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Abstract. In this paper, we introduce the ¢-extension of the p-Fibonacci matrix and give a Factorization
of the Pascal matrix involving the ¢-extension of the p-Fibonacci matrix. Also, we obtain some results
on the relations between the Stirling matrix of the second kind and the 1-extension of the p-Fibonacci
matrix.
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1 Introduction

The Fibonacci sequence and generalized Fibonacci sequence are famous sequences in mathematics. Many
authors have studied these sequences (see [ 1,5, 10]). The Fibonacci sequence is defined by the recurrence
relation f, = f,—1 + fu—2,n > 3, with the initial values f; = f, = 1. This sequence has been extended
in many ways. Two such extensions that will be used in this paper are the p-Fibonacci sequence and
the z-extension of the p-Fibonacci sequence (see [0, 12]). For p > 0, the p-Fibonacci sequence f7(n),
defined by the following relation:

fr) = fPn=1)+fP(n=p=1), n>p+1,

with initial terms

fF)=frQ)=-=f(p)=frp+1)=1
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Definition 1. For t,p > 1, the t-extension of the p-Fibonacci sequence {fP(t,n)}”,, is given by the
following recurrence relation:

0, n<l,
fP(t,n) =141, n=1,
tfP(t,n—1)+fP(t,n—p—1), n>1.

For example if = 1 and p = 2, we have f%(1,n) = f?(1,n— 1)+ f>(1,n—3) and {f%(1,n)}>., =

{...,0,1,1,1,2,3,4,6,9,...}.
The n x n lower triangular Pascal matrix, denoted by P, = [p;;], is defined as follows [2]:

[ —1
(’. > ifi> ],
pij=4 \J—1

0, otherwise.

Now, we define the n x n r-extension of the p-Fibonacci matrix (p > 2), denoted by F(f.n) =[f? )], with

(t,if
f(’,’,,,-) = fP(t,i— j+1). For example,

1 0 000 00O
11000000
11100000
2|21 110000
8~ 13 2111000
43211100
6 4321110
9 6 4 3 2 1 1 1]

The set of all n x n matrices with real entries is denoted by M,,. Any matrix B € M,, of the form B =
A*A, A € M,, may be written as B = LL* where L € M, is a lower triangular matrix with nonnegative
diagonal entries. The factorization of the matrix B = LL* is unique if A is nonsingular and A* is the
transpose of it. This is called the Cholesky factorization of B. In particular, a matrix B is positive definite
if and only if there exists a nonsingular lower triangular matrix L € M,, with positive diagonal entries
such that B = LL*. If B is a real matrix, L may be taken to be real.

For n, k € N and n > k, the Stirling number of the second kind S(n, k) is defined as follows (see [3])

1 k—1 Ak
S(n,k) = — —1) k—1i)". 1
= -0 (}) e m
Definition 2. The Stirling matrix of the second kind, denoted by {,(2) = [u;], is defined by:
C[s6p. iz
Y 0, otherwise.

The Pascal matrix and its factorizations were studied by many authors (see [4,7,11]). Also, in [8,9],
the authors gave some results about the p-Fibonacci matrix for p = 1. Here, for¢t = 1, p > 2, we consider
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the r-extension of the p-Fibonacci matrix and define the Pascal matrix. Then, in Section 2, we obtain a
Factorization of the Pascal matrix. In Section 3, using the product of the 1-extension of the p-Fibonacci
matrix and its transpose, we give the Cholesky factorization of S. Section 4 is devoted to obtaining some
results on the relations between the Stirling matrix of the second kind and 1-extension of the p-Fibonacci
matrix. In Section 5, we will generalize the notion of the z-extension of the p-Fibonacci matrix (1 > 2)
and study some properties of the 7-extension of the p-Fibonacci matrix.

Remark 1. Throughout this paper, we set fP(n) := fP(1,n) and F := F(in) )

