
Existence of positive solutions for a p-Laplacian equation
with applications to Hematopoiesis

Seshadev Padhi†, Jaffar Ali‡, Ankur Kanaujiya§, Jugal Mohapatra§∗

† Department of Mathematics, Birla Institute of Technology, Mesra, Ranchi, India
‡Department of Mathematics, Florida Gulf Coast University FortMyres, Florida, USA

§Department of Mathematics, National Institute of Technology Rourkela, India
Email(s): spadhi@bitmesra.ac.in, jashaulhameed@fgcu.edu, kanaujiyaa@nitrkl.ac.in,

jugal@nitrkl.ac.in

Journal of Mathematical Modeling
Vol. 10, No. 2, 2022, pp. 191-201. Research Article JMM

�
�

�
�

�
�

�
�

Abstract. This paper is concerned with the existence of at least one positive solution for a boundary
value problem (BVP), with p-Laplacian, of the form

(Φp(x
′
))
′
+g(t) f (t,x) = 0, t ∈ (0,1),

x(0)−ax
′
(0) = α[x], x(1)+bx

′
(1) = β [x],

where Φp(x) = |x|p−2x is a one dimensional p-Laplacian operator with p > 1,a,b are real constants and
α,β are the Riemann-Stieltjes integrals

α[x] =
1∫

0

x(t)dA(t), β [x] =
1∫

0

x(t)dB(t),

with A and B are functions of bounded variation. A Homotopy version of Krasnosel’skii fixed point
theorem is used to prove our results.

Keywords: Fixed point, positive solution, p-Laplacian, non-local boundary conditions, boundary value problem.
AMS Subject Classification 2010: 47H10, 34B18.

1 Introduction

In this paper, we discuss the existence of at least one positive solution to the p-Laplacian nonlinear
differential equation

(Φp(x′))′+g(t) f (t,x) = 0, t ∈ (0,1), (1)
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together with the non-local boundary conditions (BCs)

x(0)−ax′(0) = α[x],

x(1)+bx′(1) = β [x],
(2)

where a,b are positive constants, α and β are the linear functionals on C[0,1]), defined by the Riemann-
Stieltjes integrals

α[x] =
∫ 1

0
x(t)dA(t), β [x] =

∫ 1

0
x(t)dB(t), (3)

with A and B are nondecreasing functions of bounded variation, f : [0,1]× [0,∞)→ [0,∞) is a continuous
function, g : [0,1]→ [0,∞) and g does not vanish identically on any subinterval of [0,∞). In (1), the
function Φp(x) = |x|p−2x is a one-dimensional p-Laplacian operator with p > 1, and the inverse operator
Φq is defined by Φq(x) = |x|q−2x with 1

p +
1
q = 1.

In order to obtain our existence results, we assume the following conditions throughout this paper.

(A1) 0 < α[1]< 1 and 0 < β [1]< 1;

The Riemann-Stieltjes integral α[x] and β [x], defined in (3) satisfying the conditions in (A1), can be
reduced to simple and easily verifiable nonlocal conditions, such as:

(i) If

α[x] =
l

∑
i=1

αix(ηi), 0 < ηi < 1 and β [x] =
m

∑
j=1

β jx(µ j), 0 < µ j < 1,

then the assumption (A1) reduces to 0 <
l

∑
i=1

αi < 1 and 0 <
m

∑
j=1

β j < 1.

(ii) If

α[x] =
α

η2−η1

∫
η2

η1

tx(t)dt, and β [x] =
β

µ2−µ1

∫
µ2

µ1

tx(t)dt,

with 0 < η1 < η2 < 1 and 0 < µ1 < µ2 < 1, α and β are positive constants, then the assumption
(A1) reduces to 0 < α(η1 +η2)< 2 and 0 < β (µ1 +µ2)< 2.

(iii) If

α[x] = α

∫ 1

0
tmx(t)dt and β [x] = β

∫ 1

0
tnx(t)dt, m,n >−1,

then the assumption (A1) reduces to 0 < α < m+1 and 0 < β < n+1.

