = \sum_{i=1}^{l} \alpha_i x(\eta_i), \quad 0 < \eta_i < 1 \text{ and } \beta[x] = \sum_{j=1}^{m} \beta_j x(\mu_j), \quad 0 < \mu_j < 1,
$$

then the assumption $(A1)$ reduces to $0 <$ *l* $\sum_{i=1}$ $\alpha_i < 1$ and $0 <$ *m* ∑ *j*=1 $\beta_j < 1$.

(ii) If

$$
\alpha[x] = \frac{\alpha}{\eta_2 - \eta_1} \int_{\eta_1}^{\eta_2} tx(t) dt, \text{ and } \beta[x] = \frac{\beta}{\mu_2 - \mu_1} \int_{\mu_1}^{\mu_2} tx(t) dt,
$$

with $0 < \eta_1 < \eta_2 < 1$ and $0 < \mu_1 < \mu_2 < 1$, α and β are positive constants, then the assumption (A1) reduces to $0 < \alpha(\eta_1 + \eta_2) < 2$ and $0 < \beta(\mu_1 + \mu_2) < 2$.

(iii) If

$$
\alpha[x] = \alpha \int_0^1 t^m x(t) dt \text{ and } \beta[x] = \beta \int_0^1 t^n x(t) dt, \quad m, n > -1,
$$

then the assumption (A1) reduces to $0 < \alpha < m+1$ and $0 < \beta < n+1$.

In a recent paper, Padhi and Jaffar [?] used the fixed point index approach to study the positive solutions of the BVP (1) – (2) . Yang and Wang $[11]$ used the Avery-Peterson fixed point theorem to study the existence of at least three positive solutions of the *p*-Laplacian equation [\(1\)](#page-0-0) together with the integral BCs of type

$$
x(0) - ax'(0) = \int_0^1 g_1(s)x(s)ds,
$$

\n
$$
x(1) + bx'(1) = \int_0^1 g_2(s)x(s)ds,
$$
\n(4)

where $a, b \ge 0$, $p > 1$, and the inverse operator $\Phi_q(x)$ defined by $\Phi_q(x) = \Phi_p^{-1}(x) = |x|^{q-2}x$ with $\frac{1}{p} + \frac{1}{q} =$ 1. For boundary value problems with *p*-Laplacians, one may refer to $\left[1, 2, 5, 8-10, 12-14\right]$ and the references cited therein. The main tools used in the above-cited paper are upper-lower solution method, Krasnosel'skii fixed point theorem, Avery-Peterson fixed point theorem, Leggett-William fixed point theorem and the fixed point index approach. We note that the integral on the right hand side of (4) are particular cases of the Riemann-Stieltjes integrals $\alpha[x]$ and $\beta[x]$, defined in [\(3\)](#page-1-0). From the above discussion, it seems the no work is available in the literature on the existence of the positive solution of the problem (1) together with the BCs (2) .

This work has been divided into three sections. Section [1](#page-0-1) contains the basic information on the problem (1) – (2) . Section [2](#page-2-0) is Preliminary where all basic results are incorporated. Results concerning the existence of positive solutions of [\(1\)](#page-0-0) are given in Section [3.](#page-4-0)

2 Preliminaries

In this section, we provide results similar to those obtained in [?]. The proof of Lemmas [1-](#page-2-1)[4](#page-3-0) are imported from [?], and their proofs are similar to the proofs in $[?, 7]$ $[?, 7]$ and $[12]$.