2 Factorization of the Pascal matrix

In this section, we obtain the inverse of the 1-extension of the p-Fibonacci matrix F!. Also, we give a
factorization of the 1-extension of the p-Fibonacci matrix. We first get the inverse of the 1-extension of
the p-Fibonacci matrix. For this, we need to define the matrix Uy The n x n matrix Uy = [u];] is defined
by:

fra), ifj=1,
upy= 41, ifi = j,
0, otherwise,
that is

1 0 0 0
ff2) 1 0 0

o= |
fPn) 0 0 1

By using a simple calculation, we get
FP=Urx(hoUy ) x (LoU) ) % x (L2 ®U5),

where [; is an j x j identity matrix. For example,

F}=Uix(LLoU?) x (LoU;)
1 0 0 Of|1 O O O]|1 O O O 1 00 0
(1 10 0f{jO 1 0 O[O 1 0 O I 1 0O
/1t o1 o]f0O1 1 0[|OOT1O0 |1 110
2 0 0 1{]0 1 0 1110 O 1 1 2 1 1 1
Hence, we have
fP(1) 0 0 0
—fP2) 1 0 0
(U,‘f)71: () )
—fP(n) 0 0 ... 1

and
(hou? ) ' =ne Wl )"
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So, we get
(FD) ™ = (2 ® (UD) ) - x (h @ (U) 7 ) x (U) ™ @

From (2), we have (F})~! = []”;f)]an, where

1, if i=],
P={ 1, if j=i—lorj=i—(p+1), 3)
0, otherwise.
For example
10 0 0 0 0 0]
-1 1. 0 0 0 0 0
0O -1 1 0 0 0 0
FHY'=l0o 0 -1 1 0 0 0
-1 0 0 —-1 1 0 0
0 -1 0 0 -1 1 0
0 0 -1 0 0 —1 1]

Here, we give a factorization of the 1-extension of the p-Fibonacci matrix. First, we introduce the matrix
Lh.

Definition 3. Entries of the n x n matrix Ly, = [If}] are defined as

5= () -G2)- ()

| HI jy where Ify = 1,17, =0, j > 2.

For i, j > 2, using relation (4), we can write ll-p,- =/’ i1,

i—1,j—

For p =2 and n =5, we have

1 0 000
0 1 000
=0 -1 100
-1 1 210
-1 0 3 31

By the above information, we prove the following theorem.
Theorem 1. For the Pascal matrix P,, we have P, = FLb.

Proof. The matrix Fy/ is invertible. If we get (F/)~!P, = L%, then Theorem is proved. Let (F/)~'P, =B,
where Bn = (bi,j)lgi,jgn, i.e.,

i !
_ p
bij =Y fikPe;-
k=j
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Since (F{)~! and P, are lower triangular matrices, by the definition of (F)~!, we have

N |
J kZ::j s ]_1

_p i—(p+2) o (-2 '
_fi,i(erl)( ]_1 + ii—1 ]_1 +fi,i

)G (7) -t

Corollary 1. Fors,n € N,

s—1

For s = 1, we have

n
Pn,l - Zf;zklk,s = yﬁlll,l +f;z212,1 + - +frf7,nflln7171 +f,{7nlnl
k=s

Proof. From Theorem 1, we have P, = FPLP. Hence,

Po=ln+ffin—1)bi+-+ fP2) 11+ (1)l

Let s = 1. Since

1, ifi=1,
lilz 0, ifiSp-i-l,

we have the result.

/
Now, in the following theorem, we obtain the inverse of the matrix L, = [liﬁ.7 ]-

Corollary 2. Let (L7)™! = [l;f |. Then

=% (1)) <o

=)

Proof. Since P, 'F} = (L)™', we have the result.

Corollary 3. For p =2, we get

20N - _ i(n—1\ » .
o=+ 257 ) e

n—1 !
< > :Pn,s = Zfrﬁklk,s :f,i]ll,s +f£212,s+"‘+f,ﬁn,1 n—1,s +f;£nln,s-
k=s

165

(&)
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Proof. We have f2(n) Z Pnjl j] Hence, from Corollary 2,
j=1

=101 =05=0,1i=1

and [ = (—1)'f2(i — 1). Consequently,

pn1+2 ]f ]_l)pﬂj_l+z <n:i>f2(]_l)

j=

3 The Cholesky factorization of a symmetric 1-extension of th
matrix

O

e p-Fibonacci

Here, we define a symmetric 1-extension of the p-Fibonacci matrix S;. Then using the prouduct of the
1-extension of the p -Fibonacci matrix F} and its transpose F;, we get the Cholesky factorization of S%.

First, we need the following definition.

Definition 4. A symmetric 1-extension of the p-Fibonacci matrix, denoted by Sh =
1,2,...,n, is defined as follows:

Z(fp<l’l))2, lfl:Ja
s(p)ij—1+5(P)ij—(ps1)s  i+1<,

where j < p+1,s(p)i;j =0.