In a recent paper, Padhi and Jaffar [?] used the fixed point index approach to study the positive
solutions of the BVP (1)–(2). Yang and Wang [11] used the Avery-Peterson fixed point theorem to study
the existence of at least three positive solutions of the p-Laplacian equation (1) together with the integral
BCs of type

x(0)−ax
′
(0) =

∫ 1

0
g1(s)x(s)ds,

x(1)+bx
′
(1) =

∫ 1

0
g2(s)x(s)ds,

(4)
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where a,b≥ 0, p > 1, and the inverse operator Φq(x) defined by Φq(x) = Φ−1
p (x) = |x|q−2x with 1

p +
1
q =

1. For boundary value problems with p-Laplacians, one may refer to [1, 2, 5, 8–10, 12–14] and the
references cited therein. The main tools used in the above-cited paper are upper-lower solution method,
Krasnosel’skii fixed point theorem, Avery-Peterson fixed point theorem, Leggett-William fixed point
theorem and the fixed point index approach. We note that the integral on the right hand side of (4)
are particular cases of the Riemann-Stieltjes integrals α[x] and β [x], defined in (3). From the above
discussion, it seems the no work is available in the literature on the existence of the positive solution of
the problem (1) together with the BCs (2).

This work has been divided into three sections. Section 1 contains the basic information on the
problem (1)–(2). Section 2 is Preliminary where all basic results are incorporated. Results concerning
the existence of positive solutions of (1) are given in Section 3.

2 Preliminaries

In this section, we provide results similar to those obtained in [?]. The proof of Lemmas 1-4 are imported
from [?], and their proofs are similar to the proofs in [?, 7] and [12].

Lemma 1. ( [?]) For any x ∈ C([0,1]), let F(t,x) : [0,1]× [0,∞)→ [0,∞) be a continuous function.
Consider the problem

(Φp(x′))′+F(t,x) = 0, t ∈ (0,1),

together with the non-local BCs in (2). Then x(t)≥ 0 and concave on (0,1).

Throughout this work, we consider the Banach space X = C([0,1]) equipped with the norm ||x|| =
max

0≤t≤1
|x(t)|.

Lemma 2. ( [?]) Suppose that
1−α[1] 6= 0 and 1−β [1] 6= 0. (5)

Then for any given y ∈ X, the equation

− (Φp(x′))′ = y(t) f or a.e. t ∈ (0,1), (6)

together with the BCs (2), has the solution

x(t) =

aΦq(φ̄0)+

1∫
0

t∫
0

Φq

φ̄0−
s∫

0

y(r)dr

ds dA(t)

1−α[1]
+

t∫
0

Φq

φ̄0−
s∫

0

y(r)dr

ds, (7)

where φ̄0 satisfies the integral equation

aΦq(φ̄0) =

1∫
0

1∫
t

Φq

φ̄0−
s∫

0

y(r)dr

ds dA(t)−
1∫

0

Φq

φ̄0−
s∫

0

y(r)dr

ds

−
(

1−α[1]
1−β [1]

)bΦq

φ̄0−
1∫

0

y(r)dr

+

1∫
0

1∫
t

Φq

φ̄0−
s∫

0

y(r)dr

ds dB(t)

 .
(8)
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Our next lemma provides the existence of a real ρ ∈ (0,1) satisfying φ̃0 =
ρ∫
0

y(r)dr.

Lemma 3. ( [?]) Let (A1) holds and y ∈ C[0,1] with y ≥ 0. Let x(t), given in (7), be a solution of (6)

together with the BCs (2). Then there exist constants l ∈
(

0,
1∫
0

y(s)ds
)

and ρ ∈ (0,1) such that (8) is

satisfied for φ̃0 = l :=
ρ∫
0

y(r)dr. Hence we can rewrite the solution x(t), given in (7), as

x(t) =

aΦq

 ρ∫
0

y(r)dr

+

1∫
0

t∫
0

Φq

 ρ∫
s

y(r)dr

dsdA(t)

1−α[1]
+

t∫
0

Φq

 ρ∫
s

y(r)dr

ds.