Lemma 1. *([?])* For any $x \in C([0,1])$ *, let* $F(t,x): [0,1] \times [0,\infty) \to [0,\infty)$ *be a continuous function. Consider the problem*

$$
(\Phi_p(x'))' + F(t, x) = 0, \quad t \in (0, 1),
$$

together with the non-local BCs in [\(2\)](#page-1-1). Then $x(t) \geq 0$ *and concave on (0,1).*

Throughout this work, we consider the Banach space $X = C([0,1])$ equipped with the norm $||x|| =$ $\max_{0\leq t\leq 1} |x(t)|.$

Lemma 2. *([?]) Suppose that*

$$
1 - \alpha[1] \neq 0 \text{ and } 1 - \beta[1] \neq 0. \tag{5}
$$

Then for any given $y \in X$ *, the equation*

$$
-(\Phi_p(x'))' = y(t) \text{ for a.e. } t \in (0,1),
$$
 (6)

together with the BCs [\(2\)](#page-1-1), has the solution

$$
x(t) = \frac{a\Phi_q(\bar{\phi}_0) + \int_0^1 \int_0^t \Phi_q(\bar{\phi}_0 - \int_0^s y(r) dr) ds dA(t)}{1 - \alpha[1]} + \int_0^t \Phi_q(\bar{\phi}_0 - \int_0^s y(r) dr) ds, \tag{7}
$$

 ω where $\bar{\phi_0}$ satisfies the integral equation

$$
a\Phi_{q}(\bar{\phi}_{0}) = \int_{0}^{1} \int_{t}^{1} \Phi_{q} \left(\bar{\phi}_{0} - \int_{0}^{s} y(r) dr \right) ds dA(t) - \int_{0}^{1} \Phi_{q} \left(\bar{\phi}_{0} - \int_{0}^{s} y(r) dr \right) ds - \left(\frac{1 - \alpha[1]}{1 - \beta[1]} \right) \left[b\Phi_{q} \left(\bar{\phi}_{0} - \int_{0}^{1} y(r) dr \right) + \int_{0}^{1} \int_{t}^{1} \Phi_{q} \left(\bar{\phi}_{0} - \int_{0}^{s} y(r) dr \right) ds dB(t) \right].
$$
\n(8)

194 S. Padhi, J. Ali, A. Kanaujiya, J. Mohapatra

Our next lemma provides the existence of a real $\rho \in (0,1)$ satisfying $\tilde{\phi}_0 =$ ρ R 0 *y*(*r*)*dr*.

Lemma 3. *(* [?]) Let (A1) holds and $y \in C[0,1]$ with $y \ge 0$. Let $x(t)$, given in [\(7\)](#page-2-2), be a solution of [\(6\)](#page-2-3) together with the BCs [\(2\)](#page-1-1). Then there exist constants $l \in \left(0, \int\right)^1$ $\boldsymbol{0}$ $y(s)ds$ and $\rho \in (0,1)$ *such that* [\(8\)](#page-2-4) *is satisfied for* $\tilde{\phi}_0 = l :=$ ρ R *y*(*r*)*dr*. *Hence we can rewrite the solution x*(*t*)*, given in [\(7\)](#page-2-2), as*

0 $\left(\begin{array}{c} \rho \\ \rho \end{array}\right)$ $\left(\begin{array}{c} \rho \\ \rho \end{array}\right)$ $\left(\begin{array}{c} \rho \\ \rho \end{array}\right)$

$$
x(t) = \frac{a\Phi_q\left(\int_0^t y(r)dr\right) + \int_0^t \int_0^t \Phi_q\left(\int_s^t y(r)dr\right) ds dA(t)}{1 - \alpha[1]} + \int_0^t \Phi_q\left(\int_s^p y(r)dr\right) ds.
$$

In this paper, we define a cone *K* on *X* by $K = \{x \in X : x(t) \ge 0, t \in [0,1]\}$, and an operator $T: X \rightarrow X$ by

$$
Tx(t) = \frac{a\Phi_q\left(\int\limits_0^{\rho} g(r)f(r,x(r))dr\right) + \int\limits_0^1 \int\limits_0^t \Phi_q\left(\int\limits_s^{\rho} g(r)f(r,x(r))dr\right)dsdA(t)}{1-\alpha[1]} + \int\limits_0^t \Phi_q\left(\int\limits_s^{\rho} g(r)f(r,x(r))dr\right)ds.
$$
\n(9)