For example,

11 1 1 2 3 4 5 7 107
1 2 2 2 3 5 7 9 12 17
1 2 3 3 4 6 9 12 16 22
1 2 3 4 5 7 10 14 19 26
& 2 3 4 5 8 11 15 20 28 39
=13 5 6 7 11 17 23 30 41 58
4 7 9 10 15 23 33 43 58 8l
5 9 12 14 20 30 43 58 78 108
7 12 16 19 28 41 58 78 107 148
10 17 22 26 39 58 81 108 148 207]

—1
Remark 2. By Definition 4, we have (n ) = pns = [P (n),
s
>

[s(p)ij] for i,j =

(6)
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So, for j > i, by an induction on i, we get
s(p)ij = PO G+ A= G =D +PE=2) (G =2)+ -+ (PG —i+1). (D)
Lemma 1. For j > i, s(p)ij =s(p)i-1,j+5(P)i—(p+1),j + [P —i+1).

Proof. By the relation (7), we have

s(p)i—1,; = fPA=DfP())+fPE=2)fP (G =1+ + PP —0).

s(P)i—(p+1),; = fPE=(p+ D)) P +fPi—=(p+1) =171+
+ PP —it(p+2)).
Hence,
s(P)i-1,j +5(P)i-(p1),; = [PE=DfP (N + P =2) PG = 1)+ + PP =)
+ 7=+ D)) PG+ Pl—(p+ 1) =P =1+
+fPM) P —it+(p+2))
=(fPA-D)+f - (p+D)fF)+(r3i-2)

+fi—=(p+ ) =) fPG=D+-+ (-1
+f7(j—i+(p+2)))f"(1).

By Definition 1, we have

frn)=fPin=1)+f(n—p=1), fF(1) = fP(2)=---=fP(p) = f(p+1) =L
Therefore s(p)i—1,j+5(p)i—(p+1),; + [P —i+1) =s(p)ij. O
Theorem 2. For n € N, the Cholesky factorization of S}, is given by Sh = F (F{)T.

Proof. By the relations (2) and (3), it is sufficient that to prove (F/)~'S; = (F)T. Let X = [x(p);j] =
(E)~1Sh. We have

lJ_ thk k,j — p+l)S —(p+1),j +ftz 1Sl 11+le Lis
and by (3)
123, ifi=1,
xX(pij = =Si—(pr1);—Sic1j+Su=q fFG-1),  ifi=2,
fP(j+i—1), otherwise.
Furthermore X7 = F. This completes the proof. Ul

By Theorem 2, the proof of the following corollary is trivial. So, we omit the proof.
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Corollary 4. For (S§)~! = [s/(p)ij] where (S§) ™1 = (FF' x (F')T)~1, we have
(i) if i = j, then
L, ifi=n,
S(pli=12, ifn—p<i<n—l1,
3, otherwise.

(ii) For i # j, we get

-1, ifj=i+lorj=p+i+1,
S/(P)ij_sl<p)ji_{

L, ifj=i+p.

For example,

4 The Stirling matrix of the second kind

We get some results on the relationships between the Stirling matrix of the second kind and the 1-
extension of the p-Fibonacci matrix. For this, using the Stirling number of the second kind, we start with
the following definition.

Definition 5. A n x n matrix H} = [hfj] is defined as follows:

where S(m,k) is the Stirling number of the second kind.
By Definition 5, we see that 47, =1, h{; =0, j > 2, hj; =0, j#2and

p _ pp
e =h

i—1,j-1 +jh,

i—1,j°

Theorem 3. For the Stirling matrix §,(2) and F, we have ,(2) = EVH.

Proof. The matrix F/ is invertible. If we get (F,/)~'(,(2) = HY, then Theorem is proved. Let (F/)~'¢,(2) =
C, where C, = (c; j)1<i, j<ns 1.,
i U
cij= Y fiaS(k.j).

k=j
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Since (F!)~! and {,(2) are lower triangular matrices, by the defniton of (F)~!, we have
Cij = Zl: 158k, j)
k=j
= 17 e SG= (P10, )+ 128G = 1,7)+ 1,78, )
==S(i—(p+1),j) =S(—1,7) +5G, j) = (hf )1<ij<n-
So, we get the result.

Corollary 5. For1 <t <n,

t—1

S(n,1) —i;fp(n—i+l) (;Z(—U’C) (=D ===~ 1)f<P+1>)> .