In this paper, we define a cone K on X by K =

{
x ∈ X : x(t) ≥ 0, t ∈ [0,1]

}
, and an operator

T : X → X by

T x(t) =

aΦq

 ρ∫
0

g(r) f (r,x(r))dr

+

1∫
0

t∫
0

Φq

 ρ∫
s

g(r) f (r,x(r))dr

dsdA(t)

1−α[1]
+

t∫
0

Φq

 ρ∫
s

g(r) f (r,x(r))dr

ds.

(9)

Lemma 4. ( [?]) Assume that there exist a positive constants ρ with ρ ∈ (0,1) such that

λ

(∫
ρ

0
g(s) f (s,x(s))ds

)
= 0,

where

λ

(∫
ρ

0
g(s) f (s,x(s))ds

)
=aΦq

(∫
ρ

0
g(s) f (s,x(s))ds

)
+

1∫
0

t∫
0

Φq

 ρ∫
s

g(s) f (s,x(s))ds

dsdA(t)

+(1−α[1])
1∫

0

Φq

 ρ∫
s

g(s) f (s,x(s))ds

ds

+
(1−α[1])
(1−β [1])

bΦq

− 1∫
ρ

g(s) f (s,x(s))ds


+

1∫
0

1∫
t

Φq

 ρ∫
s

g(s) f (s,x(s))ds

ds dB(t)

 .
Then, a function x is a solution of problem (1) – (2) if and only if x is a fixed point of the operator T x,
given in (9).
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The next lemma follows from the concavity property of a continuous function.

Lemma 5. ( [6]) Let x(t) be a solution of problem (1) – (2). Then for any δ ∈ (0,1/2), we have

min
t∈[δ ,1−δ ]

x(t)≥ δ max
0≤t≤1

x(t) = δ ||x||.

In this paper, we shall use a homotopy version of the Krasnosel’skii fixed point theorem to prove the
main results in Section 3. First, we define the some notations for our use. Let X be a Banach space and
K ⊂X a cone and r,R two numbers with 0< r <R. Denote Ωr = {x∈K : ‖x‖< r}, ∂Ωr = {x∈K : ‖x‖=
r}, and consider the conical shell Ωr,R = {x ∈ K : r ≤ ‖x‖ ≤ R}. Let T : Ωr,R→ K be a continuous and
compact mapping and consider the fixed point equation x = T x, x ∈Ωr,R. Now we provide the homotopy
version of the Krasnosel’skii fixed point theorem [3, 4] for our use in the sequel.

Theorem 1 (Krasnosel’skii fixed point theorem [3, 4]). The mapping T has a fixed point in Ωr,R if it
satisfies one of the following conditions:

(i) T x 6= µx for x ∈ ∂Ωr, µ < 1, and T x 6= µx, for x ∈ ∂ΩR, µ > 1 and inf
x∈Ωr
‖T x‖ > 0 (compression

condition);

(ii) T x 6= µx for x ∈ ∂Ωr, µ > 1, and T x 6= µx, for x ∈ ∂ΩR, µ < 1 and inf
x∈ΩR
‖T x‖ > 0 (expansion

condition).

3 Main results: existence of positive solutions

In this section, we apply Krasnosel’skii fixed point theorem, that is, Theorem 1 to obtain the exis-
tence of positive solutions of (1). Throughout this section, we denote constants L,η and M by L =

Φq

(∫ 1
0 g(r)dr

)
, η = δ (1−α[1])

(1+a)L and M = min{L1,L2,L3}, where

L1 = (1−δ )Φq

(∫ 1−δ

δ

g(r)dr
)
,

L2 =
∫

δ

0
Φq

(∫
δ

s
g(r)dr

)
ds,

L3 =
∫ 1

1−δ

Φq

(∫ s

1−δ

g(r)dr
)

ds.