Lemma 4. *([?]*) Assume that there exist a positive constants ρ *with* $\rho \in (0,1)$ *such that*

$$
\lambda\left(\int_0^{\rho} g(s)f(s,x(s))\,ds\right)=0,
$$

where

$$
\lambda \left(\int_0^{\rho} g(s) f(s, x(s)) ds \right) = a \Phi_q \left(\int_0^{\rho} g(s) f(s, x(s)) ds \right) + \int_0^1 \int_0^t \Phi_q \left(\int_s^{\rho} g(s) f(s, x(s)) ds \right) ds dA(t)
$$

+
$$
(1 - \alpha[1]) \int_0^1 \Phi_q \left(\int_s^{\rho} g(s) f(s, x(s)) ds \right) ds
$$

+
$$
\frac{(1 - \alpha[1])}{(1 - \beta[1])} \left[b \Phi_q \left(- \int_s^1 g(s) f(s, x(s)) ds \right) + \int_0^1 \int_s^1 \Phi_q \left(\int_s^{\rho} g(s) f(s, x(s)) ds \right) ds dB(t) \right].
$$

Then, a function x is a solution of problem $(1) - (2)$ $(1) - (2)$ $(1) - (2)$ *if and only if x is a fixed point of the operator Tx, given in [\(9\)](#page-3-1).*

The next lemma follows from the concavity property of a continuous function.

Lemma 5. *(* $\lceil 6 \rceil$) Let $x(t)$ be a solution of problem [\(1\)](#page-0-0) – [\(2\)](#page-1-1). Then for any $\delta \in (0, 1/2)$, we have

$$
\min_{t\in[\delta,1-\delta]} x(t) \geq \delta \max_{0\leq t\leq 1} x(t) = \delta ||x||.
$$

In this paper, we shall use a homotopy version of the Krasnosel'skii fixed point theorem to prove the main results in Section [3.](#page-4-0) First, we define the some notations for our use. Let *X* be a Banach space and $K \subset X$ a cone and *r*, *R* two numbers with $0 < r < R$. Denote $\Omega_r = \{x \in K : ||x|| < r\}$, $\partial \Omega_r = \{x \in K : ||x|| = r\}$ *r*}, and consider the conical shell $\Omega_{r,R} = \{x \in K : r \le ||x|| \le R\}$. Let $T : \Omega_{r,R} \to K$ be a continuous and compact mapping and consider the fixed point equation $x = Tx$, $x \in \Omega_{r,R}$. Now we provide the homotopy version of the Krasnosel'skii fixed point theorem [\[3,](#page-9-7) [4\]](#page-9-8) for our use in the sequel.

Theorem 1 (Krasnosel'skii fixed point theorem [\[3,](#page-9-7) [4\]](#page-9-8)). *The mapping T has a fixed point in* $\Omega_{r,R}$ *if it satisfies one of the following conditions:*

- *(i)* $Tx \neq \mu x$ for $x \in \partial \Omega_r$, $\mu < 1$, and $Tx \neq \mu x$, for $x \in \partial \Omega_R$, $\mu > 1$ and $\inf_{x \in \Omega_r} ||Tx|| > 0$ (compression *condition);*
- *(ii)* $Tx \neq \mu x$ for $x \in \partial \Omega_r$, $\mu > 1$, and $Tx \neq \mu x$, for $x \in \partial \Omega_R$, $\mu < 1$ and $\inf_{x \in \Omega_R} ||Tx|| > 0$ *(expansion*) *condition).*

3 Main results: existence of positive solutions

In this section, we apply Krasnosel'skii fixed point theorem, that is, Theorem [1](#page-4-1) to obtain the exis-tence of positive solutions of [\(1\)](#page-0-0). Throughout this section, we denote constants L, η and M by $L =$ $\Phi_q\left(\int_0^1g(r) \, dr\right), \, \eta = \frac{\delta(1-\alpha[1])}{(1+a)L}$ $\frac{(1-\alpha)}{(1+a)L}$ and $M = \min{\{\mathscr{L}_1, \mathscr{L}_2, \mathscr{L}_3\}}$, where

$$
\mathcal{L}_1 = (1 - \delta) \Phi_q \left(\int_{\delta}^{1 - \delta} g(r) dr \right),
$$

$$
\mathcal{L}_2 = \int_0^{\delta} \Phi_q \left(\int_s^{\delta} g(r) dr \right) ds,
$$

$$
\mathcal{L}_3 = \int_{1 - \delta}^1 \Phi_q \left(\int_{1 - \delta}^s g(r) dr \right) ds.
$$