©1=0

Proof. Fori> p+ 1, by Definition 5 and relation (1), we have

=g 0 (}) (6= ey,

1=0

t
On the other hand, S(n,1) = Y. f4 h, , So, we get
k=1

n 1—1
S(n,t) = Z,f!’(n —i+1) (tl' Z’(il)l (;) ((t _ l)i —(t— 1)1‘—1 — (- l)i—(p+1))> '

Lemma 2. Letr §,_(2) be the Stirling matrix. Then,
Hy = Li([1] © §u1(2))-
Proof. Suppose C;, = [c}}] = Ly, ([1] @ §,—1(2)). We prove that ¢]; = h}. For i = 1, we have

lf] =1 :hfp lzpl :Ozhglv 152: 1 :h§2~

So, for i = 1 and 2, we obtain cl’.’j = hf’] For i > 3,

L () TN RN G AR

Hence, by the relation (1), we get

=S, j) = S(i—1,/)+S(i— (p+1),)).

Therefore, cf;- = hfj.
Using Lemma 2, we have the following corollary.

Corollary 6. Forn>2, §,(2) = FLL ([11® §,1(2)).

169
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5 Factorization of the 7-extension of the p-Fibonacci matrix

In this section, for ¢ > 2, first we obtain the inverse of the ¢-extension of the p-Fibonacci matrix F(f n)"
Then, by this we give a factorization of it. '

Theorem 4. For the inverse of the t-extension of the p-Fibonacci matrix, denoted by (F(f ,n))_l = f([’f l.j)],
we have ' '

L, ifi=j,

—t, ifj=i—1,

-1, ifj=i—(p+1),
0, otherwise.

Proof. To find the inverse of the z-extension of the p-Fibonacci matrix, we define the n X n matrix U (’; =

p

[y ;;] as follows:
fP(,1) 0 0 0
fP2) 1 0 0
P
Wij = .
fP(t,n) 0 O 1
Clearly, U, (IZ n) is invertible and
Fall(R)) 0 --- 0
—fP&,2) 1 0 0
—1
(U(I;J,)) =
—fP@t,n) 0 0 1
Hence,
F(in) = U(I;Jl) x (I, ® U(I;,n—l)) X (I ® U(lt),n—2>) X oo X (L2 @ U&z))’

where /; is an identity matrix. Since (I & U{; nfk))*l =1 (U] nfk))*l, we have

(F(fﬁ))—l = (L ® (U(z;z))—l) X x (I @ (U(’;n_l))‘l) X (U(’j,n))“.

Therefore,
1, ifi =j,
o)t ifj=i—
Ti = —1, ifj=i—(p+1),
0, otherwise.
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Example 1. For p =2 and n = 4, we have

1 0 0 0 1 0 0O
2 _|¢! I 00 2 |t 1 00
F(f74) 2t 1 0l U(t,4)_ 2 0 1 ol
2?1 0 0 1]
[1 0 0 0 1 0 0 0]
0O 1 0O 01 00
2 2
holin=1o 1 o|" 2%Uia=10 0 1 o
0 0 1 0 1 ¢ 1]
Then,
Fiay=Uia(i@Uj3)(LOUG,).
So, fort > 2,
1 0O 0 O
2 -1 _ —t 1 0 O
(Fi) 0 —t 1 0
-1 0 —r 1

In the following, we obtain a factorization of the t-extension of the p-Fibonacci matrix. First, we

introduce the matrix Lf(’t -

Definition 6. The n x n matrix L} )= (1] is defined as:

(t,n 1ij

P i—1 ; i—2 i—(p+2)
L \j—1 j—1 j—1 )
By the above information, we prove the following theorem.

Theorem 5. For the Pascal matrix P,, we have P, = F(?n)LZ‘n).

Proof. The matrix F(’t’,n) is invertible. If we get (F(’;n))*an = Lz’n), then the theorem is proved. Let

(F(I;n))flpn = B(t,n) where B(t,n) = (bi,j)lgi,jgn, 1.€e.,
i /
bij=Y fd P
k=)
Since (F?)~! and P, are lower triangular matrices, by the definition of (F})~!, we have

U k—1
bij= ) fi; < )
)] kg}(t,k) ]—1

p i—(p+2) 'p i—1\ [i-2 o (i—1
_f(t,ii(erl))( i1 + fdi-n) i—1) -1 + T i1
i1 i—2\ [i—(p+2)

<j—1>_t<j—1)_< i1 )Z(l“"’)1<"j<”'
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