Theorem 2. Suppose that there exist constants ri, i = 1,2 with 0 < r1 < r1/δ < r2 such that

f (t,x)≤Φp (ηr2) for 0≤ x≤ r2, 0≤ t ≤ 1, (10)

and
f (t,x)> Φp

( r1

δM

)
for r1 ≤ x≤ r1

δ
and 0≤ t ≤ 1, (11)

hold. Then the problem (1) has at least one positive solution x(t) with r1 ≤ ‖x‖ ≤ r2.
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Proof. Let x ∈ K. Clearly

α[T x] =
∫ 1

0
T x(t)dA(t) =

1
(1−α[1])

aα[1]Φq

 ρ∫
0

g(r) f (r,x(r))dr

 (12)

+

1∫
0

s∫
0

Φq

 ρ∫
θ

g(r) f (r,x(r))dr

dθdA(s)


=T x(0)−a(T x)′(0),

holds. Similarly, we can show that T x(1)+b(T x)′(1) = β [T x]. Differentiating T x with respect to t, we
see that T x satisfies the equation

((Φp(T x)′))′+g(t) f (t,x) = 0, t ∈ (0,1),

which implies that T x satisfies the BVP

((Φp(T x)′))′+g(t) f (t,x) =0, t ∈ (0,1),

T x(0)−a(T x)′(1) = α[T x] and T x(1)+b(T x)′(1) = β [T x].

Then by Lemma 1, we have T x≥ 0 on [0,1]. Hence T (K)⊂ K.
We shall use Theorem 1(i) to prove this theorem. Set

Ωri = {x ∈ K : ||x||< ri} , i = 1,2.

Then for any x ∈ ∂Ωri , i = 1,2, we have 0 ≤ x(t) ≤ ||x|| = ri, t ∈ [0,1], and Ωr2 is an open bounded
set in K. We prove that T (Ωr2) ⊂ Ωr2 is completely continuous. The verification of continuity of T is
straightforward, and hence we omit it. For any x ∈Ωr2 and t ∈ [0,1], we have

||T x||= max
0≤t≤1

T x(t) = T x(ρ)≤ (1+a)
(1−α[1])

Φq

 1∫
0

g(r) f (r,x(r))dr

≤ r2.

Thus, we show that T (Ωr2)⊂Ωr2 , and T (Ωr2) is uniformly bounded. Next, we prove that T : Ωr2 →Ωr2

is equicontinuous in [0,1], that is, for any x∈Ωr2 , t1, t2 ∈ [0,1], for every ε > 0, there exists δ = δ (ε)> 0,
such that when |t1−t2|< δ , then |(T x)(t1)−(T x)(t2)|< ε . Set f M =max{ f (t,x);0≤ x≤ r2, 0≤ t ≤ 1};

then for every ε > 0, there exists a δ ∈
(

0, ε

Φq( f M
∫ 1

0 g(s)ds)

)
such that for ant t1, t2 ∈ [0,1] with |t1−t2|< δ ,

we have

|T x(t2)−T x(t1)| ≤
∣∣∣∣∫ t2

t1
Φq

(∫ 1

0
g(r) f (r,x(r))dr

)
ds
∣∣∣∣

≤ |t1− t2|Φq

(∫ 1

0
g(r) f (r,x(r))dr

)
< δΦq

(
f M
∫ 1

0
g(r)dr

)
< ε.
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Hence T (Ωr2)⊂Ωr2 is equicontinuous. Consequently, T (Ωr2)⊂Ωr2 is completely continuous.
Let x ∈ ∂Ωr2 . We claim that T x 6= µx for x ∈ ∂Ωr2 , µ > 1. If not, then there exists a x∗ ∈ ∂Ωr2 such

that T x∗ = µx∗ and µ > 1. Thus,

δ r2 = δ‖x∗‖ ≤ min
t∈[δ ,1−δ ]

x∗(t)< µ min
t∈[δ ,1−δ ]

x∗(t) = min
t∈[δ ,1−δ ]

T x∗(t)≤ ‖T x∗‖.