Theorem 2. Suppose that there exist constants r_i , $i = 1,2$ with $0 < r_1 < r_1/\delta < r_2$ such that

$$
f(t,x) \le \Phi_p(\eta r_2) \text{ for } 0 \le x \le r_2, 0 \le t \le 1,
$$
\n
$$
(10)
$$

and

$$
f(t,x) > \Phi_p\left(\frac{r_1}{\delta M}\right) \text{ for } r_1 \le x \le \frac{r_1}{\delta} \text{ and } 0 \le t \le 1,
$$
 (11)

hold. Then the problem [\(1\)](#page-0-0) has at least one positive solution $x(t)$ *with* $r_1 \le ||x|| \le r_2$ *.*

Proof. Let $x \in K$. Clearly

$$
\alpha[Tx] = \int_0^1 Tx(t) dA(t) = \frac{1}{(1 - \alpha[1])} \left[a\alpha[1] \Phi_q \left(\int_0^{\rho} g(r) f(r, x(r)) dr \right) + \int_0^1 \int_0^s \Phi_q \left(\int_0^{\rho} g(r) f(r, x(r)) dr \right) d\theta dA(s) \right]
$$

= $Tx(0) - a(Tx)'(0),$ (12)

holds. Similarly, we can show that $Tx(1) + b(Tx)'(1) = \beta[Tx]$. Differentiating Tx with respect to *t*, we see that *Tx* satisfies the equation

$$
((\Phi_p(Tx)'))' + g(t)f(t,x) = 0, \quad t \in (0,1),
$$

which implies that Tx satisfies the BVP

$$
((\Phi_p(Tx)'))' + g(t)f(t,x) = 0, \quad t \in (0,1),
$$

\n
$$
Tx(0) - a(Tx)'(1) = \alpha[Tx] \text{ and } Tx(1) + b(Tx)'(1) = \beta[Tx].
$$

Then by Lemma [1,](#page-2-1) we have $Tx \ge 0$ on [0,1]. Hence $T(K) \subset K$.

We shall use Theorem [1\(](#page-4-1)i) to prove this theorem. Set

$$
\Omega_{r_i} = \{x \in K : ||x|| < r_i\}, \quad i = 1, 2.
$$

Then for any $x \in \partial \Omega_{r_i}$, $i = 1, 2$, we have $0 \le x(t) \le ||x|| = r_i$, $t \in [0, 1]$, and Ω_{r_2} is an open bounded set in *K*. We prove that $T(\Omega_{r_2}) \subset \Omega_{r_2}$ is completely continuous. The verification of continuity of *T* is straightforward, and hence we omit it. For any $x \in \Omega_{r_2}$ and $t \in [0,1]$, we have

$$
||Tx|| = \max_{0 \le t \le 1} Tx(t) = Tx(\rho) \le \frac{(1+a)}{(1-\alpha[1])} \Phi_q \left(\int_0^1 g(r) f(r,x(r)) dr \right) \le r_2.
$$

Thus, we show that $T(\Omega_{r_2}) \subset \Omega_{r_2}$, and $T(\Omega_{r_2})$ is uniformly bounded. Next, we prove that $T:\Omega_{r_2} \to \Omega_{r_2}$ is equicontinuous in $[0,1]$, that is, for any $x \in \Omega_{r_2}, t_1, t_2 \in [0,1]$, for every $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$, such that when $|t_1 - t_2| < δ$, then $|(Tx)(t_1) - (Tx)(t_2)| < ε$. Set $f^M = \max\{f(t, x); 0 \le x \le r_2, 0 \le t \le 1\};$ then for every $\varepsilon > 0$, there exists a $\delta \in \left(0, \frac{\varepsilon}{\Phi_q(f^M \int_0^1 g(s) ds)}\right)$ $\left\{ \int \mathrm{ such \, that \, for \, ant \, } t_1, t_2 \in [0,1] \, \mathrm{ with } \, |t_1-t_2| < \delta, \right\}$ we have

$$
|Tx(t_2) - Tx(t_1)| \le \left| \int_{t_1}^{t_2} \Phi_q \left(\int_0^1 g(r) f(r, x(r)) dr \right) ds \right|
$$

$$
\le |t_1 - t_2| \Phi_q \left(\int_0^1 g(r) f(r, x(r)) dr \right)
$$

$$
< \delta \Phi_q \left(f^M \int_0^1 g(r) dr \right) < \varepsilon.
$$

Hence $T(\Omega_{r_2}) \subset \Omega_{r_2}$ is equicontinuous. Consequently, $T(\Omega_{r_2}) \subset \Omega_{r_2}$ is completely continuous.

Let $x \in \partial \Omega_{r_2}$. We claim that $Tx \neq \mu x$ for $x \in \partial \Omega_{r_2}$, $\mu > 1$. If not, then there exists a $x^* \in \partial \Omega_{r_2}$ such that $Tx^* = \mu x^*$ and $\mu > 1$. Thus,

$$
\delta r_2 = \delta ||x^*|| \leq \min_{t \in [\delta, 1-\delta]} x^*(t) < \mu \min_{t \in [\delta, 1-\delta]} x^*(t) = \min_{t \in [\delta, 1-\delta]} Tx^*(t) \leq ||Tx^*||.
$$

Consequently, we have

$$
\delta r_2 < ||Tx^*|| = \max_{0 \le t \le 1} Tx^*(t) = Tx^*(\rho)
$$
\n
$$
= \frac{a\Phi_q \left(\int_0^{\rho} g(r)f(r,x^*(r))dr\right) \int_0^1 \int_0^t \Phi_q \left(\int_s^{\rho} g(r)f(r,x^*(r))dr\right) ds dA(t)}{1 - \alpha[1]}
$$
\n
$$
+ \int_0^1 \Phi_q \left(\int_s^{\rho} g(r)f(r,x^*(r))dr\right) ds
$$
\n
$$
\le \frac{(1+a)}{(1-\alpha[1])}\Phi_q \left(\int_0^1 g(r)f(r,x^*(r))dr\right) \le \delta r_2,
$$

a contradiction. Hence $Tx \neq \mu x$ for $x \in \partial \Omega_{r_2}, \mu > 1$.

Next, set $V_{r_1} = \left\{ x \in K : \min_{t \in [\delta, 1 - \delta]} x(t) < r_1 \right\}$; then $\Omega_{r_1} \subset V_{r_1} \subset \Omega_{r_1/\delta}$ and $\min_{t \in [\delta, 1 - \delta]} x(t) = r_1$ for $x \in K \cap \partial V_{r_1}$. By Lemma [5,](#page-4-2) for any $x \in \partial V_{r_1}$ we have $\max_{0 \le t \le 1} x(t) \le \frac{1}{\delta} \min_{t \in [\delta, 1-\delta]} x(t) = \frac{r_1}{\delta}$. Therefore, for all $\delta \le t \le 1-\delta$, we have

$$
r_1 = \min_{t \in [\delta, 1 - \delta]} x(t) \leq x(t) \leq \max_{0 \leq t \leq 1} x(t) \leq \frac{r_1}{\delta}.
$$

Differentiating the operator Tx with respect to t , we obtain

$$
(Tx)'(t) = \Phi_q\left(\int_t^\rho g(r)f(r,x(r))dr\right) \ge 0 \text{ for } t \le \rho,
$$

and

$$
(Tx)'(t) = -\Phi_q\left(\int\limits_{\rho}^t g(r)f(r,x(r))dr\right) \le 0 \text{ for } t \ge \rho.
$$