Consequently, we have

δ r2 < ||T x∗||= max
0≤t≤1

T x∗(t) = T x∗(ρ)

=

aΦq

(
ρ∫
0

g(r) f (r,x∗(r))dr
)

1−α[1]
+

1∫
0

t∫
0

Φq

(
ρ∫
s

g(r) f (r,x∗(r))dr
)

dsdA(t)

1−α[1]

+

1∫
0

Φq

 ρ∫
s

g(r) f (r,x∗(r))dr

ds

≤ (1+a)
(1−α[1])

Φq

 1∫
0

g(r) f (r,x∗(r))dr

≤ δ r2,

a contradiction. Hence T x 6= µx for x ∈ ∂Ωr2 , µ > 1.
Next, set Vr1 =

{
x ∈ K : mint∈[δ ,1−δ ] x(t)< r1

}
; then Ωr1 ⊂Vr1 ⊂Ωr1/δ and mint∈[δ ,1−δ ] x(t) = r1 for

x∈K∩∂Vr1 . By Lemma 5, for any x∈ ∂Vr1 we have max0≤t≤1 x(t)≤ 1
δ

mint∈[δ ,1−δ ] x(t) =
r1
δ
. Therefore,

for all δ ≤ t ≤ 1−δ , we have

r1 = min
t∈[δ ,1−δ ]

x(t)≤ x(t)≤ max
0≤t≤1

x(t)≤ r1

δ
.

Differentiating the operator T x with respect to t, we obtain

(T x)′(t) = Φq

 ρ∫
t

g(r) f (r,x(r))dr

≥ 0 for t ≤ ρ,

and

(T x)′(t) =−Φq

 t∫
ρ

g(r) f (r,x(r))dr

≤ 0 for t ≥ ρ.

Hence max0≤t≤1 T x(t) = T x(ρ), and T x can be expressed as

T x(t) = T x(0)+
t∫

0

Φq

 ρ∫
s

g(r) f (r,x(r))dr

ds for t ≤ ρ, (13)

and

T x(t) = T x(1)+
1∫

t

Φq

 s∫
ρ

g(r) f (r,x(r))dr

ds for t ≥ ρ. (14)
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We consider three cases depending on the location of ρ in (0,1), and prove that T x 6= µx, for x ∈
∂Ωr1/δ and µ < 1 in each case. If possible, suppose that there exists a x∗ ∈ ∂Ωr1/δ such that T x∗ = µx∗

and µ < 1. Then, for x∗ ∈ ∂Ωr1/δ , we have x∗(t) > µx∗(t) = T x∗(t). Consequently, r1/δ = ‖x∗‖ >
‖T x∗‖ holds. First suppose that ρ ∈ [δ ,1− δ ]. Then we have, either mint∈[δ ,1−δ ] T x∗(t) = T x∗(δ )
or mint∈[δ ,1−δ ] T x∗(t) = T x∗(1− δ ). If mint∈[δ ,1−δ ] T x∗(t) = T x∗(δ ), then from (13) and the fact that
T x∗(0)≥ 0, we have

r1/δ > ‖T x∗‖ ≥ T x∗(δ )

= T x∗(0)+
δ∫

0

Φq

 ρ∫
s

g(r) f (r,x∗(r))dr

ds

≥
δ∫

0

Φq

 δ∫
s

g(r) f (r,x∗(r))dr

ds > r1/δ ,

a contradiction. If mint∈[δ ,1−δ ] T x∗(t) = T x∗(1− δ ), then from (14) and the fact that T x∗(1) ≥ 0, we
have

r1/δ > ‖T x∗‖ ≥ T x∗(1−δ )

≥
1∫

1−δ

Φq

 s∫
ρ

g(r) f (r,x∗(r))dr

ds

≥
1∫

1−δ

Φq

 s∫
1−δ

g(r) f (r,x∗(r))dr

ds > r1/δ ,

a contradiction. Next suppose that ρ ∈ [1−δ ,1). Then from (13) and T x∗(0)≥ 0, we have

r1/δ > ‖T x∗‖ ≥ T x∗(1−δ )

≥ T x∗(0)+
1−δ∫
0

Φq

 ρ∫
s

g(r) f (r,x∗(r))dr

ds

≥
1−δ∫
0

Φq

 1−δ∫
s

g(r) f (r,x∗(r))dr

ds

≥
1−δ∫
0

Φq

 1−δ∫
δ

g(r) f (r,x∗(r))dr

ds, (∵ s≤ δ )