Hence max $_{0 \le t \le 1} Tx(t) = Tx(\rho)$, and *Tx* can be expressed as

$$
Tx(t) = Tx(0) + \int_{0}^{t} \Phi_{q} \left(\int_{s}^{\rho} g(r) f(r, x(r)) dr \right) ds \text{ for } t \leq \rho,
$$
\n(13)

and

$$
Tx(t) = Tx(1) + \int_{t}^{1} \Phi_q \left(\int_{\rho}^{s} g(r) f(r, x(r)) dr \right) ds \text{ for } t \ge \rho.
$$
 (14)

We consider three cases depending on the location of ρ in (0,1), and prove that $Tx \neq \mu x$, for $x \in$ $\partial\Omega_{r_1/\delta}$ and $\mu < 1$ in each case. If possible, suppose that there exists a $x^* \in \partial\Omega_{r_1/\delta}$ such that $Tx^* = \mu x^*$ and $\mu < 1$. Then, for $x^* \in \partial \Omega_{r_1/\delta}$, we have $x^*(t) > \mu x^*(t) = Tx^*(t)$. Consequently, $r_1/\delta = ||x^*|| >$ $||Tx^*||$ holds. First suppose that $\rho \in [\delta, 1 - \delta]$. Then we have, either min_{t∈[$\delta, 1-\delta]$} $Tx^*(t) = Tx^*(\delta)$ or $\min_{t \in [\delta, 1-\delta]} Tx^*(t) = Tx^*(1-\delta)$. If $\min_{t \in [\delta, 1-\delta]} Tx^*(t) = Tx^*(\delta)$, then from [\(13\)](#page-6-0) and the fact that $Tx^*(0) \geq 0$, we have

$$
r_1/\delta > ||Tx^*|| \ge Tx^*(\delta)
$$

= $Tx^*(0) + \int_0^{\delta} \Phi_q \left(\int_s^{\rho} g(r) f(r, x^*(r)) dr \right) ds$

$$
\ge \int_0^{\delta} \Phi_q \left(\int_s^{\delta} g(r) f(r, x^*(r)) dr \right) ds > r_1/\delta,
$$

a contradiction. If $\min_{t \in [\delta, 1-\delta]} Tx^*(t) = Tx^*(1-\delta)$, then from [\(14\)](#page-6-1) and the fact that $Tx^*(1) \ge 0$, we have

$$
r_1/\delta > ||Tx^*|| \ge Tx^*(1-\delta)
$$

\n
$$
\ge \int_{1-\delta}^1 \Phi_q \left(\int_{\rho}^s g(r) f(r, x^*(r)) dr \right) ds
$$

\n
$$
\ge \int_{1-\delta}^1 \Phi_q \left(\int_{1-\delta}^s g(r) f(r, x^*(r)) dr \right) ds > r_1/\delta,
$$

a contradiction. Next suppose that $\rho \in [1-\delta, 1)$. Then from [\(13\)](#page-6-0) and $Tx^*(0) \ge 0$, we have

$$
r_1/\delta > ||Tx^*|| \ge Tx^*(1-\delta)
$$

\n
$$
\ge Tx^*(0) + \int_0^{1-\delta} \Phi_q \left(\int_s^{\rho} g(r)f(r,x^*(r))dr \right) ds
$$

\n
$$
\ge \int_0^{1-\delta} \Phi_q \left(\int_s^{1-\delta} g(r)f(r,x^*(r))dr \right) ds
$$

\n
$$
\ge \int_0^{1-\delta} \Phi_q \left(\int_s^{1-\delta} g(r)f(r,x^*(r))dr \right) ds, \quad (\because s \le \delta)
$$

\n
$$
\ge (1-\delta)\Phi_q \left(\int_s^{1-\delta} g(r)f(r,x^*(r))dr \right) > r_1/\delta,
$$

a contradiction. Finally, suppose that $\rho \in (0,\delta)$. So $\rho \le t \in [\delta,1-\delta]$ and $\rho \le t \in [\delta,1-\delta]$. Hence

from [\(14\)](#page-6-1) and $Tx^*(1) \ge 0$, we have

$$
r_1/\delta > ||Tx^*||
$$

\n
$$
\geq \int_{1-\delta}^1 \Phi_q \left(\int_{\rho}^s g(r) f(r, x^*(r)) dr \right) ds + \lambda^* \frac{r_2}{\delta}
$$

\n
$$
\geq \int_{1-\delta}^1 \Phi_q \left(\int_{1-\delta}^s g(r) f(r, x^*(r)) dr \right) ds > r_1/\delta,
$$

a contradiction. Hence, $Tx \neq \mu x$, for $x \in \partial \Omega_{r_1/\delta}$, $\mu < 1$.

In order to complete the proof of the theorem, we are required to show that $\inf_{x \in \partial \Omega} |Tx|| > 0$. Since $||Tx|| = Tx(\rho), \rho \in (0,1)$, and $Tx(t) \ge 0$ for all $t \in [0,1]$, then from the concavity property of *Tx*, we have $\inf_{x \in \partial \Omega} ||Tx|| > 0$. Hence by Theorem [1\(](#page-4-1)i), the operator *T* has one fixed point *x*, which is a positive solution of the problem [\(1\)](#page-0-0)-[\(2\)](#page-1-1) satisfying $r_1 \le ||x_1|| \le r_2/\delta$. This completes the proof of the theorem. \Box

Remark 1. *The assumption [\(10\)](#page-4-3) in Theorem [2](#page-4-4) can be replaced by the condition*

$$
\lim_{x \to \infty} \max_{0 \le t \le 1} \frac{f(t, x)}{\Phi_p(x/M)} = 0.
$$
\n(15)

Indeed, by the condition [\(15\)](#page-8-0) we can find a suitable r_2 with $r_2 > r_1/\delta$ such that [\(10\)](#page-4-3) is satisfied.

Thus, we have the following theorem.

Theorem 3. Let [\(15\)](#page-8-0) be satisfied and assume that there exists a constant $r_1 > 0$ such that [\(11\)](#page-4-5) holds. *Then the problem [\(1\)](#page-0-0) has at least one positive solution.*

As an application of Theorem [3,](#page-8-1) we consider the case where the nonlinear function *f* in [\(1\)](#page-0-0) is a model of hematopoiesis (red blood production model), that is, we consider

$$
\left(\Phi_p(x^{'})\right)^{'} + \frac{x^{l}}{1 + x^{m}} = 0, \quad t \in (0, 1),\tag{16}
$$

together with the BCs in [\(2\)](#page-1-1). We have the following theorem.

Theorem 4. *Suppose that* $l > p - 1 > l - m > 0$ *, and for any* $\delta \in (0, 1/2)$ *. Let*

$$
\frac{(l-p+1)^{\frac{l-p+1}{m}}(p-1-l+m)^{\frac{(p-1-l+m)}{m}}}{(l-p+1)+\delta^m(p-1-l+m)} > \frac{1}{\delta^{m+p-1}\min\left\{(1-2\delta)^{\frac{1}{p-1}},\frac{(p-1)}{p}\delta^{\frac{p}{p-1}}\right\}}.\tag{17}
$$

Then the problem [\(16\)](#page-8-2) together with the BCs [\(2\)](#page-1-1) has at least one positive solution.

Proof. We shall apply Theorem [3](#page-8-1) to prove our theorem. Set $f(t, x) = \frac{x^2}{1+x^2}$ $\frac{x}{1+x^m}$, then by the assumption $l > p - 1 > l - m > 0$, we can see that [\(15\)](#page-8-0) holds. Thus, it remains to find the existence of a positive constant *r*₁ such that [\(11\)](#page-4-5) is satisfied. Since $g(t) \equiv 1$, then $M = \min \left\{ (1 - 2\delta)^{\frac{1}{p-1}} \frac{(p-1)}{p} \right\}$ $\frac{(-1)}{p} \delta^{\frac{p}{p-1}}$. Since *x l* $\frac{x^l}{1+x^m} \ge \frac{\delta^m r_1^l}{\delta^m+r_1^m}$ for $r_1 \le x \le \frac{r_1}{\delta}$ $\frac{r_1}{\delta}$, then [\(11\)](#page-4-5) is satisfied if