≥ (1−δ )Φq

 1−δ∫
δ

g(r) f (r,x∗(r))dr

> r1/δ ,

a contradiction. Finally, suppose that ρ ∈ (0,δ ). So ρ ≤ t ∈ [δ ,1− δ ] and ρ ≤ t ∈ [δ ,1− δ ]. Hence
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from (14) and T x∗(1)≥ 0, we have

r1/δ > ‖T x∗‖

≥
1∫

1−δ

Φq

 s∫
ρ

g(r) f (r,x∗(r))dr

ds+λ
∗ r2

δ

≥
1∫

1−δ

Φq

 s∫
1−δ

g(r) f (r,x∗(r))dr

ds > r1/δ ,

a contradiction. Hence, T x 6= µx, for x ∈ ∂Ωr1/δ , µ < 1 .
In order to complete the proof of the theorem, we are required to show that infx∈∂Ωr2 ‖T x‖ > 0.

Since ‖T x‖= T x(ρ), ρ ∈ (0,1), and T x(t)≥ 0 for all t ∈ [0,1], then from the concavity property of T x,
we have infx∈∂Ωr2 ‖T x‖ > 0. Hence by Theorem 1(i), the operator T has one fixed point x, which is a
positive solution of the problem (1)-(2) satisfying r1 ≤ ||x1|| ≤ r2/δ . This completes the proof of the
theorem.

Remark 1. The assumption (10) in Theorem 2 can be replaced by the condition

lim
x→∞

max
0≤t≤1

f (t,x)
Φp (x/M)

= 0. (15)

Indeed, by the condition (15) we can find a suitable r2 with r2 > r1/δ such that (10) is satisfied.

Thus, we have the following theorem.

Theorem 3. Let (15) be satisfied and assume that there exists a constant r1 > 0 such that (11) holds.
Then the problem (1) has at least one positive solution.

As an application of Theorem 3, we consider the case where the nonlinear function f in (1) is a
model of hematopoiesis (red blood production model), that is, we consider

(Φp(x
′
))
′
+

xl

1+ xm = 0, t ∈ (0,1), (16)

together with the BCs in (2). We have the following theorem.

Theorem 4. Suppose that l > p−1 > l−m > 0, and for any δ ∈ (0,1/2). Let

(l− p+1)
l−p+1

m (p−1− l +m)
(p−1−l+m)

m

(l− p+1)+δ m(p−1− l +m)
>

1

δ m+p−1 min
{
(1−2δ )

1
p−1 , (p−1)

p δ
p

p−1
} . (17)

Then the problem (16) together with the BCs (2) has at least one positive solution.

Proof. We shall apply Theorem 3 to prove our theorem. Set f (t,x) = xl

1+xm , then by the assumption
l > p− 1 > l−m > 0, we can see that (15) holds. Thus, it remains to find the existence of a positive
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constant r1 such that (11) is satisfied. Since g(t) ≡ 1, then M = min
{
(1−2δ )

1
p−1 , (p−1)

p δ
p

p−1

}
. Since

xl

1+xm ≥ δ mrl
1

δ m+rm
1

for r1 ≤ x≤ r1
δ

, then (11) is satisfied if

rl−p+1
1

δ m + rm
1
>

1

δ m+p−1 min
{
(1−2δ )

1
p−1 , (p−1)

p δ
p

p−1

} , (18)

holds. Set r1 =
(

l−p+1
p−l−1+m

) 1
m

δ ; then rl−p+1
1

δ m+rm
1

attains its minimum

(l− p+1)
l−p+1

m (p−1− l +m)
(p−1−l+m)

m

(l− p+1)+δ m(p−1− l +m)
,

for r1 ≤ x≤ r1
δ

at r1
δ
=
(

l−p+1
p−l−1+m

) 1
m

. Thus (18) is satisfied if (17) holds. This completes the proof of the
theorem.
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