$$
\frac{r_1^{l-p+1}}{\delta^m + r_1^m} > \frac{1}{\delta^{m+p-1} \min\left\{ (1-2\delta)^{\frac{1}{p-1}}, \frac{(p-1)}{p} \delta^{\frac{p}{p-1}} \right\}},\tag{18}
$$

holds. Set $r_1 = \left(\frac{l-p+1}{p-l-1+\cdots}\right)$ $\frac{l-p+1}{p-l-1+m}$ $\int_{0}^{\frac{1}{m}} \delta$; then $\frac{r_1^{l-p+1}}{\delta^{m}+r_1^{m}}$ attains its minimum

$$
\frac{(l-p+1)^{\frac{l-p+1}{m}}(p-1-l+m)^{\frac{(p-1-l+m)}{m}}}{(l-p+1)+\delta^{m}(p-1-l+m)},
$$

 $\frac{l-p+1}{p-l-1+m}$ ^{$\frac{1}{m}$}. Thus [\(18\)](#page-9-9) is satisfied if [\(17\)](#page-8-3) holds. This completes the proof of the $\frac{r_1}{\delta}$ at $\frac{r_1}{\delta} = \left(\frac{l-p+1}{p-l-1+\epsilon}\right)$ for $r_1 \leq x \leq \frac{r_1}{\delta}$ theorem. \Box

References

- [1] D. Bai, Y. Chan, *Three positive solutions for a generalized Laplacian boundary value problem with a parameter*, Appl. Math. Comput. 219 (2013) 4782–4788.
- [2] H-Y. Feng, W-G. Ge, *Existence of three positive solutions for M-point boundary value problem with one-dimensional p-Laplacian*, Taiwanese J. Math. 14 (2010) 647–665.
- [3] A. Granas, J. Dugundji, *Elementary Fixed Point Theorems, In: Fixed Point Theory*, Springer, New York, (2003), 9–84.
- [4] D. Guo, V. Lakshmikantham, *Nonlinear Problems in Abstract Cones*, Academic Press, New York, 2014.
- [5] Y. Guo, Y. Ji, X. Liu, *Multiple positive solutions for some multipoint boundary value problems with p-Laplacian*, J. Comput. Appl. Math. 216 (2008) 144–156.
- [6] B. Liu, *Positive solutions of three-point boundary value problems for the one-dimensional p-Laplacian with infinitely many singularities*, Appl. Math. Lett. 17 (2004) 665–661.
- [7] S. Liu, M. Jia, Y. Tian, *Existence of positive solutions for boundary-value problems with integral boundary conditions and sign changing nonlinearities*, Electron. J. Differ. Equ. 163 (2010) 1–12.
- [8] P. Wang, Y. Ru, *Some existence results of positive solutions for p-Laplacian systems*, Bound. Value Probl. 9 (2019) 1–24.
- [9] S.P. Wang, *Multiple positive solutions for nonlocal boundary value problems with p-Lalpacian operator*, Differ. Equ. Appl. 9 (2017) 533–542.
- [10] Y. Wang, M. Zhao, Y. Hu, *Triple positive solutions for a multipoint boundary value problem with one dimensional p-Laplacian*, Comp. Math. Appl. 60 (2010) 1792–1802.
- [11] Y.Y. Yang, Q. Wang, *Multiple positive solutions for p-Laplacian equations with integral boundary conditions*, J. Math. Anal. Appl. 453 (2017) 558–571.
- [12] L. Yuji, *The existence of multiple positive solutions of p-Laplacian boundary value problems*, Math. Slovaca 57 (2007) 225–242.
- [13] L. Zhang, Z. Xuan, *Multiple positive solutions for a second-order boundary value problem with integral boundary conditions*, Bound. Value Probl. 60 (2016) 1–18.
- [14] Z. Zhou, J. Ling, *Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian*, Appl. Math. Lett. 91 (2019) 28–34.